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Experiments were conducted to characterize the detonation phase-velocity dependence
on charge thickness for two-dimensional detonation in condensed-phase explosive slabs
of PBX 9501, PBX 9502, and ANFO. In combination with previous diameter-effect mea-
surements from a cylindrical rate-stick geometry, these data permit examination of the
relative scaling of detonation phase velocity between axisymmetric and two-dimensional
detonation. We find that the ratio of cylinder radius (R) to slab thickness (T ) at each
detonation phase velocity (D0) is such that R(D0)/T (D0) < 1. The variation in the
R(D0)/T (D0) scaling is investigated with two Detonation Shock Dynamics (DSD) mod-
els: a lower-order model relates the normal detonation velocity to local shock curvature,
while a higher-order model includes the effect of front acceleration and transverse flow.
The experimentally observed R(D0)/T (D0) (< 1) scaling behavior for PBX 9501 and
PBX 9502 is captured by the lower-order DSD theory, revealing that the variation in
the scale factor is due to a difference in the slab and axisymmetric components of the
curvature along the shock in the cylindrical geometry. The higher-order DSD theory is
required to capture the observed R(D0)/T (D0) (< 1) scaling behavior for ANFO. An
asymptotic analysis of the lower-order DSD formulation describes the geometrical scal-
ing of the detonation phase velocity between the cylinder and slab geometries as the
detonation phase velocity approaches the Chapman-Jouguet value.
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1. Introduction

Condensed-phase explosives have long been known to exhibit a detonation velocity
dependence with charge scale. Experiments in cylindrical and slab geometries have pre-
viously been used to study this effect and determine its dependence on both charge
scale and shape. Despite these efforts, the physics governing the variation of detonation
velocity for different geometries is not fully understood.

1.1. The Size Effect

The influence of charge size on detonation velocity in a high explosive (HE) is generally
measured in cylinders of constant diameter. This “rate-stick” geometry generates a steady
detonation when the cylinder is of sufficiently large aspect ratio. By performing tests at
multiple diameters, it is observed that the explosive detonation velocity monotonically
decreases with decreasing radius (Campbell & Engelke 1976), as shown in figure 1. This

† Email address for correspondence: sjackson@lanl.gov



2 S. I. Jackson and M. Short

Figure 1. The diameter effect for several high explosives with no confinement. Curves for PBX
9501, PBX 9502 and ANFO are from authors cited in Tables 3, 6, and 8, with others from
Campbell & Engelke (1976).

diameter effect relationship is commonly plotted as axial detonation velocity (D0) versus
inverse charge radius (1/R). It is due to lateral expansion of high-pressure reaction zone
gases, the pressure of which (ranging from a few GPa in non-ideal high explosives to a
few tens of GPa in ideal high explosives) exceeds the strength of any confining material.
The expansion leads to streamline divergence in the reaction zone and a curved detona-
tion shock as shown in figure 2. The energy balance between the detonation shock and
sonic plane influences the detonation speed (Bdzil 1981). As the charge radius decreases,
increasing energy is lost to streamline divergence, while the curved sonic plane progresses
towards decreasingly reacted states. These effects reduce the chemical energy available
to drive the detonation shock, manifesting lower detonation velocities at smaller charges.
There are two limiting cases; steady detonation propagation is not possible below a crit-
ical failure diameter 2Rc, while for infinite radius charges, the flow is one-dimensional
and the detonation propagates at the Chapman-Jouguet (CJ) detonation velocity.

The quantitative aspects of the diameter-effect curves, including their level of con-
cavity and Rc, differ with explosive formulation, microstructure, and reaction kinetics.
The sum of these effects cannot currently be predicted a priori. Despite this limitation,
coarse classifications exist based on the relative lengths of each explosive’s CJ detonation
reaction zone and its diameter-effect variation over engineering scales. Ideal explosives,
such as cyclo-tetramethylene-tetranitramine (HMX), have short reaction zone lengths
of O(0.1 mm) and are observed to have small variations in detonation velocities from
the CJ speed over a wide range of charge diameters. Insensitive high explosives, such as
2,4,6-triamino-1,3,5-trinitrobenzene (TATB), exhibit two disparately sized zones of heat
release that combine for an overall reaction-zone size of O(1 mm), a more pronounced
diameter effect (i.e. steeper slope on D0 vs. R−1 plots), and a larger failure diame-
ter. Non-ideal high explosives, such as prilled ammonium nitrate and fuel oil (ANFO),
typically have reaction zone lengths on the scale of centimeters O(10 mm), very strong
diameter effects, and very large failure diameters.
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Figure 2. Curvature on the detonation shock induced by radial flow expansion into the reaction
zone. Coloring of postshock flow indicates relative pressure, with low pressure flow as blue and
high pressure flow as red. Figure adapted from Bdzil et al. (2003).

Rectangular slabs are sometimes used as a second fundamental geometry for analysis
of detonation velocity with charge size. Slabs exhibit analogous behavior to rate sticks,
but can be used to generate two-dimensional reaction zone flow (detailed in section 2).
These slab reaction zones only laterally expand in the thickness dimension, in contrast
to the two-dimensional (radial and azimuthal) expansion of the rate stick. Because of
this geometric effect, less reaction zone energy is lost to flow divergence for a given slab
thickness T as compared to a rate stick with equivalent radius 2R = T and, as a result,
slabs exhibit a higher detonation velocity relative to comparably sized rate-sticks. While
not explicitly named previously, we refer to the detonation velocity dependence with
inverse slab thickness as the thickness effect, the combined diameter- and thickness-effect
relationships as the size effect, and the critical slab thickness as Tc.

1.2. Prior Scaling Measurements

For a given HE, we define the steady propagation scale factor R(D0)/T (D0) as a compar-
ison of the rate-stick radius and slab thickness that give an identical detonation velocity
in the two geometries (for the same confinement conditions), while the critical scale fac-
tor Rc/Tc represents the ratio of the critical radius and critical thickness in the cylinder
and slab geometries respectively. Variation of these scale ratios for a variety of explosives,
along with the implications for detonation dynamics in different geometries, has received
much attention recently and forms the basis for the current paper. Previously measured
scale factors for steady detonation propagation and failure are summarized in table 1.
The scope of prior work is limited, with only nine formulations having been studied by
four groups. These formulations span a range of detonation behavior from homogeneous
liquids with relatively flat diameter-effect curves, to heterogeneous plastic-bonded ex-
plosives with moderately sloped diameter-effect curves, to non-ideal emulsion explosives
with steep diameter-effect curves. Most of the studies were equipped with a witness plate
diagnostic to measure Rc/Tc, while R(D0)/T (D0) was only reported for three emulsion
explosives. Additionally, most experiments did not monitor the detonation front for the
occurrence of transverse instabilities, which have been observed to occur in liquid and
liquid-emulsion explosives (Engelke & Bdzil 1983). The presence of such instabilities
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Reference R(D0)/T (D0) Rc/Tc Mixture Geometry

Ramsay (1985) NA 1.15 PBX 9502 UPT
Gois et al. (1996) NA ≈ 1 NM-PMMA-(2%, 3%)GMB UPT
Gois et al. (1996) NA 1.6 NM-PMMA-(0.2%)GMB UPT
Petel & Higgins (2006) NA 1.6 ± 0.3 NM C&S
Petel & Higgins (2006) NA 1.8 ± 0.2 65%NM-35%NE C&S
Petel et al. (2006) NA 1.55 ± 0.15 HN-HZ C&S
Petel et al. (2006) NA 1.65 ± 0.15 NM-DETA-GB C&S
Mack et al. (2007) NA 0.81 ± 0.15† NM A
Petel et al. (2007) NA 1.15 ± 0.05 65%NM-35%NE-GB C&S
Petel et al. (2007) 1.5–1.9 1.95 ± 0.45 APEX Elite emulsion C&S
Silvestrov et al. (2008) 1-1.1 1.225 ± 0.025 fine AN emulsion C&S
Higgins (2009) 1-1.3 1.63 ± 0.04 NM-PMMA-(0.2%)GMB C&A

Table 1. Summary of prior work. (AN = ammonium nitrate, DETA = diethylenetriamine,
GB = glass beads, GMB = glass microballoons, HN = hydrazine nitrate, HZ = hydrazine, NM
= nitromethane, NE = nitroethane. The geometries are UPT = unsteady prism test, C&S =
cylinder and slab, A = annulus, C&A = cylinder and annulus). †This critical scale factor was
calculated using the value of Tc calculated by Mack et al. (2007) and Rc calculated by Petel &
Higgins (2006).

would both alter the detonation physics from those described in section 1.1 and section
3 and also would likely affect any scale factor measurements.

Ramsay (1985) evaluated Tc of PBX 9502 under both confined and unconfined condi-
tions using a “prism test,” composed of a wedge-shaped cuboid of PBX 9502 initiated
with a line wave generator (Jackson et al. 2006; Morris et al. 2009) at one trapezoidal
face. A witness plate on the opposing face was dented if detonation successfully transited
the wedge. The geometry was intended to evaluate a range of explosive thickness in a sin-
gle test, as opposed to fielding multiple slab tests. At room temperature, Ramsay (1985)
found a critical prism thickness of 3.8 mm. Comparison to cylindrical data of Campbell &
Engelke (1976) yielded Rc/Tc = 1.15. Given the inherent unsteadiness of the test design,
this value is likely an overestimate: Detonation will travel at a higher velocity in thicker
regions of the wedge, overdriving and delaying incipient failure in adjacent thinner re-
gions. Additionally, the short detonation run length (50 mm) may have been insufficient
for the detonation to relax from any booster overdrive to steady propagation. For these
reasons, Ramsay (1985) noted that the prism only provided only a preliminary estimate
of Tc, which could be improved with constant-thickness slab tests.

Gois et al. (1996) also performed prism tests to measure Tc for emulsion explosives com-
posed of nitromethane (NM) with small concentrations of glass microballoons (GMBs)
and dissolved PMMA. The dissolved PMMA sufficiently increases the mixture viscosity
to suspend the GMBs, which increase the sensitivity of the mixture. They measured
a critical scale ratio Rc/Tc close to unity for 2% and 3% GMB concentrations when
compared to previous tests (Gois et al. 1991) in the cylindrical geometry. For 3% GMB
concentration Rc/Tc < 1, but for 2% GMB concentration Rc/Tc > 1. For 1% GMB
concentration, Rc/Tc ≈ 0.7, however, Rc/Tc abruptly increased to 1.6 for very low GMB
concentrations of 0.2%. As with Ramsay (1985), Gois et al. (1996) likely overestimate
Rc/Tc due to the prism geometry.

Petel & Higgins (2006) report the critical radius and thickness of two liquid explosive
mixtures, pure NM and a blend of 65% NM and 35% nitroethane (NE) by mass, under
aluminium confinement. They measured Rc/Tc of 1.6 and 1.8 for the NM and NM/NE
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mixtures, respectively. Note, however, that the detonation velocities of pure NM and NE
are approximately 6.2 and 5.4 mm/µs, respectively (Engelke & Bdzil 1983; Yoshinaka
& Zhang 2004), while the longitudinal sound speed of the confining aluminium alloy is
6.4 mm/µs. If the detonation velocity is lower than the confiner sound speed, the flow in
the confiner becomes subsonic and shockless. Precursor waves in the confiner can then
be driven ahead of the detonation (Sharpe & Bdzil 2006; Jackson et al. 2011; Short &
Jackson 2015), potentially influencing both the detonation propagation speed and failure
process (Short et al. 2010).

Mack et al. (2007) performed critical thickness experiments with pure NM in an annular
channel confined by an inner aluminium rod and an outer aluminium tube. Mack et al.
(2007) argue that for an annular channel thickness much less than the annular radius, the
axisymmetric component of curvature is negligible. They measured a critical thickness
of 1.45 ± 0.15 mm, a factor of two larger than their group’s previous Tc measurement
of 0.75 ± 0.1 mm. They proposed that Petel & Higgins (2006) may not have allowed
the detonation to propagate a sufficiently long distance in either the slab or cylindrical
geometries (> 10 aspect ratio) to quantify detonation failure. In addition, an estimate
for the magnitude of the axisymmetric curvature component in the annulus was not
given. A non-negligible axisymmetric curvature component could cause an increase in
the calculated value of Tc relative to the 2D slab geometry. As with their previous study,
precursor motion in the aluminium confiner may also be present. Using the Rc value for
pure NM from Petel & Higgins (2006) with the new critical thickness Tc = 1.45 ± 0.15
mm gives a revised critical scale factor of Rc/Tc = 0.81 ± 0.15.

Petel et al. (2006, 2007) performed rate stick and slab tests with four explosive for-
mulations: (1) a 65%NM–35%NE mixture sensitized with solid glass beads (GBs), (2)
an ammonium nitrate and aluminium-flake based commercial blasting emulsion named
Apex Elite manufactured by Orica Mining Services, (3) a NM mixture sensitized with
diethylenetriamine (DETA) and GBs, and (4) a mixture of hydrazine nitrate (HN) and
hydrazine (HZ). The slab geometry used by Petel et al. (2006, 2007) was similar to that
used by Petel & Higgins (2006). Aluminium confinement was used for the NM-NE-GB
and HN-HZ mixtures, while the NM-DETA-GB explosive was confined by glass, and Apex
Elite confined by PMMA. While Rc/Tc was measured for all explosives, R(D0)/T (D0)
was only measured for Apex Elite. For the NM-NE-GB mixture, Rc/Tc was 1.15 ± 0.05.
For the NM-DETA-GB mixture, Rc/Tc was 1.65 ± 0.15. For the HN-HZ mixture, Rc/Tc
was 1.55 ± 0.15. For Apex Elite, Rc/Tc was 1.95 ± 0.45 while R(D0)/T (D0) ranged from
1.5–1.9, the scale factor increasing as D0 decreased.

Subsequently, Silvestrov et al. (2008) also performed rate sticks and slab tests with
an ammonium-nitrate-based emulsion explosive. They measured Rc/Tc = 1.225 ± 0.025
and R(D0)/T (D0) = 1–1.1. Finally, Higgins (2009) evaluated the geometric scaling for
the lowest GMB concentration (NM-PMMA-(0.2% wt.) GMB) mixture tested by Gois
et al. (1991). The experimental geometries tested were cylindrical rate sticks and annular
channels similar to that of Mack et al. (2007), but with PVC confinement. Higgins (2009)
reported Rc/Tc = 1.63 ± 0.04 and R(D0)/T (D0) = 1–1.3.

Citing the correlation between detonation velocity and shock curvature that has long
been observed (Bdzil 1981), Petel et al. (2006, 2007), Silvestrov et al. (2008) and Higgins
(2009) suggest that curvature-based theories of detonation propagation and failure should
predict scale factors where R(D0)/T (D0) = 1 and Rc/Tc = 1. Their conjecture is based
on the geometric observation that detonation in a cylinder experiences two orthogonal
components of reaction zone flow expansion, while detonation in a slab only expands along
a single axis. With the assumption that all components experience equal curvature (which
we address in section 3.1.2), they conclude that a cylinder and slab will have the same
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total curvature and detonation velocity when R = T , hereafter referred to as the R = T
scaling. Scaling measurements deviating from unity (which encompasses essentially all
existing size-effect data) were then attributed to factors other than curvature dominating
the physics of detonation propagation and failure.

1.3. Paper Outline

We examine the variation of scale factor R/T for three characteristically different explo-
sives by experimentally measuring their slab thickness effect (section 2). Prior cylindrical
diameter-effect data are then used to find the experimentally observed scaling between
these geometries. The experimental results are compared to predictions from two Detona-
tion Shock Dynamics (DSD) models (section 3). A lower-order theory relates detonation
velocity to front curvature, while a higher-order theory includes front acceleration and
transverse flow terms. We show that lower-order theories are entirely consistent with the
variable non-unity scale factors observed experimentally because the orthogonal curva-
ture components in the rate stick are not, in general, equal. The higher-order theory is
required to describe the R/T variation for ANFO. Finally, an asymptotic study is used
to provide insight into the variation of the R/T scale factor for detonation velocities
approaching the Chapman-Jouget limit (section 4).

2. Experiments

2.1. Slab Test Geometry

The rectangular slab configuration was initially proposed as a simple configuration to
measure HE Gurney energy (Kennedy 1997), and has since been used to characterize
interactions between explosives and various inert confiners (Eden & Wright 1965; Eden
& Belcher 1989; Hill & Aslam 2004; Anderson et al. 2014). It was also used by Collyer
et al. (1998) to measure thickness-effect curves and detonation shock shapes to derive
a DSD calibration for the insensitive TATB based explosive EDC35 (95/5 TATB/Kel-F
wt%).

In this study, slab geometry experiments were designed to generate a region of quasi-
steady two-dimensional flow, in which detonation velocities and front shapes can be
measured. The slabs in the current study have no confinement to match the previ-
ously obtained data on unconfined rate-sticks. An example of the slab configuration
(for PBX 9502) is shown in figure 3. The experiments consist of a large-aspect-ratio
rectangular-cuboid HE main charge that is initiated by a high-precision detonation line
wave generator. For PBX 9502 and ANFO, the wave is then transmitted to a rectangular-
cuboid booster charge that is composed of an explosive with sufficient output strength to
promptly initiate a linear detonation wave in the adjacent main charge. The detonation
then propagates along the main charge to the front-shape measurement surface located
at the centerline (across the thinnest dimension T ) of the output face. Time of arrival
wires (or pins) track the phase velocity of the detonation along the charge centerline.

For a linear detonation input and a main charge of finite length, the charge will contain
a region of two-dimensional flow as indicated in figure 3. The transition of the HE region
to air at the sides of the charge creates rarefaction waves which propagate laterally into
the HE rendering the following flow three-dimensional. Nominally, we expect the distur-
bance wavehead to propagate along the shock at the local sound speed of the shocked
reactants. However, using a small resolved heat release model in a 2D configuration, Bdzil
& Stewart (1986) showed that the propagation of a two-dimensional disturbance from
the edge of a charge consisted of a two-wave hierarchy. The main disturbance is carried in
a region of parabolic flow connected to the edge of the charge. The parabolic flow region
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Figure 3. Test geometry for a PBX 9502 slab. The slab is initiated with a line wave generator
and boosted by a rectangular cuboid of Composition B. The dashed lines are illustrative of the
path of the wave head that propagates disturbances from the slab edges toward the slab center,
rendering the following flow three-dimensional. A spatially decreasing region of two-dimensional
flow remains in the center of the slab.

is connected to the region of one-dimensional undisturbed flow by a hyperbolic wave
regime, whose wavehead amplitude is small. Consequently, significant modifications to
the one-dimensional regime only occur with the arrival of the parabolic flow region. Bdzil
& Davis (1975) contains a reference to unpublished experiments on unconfined Compo-
sition B rate-sticks that indicate the velocity of the laterally moving side rarefaction in
the explosive is about 1/4 of the detonation velocity. This is consistent with the study by
Bdzil & Stewart (1986). Jackson & Short (2012) for PBX 9502 and Chiquete et al. (2014)
for PBX 9501 have also performed experiments and analysis that verified the presence of
a large two-dimensional flow region at the downstream shock breakout surface for slab
charges with similar aspect ratios to the present experiments. In the present work, main
charge dimensions are selected such that a two-dimensional region is maintained over the
time-of-arrival pin and front-shape measurement region.

The axial charge length in the direction of detonation propagation must also be suffi-
ciently long that a steady two-dimensional detonation velocity can be achieved. Typically,
this requires a length of several charge thicknesses (T ) to both damp out any booster
overdrive or underdrive and allow for the two-dimensional flow to be established. With
a single exception (shot 8-1661), the experiments in this study had length-to-thickness
ratios L/T > 10. Thus, charges had to be as long as possible to achieve a steady-state
velocity and as wide as possible to maintain a sufficient two-dimensional measurement
region. For less-ideal detonations with larger reaction zones, these two considerations
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Shot T L W ρ0 D0 ±SE
Number (mm) (mm) (mm) (g/cc) (mm/µs) (mm/µs)

8-1710 0.80 130.0 150.0 1.83 >7.73 0.14
8-1705 1.00 130.0 150.0 1.831 8.461 0.003
8-1701 1.98 130.0 150.0 1.8311 8.687 0.001
8-1595 3.00 135.0 151.2 1.832 8.738 0.006
8-1646 3.00 135.0 151.2 1.832 8.723 0.004
8-1691 3.00 135.0 151.2 1.8334 8.751 0.002
8-1694 3.99 130.0 150.0 1.8309 8.755 0.002
8-1723 6.00 130.0 150.0 1.8297 8.766 0.001
8-1735 8.01 130.1 150.1 1.8295 8.777 0.003

Table 2. PBX 9501 slab experiment dimensions and thickness effect data. Shots fired at
22.5±2.5◦C. PBX 9501 lot was HOL89C730-010. Shot 8-1710 only indicates a minimum possi-
ble velocity due to nonplanar initiation, as described in the text. Densities were measured with
multiple instruments, which yielded varying significant figures as shown.

require very large charges compared to more sensitive formulations (detonations are
considered ideal when the wavefront radius of curvature is significantly larger than the
reaction zone length: 1/κ >> `RZ). This will be apparent in the relative test dimensions
of each formulation presented below.

2.2. PBX 9501 Slab Experiments

Nine slab experiments were performed with the PBX 9501 formulation. PBX 9501 is
a polymer bonded explosive composed of 95.0 weight (wt.) % HMX explosive crystals
bonded with a binder mixture of 2.5 wt. % Estane and a 2.5 wt. % eutectic mixture of
bis(2,2-dinitropropyl)acetal and bis(2,2-dinitropropyl)formal (BDNPA/BDNPF). PBX
9501 is considered to be a conventional high explosive with a spatially small reaction
zone of O(0.1 mm), a nominal detonation velocity D0 of 8.8 mm/µs, and a critical radius
near 0.76 mm (Gibbs & Popolato 1980).

PBX 9501 slab experiments were boosted with a line wave generator composed of
XTX-8003 (80% PETN or pentaerythritol tetranitrate and 20% silicone resin, specifically
Sylgard 182 elastomer). The line wave generator had an output width and thickness of 157
and 3.2 mm, respectively. Due to the high shock sensitivity of PBX 9501, no additional
boosting charge was used. The PBX 9501 main charges were approximately 130 mm in
length and 150 mm in width with thicknesses varying from 0.8–8.0 mm. Nominal densities
were 1.83 g/cc. Specific dimensions and densities are listed in table 2.

Ionization probes were used as the time-of-arrival diagnostic for the PBX 9501 test
series. Each ionization probe consisted of a 79.8-µm-diameter (40-AWG) copper wire that
was located along the axial centerline of one face of the charge. The wires were bent into
a chevron shape and oriented with the chevron tip along the axial charge centerline so
that the detonation would first contact this tip. These wires were raised to an electrical
potential of 75.0 V through use of an RC circuit. A single, thicker copper grounding
wire was located on the axial centerline of the opposing charge surface. Arrival of the
ionization front associated with the detonation wave at each probe allowed current to
flow from the high-voltage wire to ground, resulting in a measured voltage drop across
the resistor in the RC circuit. Probe locations were measured to better than 30 µm and
the pin voltage was sampled with a bandwidth of 1 GHz (5 GS/s sample rate) during
each test.

For each test, either 11 or 22 ionization probes were used on the main charge. The
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Shot R L/Dia. ρ0 D0 ±SE
Number (mm) (mm) (g/cc) (mm/µs) (mm/µs)

8-706†† 20.75 N/A 1.832 8.786 0.0004
8-707∗ 20.75 N/A 1.831 8.777 0.0004
8-800† 20.65 N/A 1.838 8.810 0.0004
8-888††† 20.65 N/A 1.835 8.790 0.0009
8-889† 20.65 N/A 1.836 8.794 0.0005
15-2781 20.65 N/A 1.838 8.793 0.002
C-4431 12.7 >10 1.832 8.790 0.001
C-4442 2.505 >10 1.832 8.722 0.002
C-4427 1.415 >10 1.832 8.612 0.011
N/A 1.415 N/A 1.828 8.618 0.015
C-4440 1.005 >10 1.832 8.487 0.013
C-4441 0.79 >10 1.832 8.259 0.013

Table 3. PBX 9501 diameter-effect data for cylindrical rate-sticks. Data points are taken from
a recent compilation by Hill (2012). Shots conducted approximately at room temperature. ∗PBX
9501 lot RON00H144-001. †PBX 9501 lot BAE02D145-004. ††PBX 9501 lot HOL89C730-010.
†††PBX 9501 lot BAE03L145-007. For all other shots, the lot specification was not available.
Shots 8-706 and 8-707 had associated front curvature measurements (Hill 2012). N/A= record
not available.

first probe was located 30 mm from the upstream (initiating) end of the PBX 9501
charge. Subsequent probes were equidistantly spaced over the remaining distance to the
downstream end of the charge, resulting in probe separation spacings of 9.1 mm. Probe
position and detonation arrival time data were fitted to a line using a least-squares fit
optimization. The slope of the line was the steady-state detonation velocity D0. These
velocities are reported in table 2 along with the standard error (SE) associated with the
fit to D0.

As expected, the detonation velocity is seen to increase with slab thickness. Excepting
a single abnormally initiated test (described below), standard error values are all less
than ±0.006 mm/µs or 0.07% D0, indicating that the detonation velocity is steady. The
three repeat shots performed at an identical thickness of 3.00 mm exhibit a velocity
range of 0.028 mm/µs or 0.3% D0. This range was likely influenced by charge density
variations, which were present in the experiments.

The 0.8-mm-thick slab was inadequately boosted by the line wave generator and only
initiated at one corner. The resulting detonation expanded cylindrically across the charge.
The D0 value listed in table 2 was inferred from a series of framing camera images of
the experiment, substantially increasing the SE uncertainty relative to the ionization
pin diagnostic. This result indicates that (1) the planar detonation velocity would have
likely exceeded this cylindrically diverging detonation velocity and (2) the 0.8-mm-thick
slab required a stronger booster for successful initiation.

Table 3 contains historical data from rate stick experiments in the cylindrical geome-
try that were recently compiled by Hill (2012). The cylindrical and slab rate stick data
are plotted against each other in figure 4. The horizontal axis represents inverse charge
radius 1/R or thickness 1/T so that the two geometries will overlay if the R = T scaling,
discussed in section 1, is satisfied. The data points indicate each experimental measure-
ment. The curves shown were fit to the experimental data using a modified form of the
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Formulation Geometry D∞ A R1

PBX 9501 Cylinder 8.800 0.0191 0.4780
PBX 9501 Slab 8.800 0.0183 0.5251
PBX 9502 Cylinder 7.755 0.3979 -4.045
PBX 9502 Slab 7.755 0.4110 -2.909
ANFO Cylinder 4.800 12.66 19.56
ANFO Slab 4.800 24.02 7.579

Table 4. Parameters for the modified Eyring fitting form curves (2.1).

empirical Eyring equation (Campbell & Engelke 1976),

D0(`) = D∞

(
1− A

`−R1

)
, (2.1)

where D∞ (the CJ detonation velocity), A and R1 are fitting parameters. Variable `
either represents the cylinder radius R or the slab thickness T . For fitting to the slab
thickness effect and rate-stick diameter-effect PBX 9501 data in tables 2 and 3, D∞ is
fixed for both geometries based on estimates of DCJ for PBX 9501 obtained previously
at Los Alamos National Laboratory. The parameters A and R1 are then fitted using a
least squares approximation. PBX 9501 parameters for (2.1) are listed in table 4. Figure 4
shows the diameter- and thickness-effect curves resulting from the modified Eyring fitting
form. Overall, the experimental PBX 9501 data is reasonably approximated by the R = T
scaling over the range of test conditions. For thicker charges (R > 1.25 mm and T > 1.25
mm) and higher detonation velocities (D0 > 8.55 mm/µs), the agreement between the
two geometries is excellent. Deviations only exist for the smallest (1.0 mm) slab that
was properly initiated, where the detonation flow is less ideal due to increasing lateral
expansion losses and lengthening reaction zone widths.

2.3. PBX 9502 Slab Experiments

Nine slab experiments were performed with PBX 9502. PBX 9502 is a plastic-bonded
explosive composed of 95.0 wt. % TATB explosive bonded with 5.0 wt. % Kel-F 800,
which is a a proprietary name for the thermoplastic chlorofluoropolymer Polychlorotri-
fluoroethylene or PCTFE (Gibbs & Popolato 1980). PBX 9502 is an insensitive high
explosive with a nominal detonation velocity of 7.8 mm/µs, and a failure diameter near
8.0 mm. The PBX 9502 reaction zone structure is considered moderate in spatial scale,
exhibiting both fast reactions that are of O(0.1 mm) and slower reactions of O(1.0 mm).

PBX 9502 slab experiments were boosted with segments of Composition B formed in
rectangular cuboids that were 8.0-mm long × 150-mm wide with a thickness equivalent
to that of the PBX 9502 main charge. The Composition B charge was detonated by
the same type of line wave generator used in the PBX 9501 tests. The PBX 9502 main
charges were 127–150 mm in length and 150 mm in width, with thicknesses varying from
3.5–16.0 mm. Nominal densities were 1.87 g/cc. Specific dimensions are listed in table 5.

The ionization probes and velocity reduction methodology used with the PBX 9502
test series were identical in design to those used for the PBX 9501 tests. Inter-probe
spacings were also equivalent. The distance of the first probe from the upstream end
of the main charge varied with charge length. For charges 127-130 mm in length, this
distance was 30 mm. For charges 150 mm in length, it was 50 mm.

As with the PBX 9501 data, the PBX 9502 detonation velocity increases with both slab
thickness and slab initial density. Standard error values are all less than ±0.005 mm/µs
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Figure 4. Size-effect data for PBX 9501. Blue circles  and red squares � denote experimental
cylindrical rate stick and slab test detonation velocities from tables 2 and 3. Blue dashed and
red solid lines are modified Eyring-form fits to the cylindrical and slab experimental data,
respectively. Error bars are plotted for each symbol, but may be smaller than the symbol.

Shot T L W ρ0 D0 ±SE D0,corr

Number (mm) (mm) (mm) (g/cc) (mm/µs) (mm/µs) (mm/µs)

8-1803 3.51 129.9 150.0 1.8741 Failed N/A Failed
8-1802 3.78 129.9 150.1 1.8740 7.237 0.002 7.266
8-1648 4.00 130.0 150.0 1.8741 7.262 0.002 7.291
8-1649 6.00 130.0 150.0 1.8738 7.391 0.004 7.421
8-1662 8.00 130.0 150.0 1.8741 7.439 0.002 7.468
PRAD-361 8.00 127.0 152.4 N/A 7.467 0.029 N/A
8-1589 8.00 127.0 151.1 1.8788 7.450 0.005 7.467
8-1590 8.00 127.0 151.1 1.8894 7.476 0.001 7.468
8-1647 12.00 150.0 150.0 1.8737 7.505 0.002 7.534
8-1661 16.00 150.0 150.0 1.8740 7.526 0.034 7.555

Table 5. PBX 9502 slab experiment dimensions and thickness-effect data. All slabs were man-
ufactured from lot 008 material. Shots fired at 22.5±2.5◦C. Data for PRAD-361 is from Aslam
et al. (2009). D0 is the experimentally measured detonation velocity. D0,corr is the detonation
velocity after correction to an initial charge density of 1.886 g/cc.

or 0.07% of D0, indicating that the detonation velocity is steady. The three repeat shots
performed at an identical thickness of 8.00 mm exhibit a velocity range of 0.037 mm/µs
or 0.5% of D0 that, as discussed below, is dependent on the density of each charge.
Framing camera images indicate that the 3.50-mm-thick charge was properly boosted,
but failed a short distance downstream, indicating that the PBX 9502 slab was not able
to support 2D detonation at this thickness.

2.3.1. PBX 9502 Density-Adjusted Velocities

The PBX 9502 data in table 5 exhibit a range of density variation that is four times
larger than that present in the PBX 9501 data (∆ρ9502 = 0.0157 g/cc versus ∆ρ9501 =
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Figure 5. Experimental detonation velocity versus charge density for three shots with a
thickness of 8.0 mm: 8-1662, 8-1589 and 8-1590.

Shot R L/Dia. ρ0 D0 ±SE
Number (mm) (mm) (g/cc) (mm/µs) (mm/µs)

15-2839 25.0 N/A 1.886 7.641 N/A
15-2529 9.0 N/A 1.886 7.523 N/A
15-2844 9.0 N/A 1.886 7.512 N/A
8-1620 8 9.8 N/A 7.506 0.026
15-2851 5.0 N/A 1.890 7.421 N/A
8-1167 4.25 35.86 1.894 7.375 0.047
8-1159 4.00 38.10 1.893 Detonated N/A
8-1169 3.75 40.64 1.894 Failed N/A

Table 6. PBX 9502 diameter effect for cylindrical rate-sticks of PBX 9502 (lot 008). Shots fired
at 22.5±2.5◦C. Data for shots 15-2839, 15-2529, 15-2844 and 15-2851 are taken from Hill et al.
(2006). Data for shots 8-1159, 8-1167, 8-1169 and 8-1620 are from diagnostics tests conducted by
the present authors at Los Alamos National Laboratory in 2008 and 2012. Test 8-1159 only used
a witness plate to evaluate failure and did not measure velocity due to failure of the ionization
diagnostic.

0.0035 g/cc). These variations can have a significant effect on the detonation velocity
for each test, making it worthwhile to correct for them. Initial explosive density affects
the detonation velocity by varying the available energy release per unit volume of ex-
plosive. The exact way in which the diameter- and thickness-effect curves vary with
initial charge density is unknown and likely depends nonlinearly on charge geometry and
scale. To leading order, however, we assume a linear relationship between charge den-
sity and detonation velocity. The three 8.0-mm-thick slab rate sticks 8-1589, 8-1590 and
8-1662 allow determination of this relationship for the PBX 9502 slab tests. Figure 5
plots the detonation velocity versus charge density for these tests. A linear least-squares
fit to the three data points yields D0 = 2.424ρ + 2.896 with a standard error of 0.026
(mm/µs)/(g/cc) associated with the linear slope. (Performing a similar fit across all tests
except the 16-mm one yields a value of 2.52 (mm/µs)/(g/cc.)) The linear slope of 2.424
(mm/µs)/(g/cc) can be used to adjust the experimentally measured detonation velocities
to the expected velocity at a uniform density. In the last column of table 5, we report
detonation velocities corrected to a density value of 1.886 g/cc as D0,corr.
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Figure 6. Size-effect data for PBX 9502. Blue circles  are cylindrical rate stick detonation
velocities (table 6). Open � and filled red squares � denote experimental and density-corrected
detonation velocities from the slabs, respectively (table 5). Blue dashed and red solid lines are
the modified Eyring-form fits to the cylindrical and density-corrected slab experimental data,
respectively. Error bars are plotted for the data with filled symbols using SE values from tables 5
and 6, but may be smaller than the symbol size.

2.3.2. PBX 9502 Size-Effect Scaling

Table 6 contains prior data from the cylindrical rate sticks experiments fielded with an
identical PBX 9502 explosive lot (008) used in the present slab tests. The data indicate a
critical radius between 3.75–4.00 mm, while table 5 indicates a critical thickness between
3.50–3.75. Thus, at failure, R/T is between 1.00-1.14 and consistent with our analysis
(section 1) of the prism tests by Ramsay (1985). Figure 6 compares the diameter- and
thickness-effect curves. As with the PBX 9501 data, the curves result from the fit of
(2.1) to the experimental data. The density-corrected slab data was used in the curve-
fitting process and fit parameters are given in table 4. The experimental PBX 9502 scale-
effect data does not correspond well to the R = T scaling over the range of conditions
tested. The detonation velocity points for the slab geometry are consistently below those
of the the cylindrical rate sticks and the deviation between the two increases as the
charge size decreases. Specifically, the experimentally observed R/T ratio is near 0.83
and consistently below a value of unity.

2.4. ANFO

Unlike PBX 9501 and PBX 9502, ANFO detonation does not occur due to decomposition
of a metastable molecule. Instead, ANFO is a heterogenous mixture of a hydrocarbon-
based fuel oil (FO) and ammonium nitrate (AN) oxidizing agent that remains molec-
ularly distinct at typical atmospheric temperatures. Shock loading mechanically mixes
and ionizes these two components sufficiently to support the detonation reaction. The
heterogenous nature of the mixture results in a very insensitive explosive (technically
classified as a blasting agent) with a long spatial reaction zone of O(10 mm) and a fail-
ure diameter near 75 mm. Due to the nonideal nature of the explosive, the detonation
velocity is sensitive to reaction zone flow divergence and experimentally observed veloci-
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Shot T L W ρ0 D0 ±SE
Number (mm) (mm) (mm) (g/cc) (mm/µs) (mm/µs)

EMRTC-6-2011 50.8 762.0 660.4 0.929 2.151 0.031
EMRTC-8-2011 76.2 1143.0 965.2 0.885 3.027 0.014
EMRTC-9-2011 101.6 1524.0 1270.0 0.870 3.661 0.008

Table 7. ANFO thickness effect in a slab geometry for a mass composition of 94% ammo-
nium nitrate (Dyno Nobel explosive grade) and 6% No. 2 diesel fuel oil. Shots fired at ambient
temperature.

ties range from 1.5–4.0 mm/µs, depending on charge size and confinement. A large range
of detonation velocity variation is characteristic of non-ideal explosives.

Three slab experiments were performed with a standard ANFO formulation composed
of 94 wt. % ammonium nitrate prills mixed with 6 wt. % No. 2 diesel fuel. Porous,
explosive-grade ammonium nitrate was used from Dyno Nobel with a typical bulk den-
sity of 0.80 g/cc and an average prill diameter ranging from 1.4–2.0 mm. Mixing was
accomplished by combining the prills and diesel fuel in a rotating barrel mixer for a
minimum of 15 minutes. Unlike the PBX 9501 and PBX 9502 slab experiments, which
were unconfined, the granular nature of ANFO required confinement to form a main
charge. Rectangular forms were constructed of 3/4-inch-thick plywood for this purpose
as a shock polar analysis indicates that plywood does not provide any effective confine-
ment for ANFO detonation (Bdzil et al. 2002). After mixing, ANFO was then poured into
each experimental assembly in 1-kg increments. Each incremental fill was hand-tamped
to prevent significant clumping or void formation. This methodology was sufficient to
achieve an ANFO density of 0.87–0.93 g/cc. The main charge was initiated by a booster
charge and line wave generator composed of PETN-based sheet explosive. The booster
charge width and thickness matched those of the adjacent main charge, while the booster
length was approximately equal to the main charge thickness. The line wave generator
thickness was 12 mm. Slab thicknesses of 50.8, 76.2 and 101.6 mm were fielded. Specific
dimensions are listed in table 7. Shorting pins (Model CA-1038 from Dynasen, Inc.) were
used for detonation time-of-arrival measurements. For the ANFO slab tests, the distance
to the first shorting pin from the upstream end of the main charge was three charge
thicknesses. A total of 11 shorting pins were used for each test. The probes were equally
spaced over the remaining charge length, corresponding to inter-pin spacings of 38.1,
57.15, and 76.2 mm for the 50.8, 76.2 and 101.6 mm thick tests, respectively.

Detonation velocities are reported in table 7. The ANFO detonation velocity is seen to
increase with the slab thickness. Standard error values range from 0.008–0.031 mm/µs
(0.2–1.4%) and decrease with increasing slab thickness. Examination of the fit lines
against the discrete time-of-arrival points for these tests indicate that the detonation
is initially overdriven off the booster and decays as it propagates. We conjecture that the
wave required more distance to decay to the lower steady detonation velocities measured
in the thinner slabs, which resulted in higher standard error.

Table 8 contains previously published cylindrical rate-stick data for ANFO from Bdzil
et al. (2002) that were performed with cardboard confinement, which provides a similar
explosive-confined impedance match as the plywood used in the present ANFO slab tests.
Figure 7 compares the diameter- and thickness-effect curves for ANFO using experimental
data from tables 7, 8, and curves based on (2.1) with fit parameters from table 4. The
experimental ANFO size-effect data does not correspond well to the R = T scaling over
the range of conditions tested. The detonation velocity points for the slab geometry are
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Shot Number Radius (mm) L/Dia. D0 (mm/µs) Density (g/cc)

4514 102.5 10 4.12 0.88
4408 76.5 10 3.68 0.88
4409 76.5 10 3.75 0.88
4407 64.0 10 3.40 0.88
4592 64.0 10 3.33 0.88
4406 64.0 10 3.36 0.88
4405 57.5 10 3.30 0.88
4400 51.0 10 2.97 0.88
4591 51.0 10 2.95 0.88
N/A 51.0 10 2.90 0.88
N/A 45.0 10 2.43 0.88
4403 45.0 10 2.45 0.88
N/A 38.5 10 1.63 0.88
N/A 38.5 10 1.47 0.88

Table 8. ANFO cylindrical rate-stick diameter effect for a mass composition of 94% ammonium
nitrate and 6% No. 2 diesel fuel oil. Shots were performed at ambient temperature with Titan
Energy explosive-grade AN. Standard errors are not available. Test series as described in Bdzil
et al. (2002), with quantitative values of D0 against radius supplied to the authors by Larry
Hill.
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Figure 7. Size-effect data for ANFO. Red squares � and blue circles  denote experimental slab
and cylindrical geometry detonation velocities from tables 7 and 8. Blue dashed and red solid
lines are modified Eyring-form fits to the cylindrical and slab experimental data, respectively.
Error bars are plotted for the slab data only and may be smaller than the � symbol.

consistently below those of the cylindrical rate sticks. Specifically, the experimentally
observed R/T ratio is near 0.7 and consistently below a value of 1.

2.5. Measured Scale Factor R/T for Common D0

The modified Eyring-form fits can be used to evaluate the evolution of the R/T scaling
inferred from experiment. Figure 8 plots the ratio ofR to T using values derived from (2.1)
and table 4 for common values of D0. The black, orange and green curves indicate PBX
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Figure 8. The ratio R(D0)/T (D0) for PBX 9501, PBX 9502, and ANFO.

9501, PBX 9502, and ANFO, respectively. Extrapolation is avoided and each curve only
spans the experimentally observed range of D0 from tables 2, 5, and 7. The detonation
velocity D0 is normalized by DCJ , which is taken as 8.8, 7.755, 4.8 mm/µs for PBX 9501,
PBX 9502 and ANFO, respectively. PBX 9501 is seen to increase from R/T = 0.974–1.036
for D0/DCJ = 0.961–0.997. (Note that for larger D0, the limited fitting parameters in
(2.1) prevent an accurate determination of the variation of the R/T scale close to the CJ
value. A more sophisticated DSD fitting form (Aslam 2007) applied to the rate-stick data
alone gives a scale factor R/T < 1 at the larger phase velocities.) PBX 9502 ranges from
R/T = 0.744–0.874 over D0/DCJ = 0.951–0.974. Finally, ANFO ranges from R/T =
0.670–0.832 for D0/DCJ = 0.448–0.763. Averaging over the interpolated region for each
formulation gives average R/T values of 0.998, 0.813, and 0.753 for PBX 9501, PBX
9502, and ANFO, respectively. Thus, the R/T ratio is seen to decrease from unity as
the explosive formulation becomes less ideal. Additionally, the PBX 9501 and PBX 9502
R/T values each individually decrease from unity as D0 decreases. In contrast, the ANFO
R/T values increase towards unity as D0 decreases. In the following section, DSD is used
to further understand the relationship between the thickness- and diameter-effect curves
in the slab and rate-stick geometries for PBX 9501, PBX 9502 and ANFO.

3. Detonation Shock Dynamics

Detonation Shock Dynamics (or DSD) is an intrinsic surface propagation concept that
replaces the detonation shock and reaction zone with a surface that evolves according
to a prescribed intrinsic surface evolution law. Developed by Bdzil and Stewart (Bdzil
& Stewart 1986; Stewart & Bdzil 1988a,b; Bdzil & Stewart 1989; Bdzil et al. 1989), it
provides an advanced capability to describe detonation wave sweep through an arbitrarily
complex geometry. There are two assumptions that underpin the DSD concept. The first
is that the detonation shock front evolves quasi-steadily, i.e. the transit time of a particle
through a characteristic reaction zone thickness is short compared to the temporal scale of
changes in the shock shape. Secondly, the local curvature of the shock is small compared
with the inverse of the characteristic reaction zone thickness. With these assumptions, at
leading-order, the motion of the DSD surface relates the normal velocity of the surface
(Dn) to the local surface curvature (κ). For the purposes of this paper, we refer to this as
lower-order DSD. Higher-order effects, which account for the effects of front acceleration
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and transverse flow, can be introduced in a systematic way. We refer to the inclusion of
such terms in the DSD evolution laws as higher-order DSD.

3.1. Lower-order DSD

For the lower-order DSD theory, we define the existence of a general surface (DSD)
propagation law given by

κ = f(Dn), (3.1)

for some arbitrary function f of Dn. The curvature κ represents the sum of the principal
curvatures for any three-dimensional surface. In order to determine the evolution law
(3.1) for a given HE, a specified functional form for f is assumed, and the functional
form parameters are fitted to the shock shapes and diameter-effect curve obtained from
experiments. This is typically done using the rate-stick geometry. In the rate-stick con-
figuration, the DSD surface curvature has two components; the slab component, which is
the two-dimensional curvature along a diameter of the rate-stick, and the corresponding
axisymmetric component. The slab curvature component is determined by measuring
the shock breakout times along a cylinder diameter at the end of the charge via a streak
camera and mirror destruction (or turning) technique (Hill et al. 2006). Experimental
calibration of lower-order DSD relations has been obtained for a variety of explosives in-
cluding PBX 9501 (Aslam 2007), PBX 9502 (Bdzil 2003; Hill & Aslam 2010) and ANFO
(Bdzil et al. 2002; Bdzil 2008). In particular, we note that for these explosives in an
unconfined rate-stick geometry, the slab component of curvature has the property that
it increases monotonically with increases in the radial coordinate from the cylinder axis.

For a given DSD form, determination of the surface motion also requires information on
how the HE is confined. This is done at the HE/material interface through specification
of the “edge” angle between the shock normal direction and the tangent to the material
interface, which reflects the degree of HE confinement (Bdzil & Stewart 2007). Note that
in the lower-order DSD theory, since Dn is a function of curvature, the different Dn − κ
curves obtained in rate-sticks of different radii (or slabs of different thicknesses) should
overlap where there are common curvature points and ultimately combine to form a single
curve in Dn−κ space. Close grouping of such Dn−κ curves have been observed for PBX
9501 (Chiquete et al. 2014) and PBX 9502 (Hill & Aslam 2010), but not for ANFO (Bdzil
et al. 2002). We emphasize that the relation (3.1) is an intrinsic, coordinate-free surface
propagation law. Thus, a given HE calibrated in one geometry, e.g. the cylindrical rate-
stick, should be able to accurately reproduce detonation propagation dynamics in other
geometries, such as the slab geometry considered here.

As noted above, Petel et al. (2006, 2007), Silvestrov et al. (2008) and Higgins (2009)
proposed that curvature-based theories of detonation propagation and failure should
have resulted in the recovery of scale factors where R(D0)/T (D0) = 1 and Rc/Tc = 1.
Consequently, with the size-effect and failure scale factors in their experiments showing
deviations away from unity, they surmised that other factors are contributing signifi-
cantly to the physics of detonation propagation and failure in addition to curvature. The
curvature-based lower-order DSD model (3.1), though, is able to dissociate contributions
made from the axisymmetric and slab curvature components in a rate-stick configuration.
These two components are generally not equal, except on the rate-stick axis, and thus
we generally would not expect a steady propagation scale factor R(D0)/T (D0) = 1. In
fact, we show in section 3.1.2 that any detonation whose propagation can be adequately
represented by (3.1) must necessarily have a scale factor R/T < 1, provided that the slab
component of curvature increases monotonically with radius.

Bdzil (1981) has shown that the scale factor R(D0)/T (D0) = 1 can be approached in
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the limit where the streamline angle deflection behind the detonation shock is small. Thus
for example, heavily confined explosives are more likely to limit to the small streamline
deflection case of R(D0)/T (D0) = 1 (see section 4). For larger streamline deflection
angles, Bdzil (1981) showed that the diameter- and thickness-effect curves diverge, where,
for the specific reaction rate model used, it was found that R(D0)/T (D0) < 1. This result
is consistent with the analysis in this paper.

While DSD based theories should be expected to capture the propagation scale factor
R(D0)/T (D0) across a range of explosives, DSD (lower- or higher-order) should not be
expected to accurately determine the ratio of the critical diameter to thickness. The
detonation failure process is inherently unsteady and involves significant increases in
the characteristic reaction zone thickness. Additionally, there is no prior evidence that
a purely curvature-based theory should predict failure. Thus we do not examine the
critical diameter to thickness ratio further, and restrict our attention to examination of
the steady propagation scale factor R(D0)/T (D0).

3.1.1. Lower-order DSD: Steady Propagation in Rate-Stick and Slab Geometries

Consider the steady propagation of an axisymmetric detonation in the positive axial
z direction of a cylindrical explosive, where the DSD surface is given as a function of
radial coordinate r by z = zs(r), with a surface normal orientated in the direction of
fresh reactants. Defining a level set function S = z − zs(r), the normal to the surface is

n =
∇S
|∇S|

=
1√

1 + [d(zs(r))/dr]
2

(
− d

dr
zs(r)er + ez

)
, (3.2)

with a total curvature given by the sum of the slab (κs) and axisymmetric (κa) compo-
nents, where

κ = ∇ · n = κs + κa, κs = − z′′s (r)(
1 + [z′s(r)]

2
)3/2 , κa = − z′s(r)

r
(

1 + [z′s(r)]
2
)1/2 . (3.3)

Here ′ denotes d/dr. With D0 as the steady axial detonation phase speed, the shock angle
φ between the axial direction and the surface normal n at any point on the surface is
determined by

cosφ =
Dn

D0
=

1

|∇S|
=

1(
1 + [z′s(r)]

2
)1/2 , dzs

dr
= − tanφ, (3.4)

so that κ can be written as

κ = κs + κa, κs =
dφ

dξ
, κa =

sinφ

r
, (3.5)

where ξ is the surface arc length. Switching to φ as the independent variable, the (r, z)
components of the surface shape can then be calculated by integration of

dr

dφ
=

cosφ

κs
,

dz

dφ
= − sinφ

κs
, (3.6)

subject to

z(φ = 0) = 0, r(φ = 0) = 0, and r(φ = φedge) = R, (3.7)

where φedge is the shock angle at the edge of the explosive (r = R). For all the experiments
described in section 2, the explosive is unconfined, and the edge angle will correspond to
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the sonic angle (φedge = φs) of the explosive (Bdzil & Stewart 2007). Due the 1/r term
in the axisymmetric curvature component in (3.5), the integration of (3.6) is started at
a finite small value of φ, where

r ∼ φ

κs(φ = 0)
, z ∼ − φ2

2κs(φ = 0)
, φ� 1, (3.8)

and on φ = 0,

Dn = D0, κs(φ = 0) = κa(φ = 0), κ = 2κs(φ = 0), where κs(φ = 0) = f(D0)/2. (3.9)

If both φedge and the phase speed D0 are specified, the surface shape zs(r) and rate-
stick radius R are determined by a single integration of (3.6) from φ = 0 to φ = φedge.
On the other hand, if both φedge and R are specified, the phase speed D0 consistent
with these specifications would be determined by a sequence of integrations of (3.6) and
iteration on D0 until r = R at φ = φedge.

For the 2D slab geometry, the above analysis is repeated, except that κa = 0, while
r now refers to the distance from the slab center to the slab edge. Boundary conditions
(3.7) with r(φ = φedge) = T/2, where T is the slab thickness, can be applied directly to
the integration of (3.6).

3.1.2. The R/T < 1 scaling for lower-order DSD

Here we show that any detonation whose propagation can be represented by the lower-
order DSD form (3.1) with dκs/dr > 0, i.e. where the slab curvature component increases
with increasing r, must have R/T < 1. Consider the rate-stick configuration. Note the
slab component of curvature can be written as

κs = cosφ
dφ

dr
=
d(sinφ)

dr
, (3.10)

where κs > 0. From (3.3), the total curvature κ is then

κ =
d(sinφ)

dr
+

sinφ

r
. (3.11)

We now additionally assume that

dκs
dr

=
d2(sinφ)

d2r
> 0 for r > 0, (3.12)

where dκs/dr = 0 on r = 0 from (3.8). Application of the mean value theorem to the
function (3.11) with the constraint (3.12) implies that

d(sinφ)

dr
>

sinφ

r
for r > 0, (3.13)

i.e. at each radial component r, the slab component of curvature is greater than the
corresponding axisymmetric component. The two components are equal on r = 0. Now,
for a given phase velocity D0, the rate-stick radius R at which φ = φedge is determined
from the integration of

d(sinφ)

dr
+

sinφ

r

∣∣∣∣
rs

= f(D0 cosφ), (3.14)

where |rs denotes the rate-stick geometry. Similarly, in the slab geometry, the slab height
T/2 at which φ = φedge for the same phase velocity D0 is determined from the integration
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of
d(sinφ)

dr

∣∣∣∣
slab

= f(D0 cosφ), (3.15)

where |slab denotes the slab geometry. However, by applying the inequality (3.13) to
(3.14), it can also be shown that

2
d(sinφ)

dr

∣∣∣∣
rs

=
d(sinφ)

d(r/2)

∣∣∣∣
rs

> f(D0 cosφ). (3.16)

By comparing (3.15) and (3.16), it follows that for each phase velocity D0, R and T must
satisfy the inequality

R/2 < T/2 or R/T < 1. (3.17)

The implication of (3.17) for the size effect curves is that when D0 is plotted with 1/R
for the rate-stick, and with 1/T for the slab, the slab thickness-effect curve must lie to
the left of the rate-stick diameter-effect curve. In section 2, this was shown to be the
case for the experimentally determined size-effect curves for PBX 9501, PBX 9502 and
ANFO.

3.1.3. Dn-κ forms for PBX 9501, PBX 9502 and ANFO

We now examine the previously calibrated lower-order DSD (or Dn − κ) fits for PBX
9501, PBX 9502 and ANFO. These have the functional form,

Dn

DCJ
= 1 +A ((C1 − κ)

e1 − Ce11 )−Bκ
(

1 + C2κ+ C3κ
2

1 + C4κ+ C5κ2

)
, (3.18)

where A, B, C1, C2, C3, C4, C5 and e1 (if A 6= 0) are fitting parameters. In some
cases the Chapman-Jouguet velocity DCJ and the sonic angle φs are also used as fitting
parameters, or alternatively prescribed fixed values that are associated with the state
properties of the explosive. Parameter values for the Dn − κ relation (3.18) for each
explosive are listed in table 9, where each calibration is based solely on experimental
data obtained in the rate-stick configuration.

For PBX 9501, the calibration is from Aslam (2007), based on the twelve rate-stick
diameter-effect points along with the two shock shape records reported in table 3. The
calibration for PBX 9502 is specific to lot 008 and was calculated by Bdzil (2003) using
the rate-stick diameter-effect points and associated shock shape data from shots 15-2839,
15-2529 and 15-2851 in table 6. The calibration for ANFO was again by Bdzil (2008).
The calibration was based on the 14 rate-stick diameter-effect points shown in table 8
along with the 10 shock shapes that were available from the tests (these tests have the
recorded shot numbers in table 8). It represents a fit of the non-overlapping Dn−κ data
reported in Bdzil et al. (2002).

For PBX 9502, we explore a second Dn − κ relation due to Hill & Aslam (2010) that
accounts for the effect of an initial density variation relative to a nominal density. The
Dn − κ relation is of the form

Dn

DCJ
= 1−B1κ

(
1 + c2B1κ+ c3(B1κ)2

1 + c4B1κ+ c5(B1κ)2

)
, (3.19)

where

DCJ = DCJn

(
1 + c6

(
ρ0
ρ0n
− 1

))
and

B1

Bl008
= 1 + c7

(
ρ0
ρ0n
− 1

)
. (3.20)

Here DCJn is the Chapman-Jouguet speed at the nominal density ρ0n . The calibration
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PBX 9501 PBX 9502 ANFO

DCJ (cm/µs) 0.8795 0.775525188 0.48
A (cme1) 1.175 0 0
B (cm) 0.003655 0.232582927 2.350
C1 (cm−1) 24.43 - -
C2 (cm) 0.005693 0.458557510 0.07563
C3 (cm2) 0 2.11968814·10−6 28.93
C4 (cm) 0.4313 5.97541313 3.933
C5 (cm2) 0 1.45459626·10−8 0.02649
e1 0.07780 - -
φs 0.62999632 0.7033841 0.44

Table 9. Fits to the DSD propagation law given by (3.18) for PBX 9501, PBX 9502 (lot 008)
and ANFO. Units as originally published.

DCJn (cm/µs) 0.78
ρ0n (g/cm3) 1.890
Bl008 (cm) 0.44923
c2 4.8707
c3 2.7768
c4 32.115
c5 78.183
c6 1.5885
c7 61.133
φs 0.61089633

Table 10. Parameter fit to the density-corrected DSD propagation law given by (3.19) and
(3.20) for PBX 9502 (lot 008). Units as originally published.

in Hill & Aslam (2010), which also involved the effect of initial temperature variations
relative to room temperature, was done using 50 rate-stick diameter-effect points and
22 shock shapes obtained from experiments across a range of PBX 9502 lots and initial
density and temperature conditions. The available density range used in the calibration
was 1.890±0.005 g/cc. The PBX 9502 calibration parameters for (3.19) and (3.20) specific
to lot 008 at room temperature is given in table 10.

3.2. Higher-order DSD

It has been recognized previously that for certain explosives, especially those that are
classified as non-ideal, the experimentally observed normal detonation velocity variation
with curvature cannot be captured with the leading-order DSD theory (Kennedy 1998;
Bdzil et al. 2002). Consequently, attempts have been made to incorporate additional
physics, in particular those resulting from detonation front acceleration and from trans-
verse flow. Brun (see Brun et al. (1994)) incorporated the acceleration term DDn/Dt in
an ad hoc fashion, proposing the higher-order intrinsic evolution equation

DDn

Dt
= −C(Dn)(κ−K(Dn)), (3.21)

where C and K are functions of Dn. Yao & Stewart (1996) and Kasimov & Stewart
(2005) sought to incorporate the acceleration term DDn/Dt in a more systematic fash-
ion by examining the relative magnitudes of the DDn/Dt, DCJ −Dn and κ terms, and
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subsequently incorporating the DDn/Dt and κ contributions at the same order. Con-
tributions arising from transverse flow terms were neglected. Consequently, the derived
high-order evolution equations have hyperbolic wave-like characteristic properties. Aslam
& Stewart (1999) calibrated a hyperbolic higher-order evolution equation of the form

DDn

Dt
= −D

2
nκ

2
+ β(Dn), (3.22)

to properties of a reactive Euler model, and showed that solutions to the evolution
equation provided a good approximation to a direct numerical simulation of the Euler
equations in geometries with perfectly confining walls. For problems where the shape
of the wave is specified at the HE/material boundary due to confinement effects, the
direction of the characteristics in these hyperbolic higher-order equations may limit the
range of edge angles that can be considered (Bdzil et al. 2002). To the authors’ knowledge,
there have not been any attempts to parameterize the hyperbolic higher-order DSD
evolution equations, which include only the addition of the front acceleration terms, to
the rate-stick diameter effect or slab thickness effect and shock shapes for PBX 9501,
PBX 9502 or ANFO, and thus we will not consider the hyperbolic forms further in this
study.

For insensitive and non-ideal high explosives, a higher-order intrinsic surface evolution
equation for DSD has been developed which accounts for the two effects of front acceler-
ation and transverse flow (Aslam et al. 1998; Bdzil et al. 2002). Due to the inclusion of
transverse flow, the resulting higher-order evolution equation has a parabolic structure.
In the axisymmetric rate stick configuration, this evolution equation takes the form,

κ = κs +
sinφ

r
= F (D)−M(D)

DD
Dt

+N(D)
∂2D
∂ξ2

, D =
Dn

DCJ
− 1, (3.23)

while for the slab geometry the axisymmetric curvature component (sinφ)/r is omitted.
Here, M(D) > 0, N(D) > 0 and F (D) > 0. The front acceleration (M · DD/Dt) and
transverse flow (N · ∂2D/∂ξ2) components arise as the first correction terms to the
leading-order κ = F (D) evolution equation in a systematic asymptotic analysis of the
front propagation dynamics based on the standard DSD scalings of slow time evolution
and small curvature (Aslam et al. 1998).

3.2.1. Higher-order DSD: Steady Propagation in Rate-Stick and Slab Geometries

We now consider steady solutions of the parabolic higher-order DSD evolution equation
given by (3.23), where in a rate-stick or slab configuration,

Dn = D0 cos(φ),
DD
Dt

= −DCJ

(
D0

DCJ
sin(φ)

)2

κs,

∂2D
∂ξ2

= − D0

DCJ

(
sin(φ)

dκs
dξ

+ cos(φ)κ2s

)
.

(3.24)

For a rate-stick, the steady form of (3.23) becomes

κs
D0

DCJ
sin(φ)

dκs
dφ

=

− D0

DCJ
cos(φ)κ2s −

1

N

(
κs +

sin(φ)

r
− F −DCJ

(
D0

DCJ
sin(φ)

)2

Mκs

)
.

(3.25)
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DCJ (mm/µs) 5.2
N (mm) 28.4
M (µs·mm−1) (5.87+1.41×10−1N(mm))/DCJ (mm/µs)
F1 1.34×10−2+8.6×10−5N(mm)
F2 (mm−1) 3.52×10−2+7.6×10−5N(mm)
φs 0.5

Table 11. Parameter fit to the higher-order DSD propagation law given by (3.23) and (3.28)
for ANFO

Given φedge and R, the phase velocity D0 is obtained by solving (3.25) together with
(3.6) subject to boundary conditions (3.7). Again, integration must begin at a small finite
value of φ using (3.8), where on φ = 0,

κs =
DCJ

D0N

(
−1 +

[
1 +

D0

DCJ
NFc

] 1
2

)
, Fc = F

(
D0

DCJ
− 1

)
. (3.26)

Similarly, for a slab, the phase velocity D0 is obtained by solving (3.25), omitting the
sin(φ)/r term, with (3.6) subject to (3.7). However, as for the rate stick, integration must
also begin at a small finite value of φ using (3.8), where on φ = 0,

κs =
DCJ

2D0N

(
−1 +

[
1 + 4

D0

DCJ
NFc

] 1
2

)
, Fc = F

(
D0

DCJ
− 1

)
. (3.27)

3.2.2. DDn/Dt−Dn,ξξ −Dn − κ form for ANFO

A calibration of the higher-order DSD equation (3.23) for ANFO has been provided
by Bdzil et al. (2002) assuming the functional forms

F (D) = −F1D exp (−F2/(D + 1)) , M(D) = constant, N(D) = constant. (3.28)

Parameter values are shown in table 11. The parameter calibration was again based on
the 14 rate-stick diameter-effect points shown in table 8 along with the 10 shock shapes
that were available from the tests. (Note that the expression for M in table 11 is divided
by a factor of DCJ from that reported in Bdzil et al. (2002), since the DCJ term correctly
multiplying the steady front acceleration term in (3.25) was omitted in the analysis by
Bdzil et al. (2002). Consequently, the leading-order transverse signaling speed, which is
proportional to the inverse of the square root of M, should be greater than that observed
in Bdzil et al. (2002). This correction results in a faster relaxation time to steady state
propagation for the unsteady higher-order DSD evolution equation (3.23) for ANFO,
potentially addressing a point of concern regarding the use of higher-order DSD theories
raised in Bdzil et al. (2002)).

3.3. Comparison of DSD Predictions with Slab and Rate-Stick Experimental Results

Figure 9 shows the lower-order DSD-calculated PBX 9501 diameter- and thickness-effect
curves using the Dn − κ relation (3.18) with table 9 parameters for unconfined, φ = φs,
rate-stick (D0 vs. 1/R) and slab (D0 vs. 1/T ) geometries. Also plotted are the corre-
sponding experimentally calculated points from tables 2 and 3. Given that the PBX
9501 Dn − κ relation was calibrated using the rate-stick data only, unsurprisingly we
observe a good fit between the DSD diameter-effect curve and the rate-stick data. Using
the Dn − κ relation (3.18) with table 9 parameters, the DSD thickness-effect curve for
the slab geometry captures the experimental data reasonably well for thicker slabs, but
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deviates from the experimental data for thinner slabs, particularly for thicknesses of 1
and 2 mm. For the PBX 9501 Dn−κ curve (3.18), the R/T scaling as a function of phase
velocity D0 is shown in figure 10. For D0 close to DCJ , there is a rapid increase in R/T,
whereafter the scale factor R/T increases more slowly as D0 decreases, reaching a value
of R/T = 0.916 when D0 = 8 mm/µs.

The components κs and κa as a function of radius in the DSD rate-stick calculation
for D0 = 8.4 mm/µs are shown in figure 11. Near the origin, the components are close in
magnitude, but for increasing radius the slab component increasingly grows in magnitude
relative to the axisymmetric component. From figure 9, the slab thickness-effect curve
when plotted as D0 vs. 1/T lies to the left of the rate-stick diameter-effect curve when
plotted as D0 vs. 1/R, and with κs > κa across the rate stick, reinforces the discussion
in section 3.1.2 on the consequence of differing components of curvature. The disparity
in the curvature components across the rate-stick for the lower-order DSD model may
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Figure 11. Slab κs (red) and axisymmetric κa (green) components of curvature along with
Dn (blue) in a PBX 9501 rate-stick from r = 0 to r = R calculated when D0 = 8.4 mm/µs.

indicate a higher-order DSD model is required to fit the smaller diameter rate-sticks. Also
shown in figure 11 is the magnitude of the normal velocity component Dn across the rate-
stick. A significant decrease in Dn relative to the phase velocity D0 occurs with increasing
radius. The curvature components κs and κa and the normal detonation velocity Dn as a
function of radius for the PBX 9501 DSD rate-stick calculation for D0 = 8.7948 mm/µs
are shown in figure 12. This is in a regime where D0 ∼ DCJ , explored asymptotically in
section 4. For most of the rate-stick, the curvature components are small, but κs > κa
everywhere except at r = 0 where κs = κa. The magnitude of the slab component κs
rises rapidly in a boundary layer at the edge of the rate-stick to meet the requirement
φ = φs.

Figure 13 shows the DSD calculated PBX 9502 size-effect curves using the Dn − κ
relation (3.18) with table 9 parameters for unconfined, φ = φs, rate-stick (D0 vs. 1/R)
and slab (D0 vs. 1/T ) geometries. Also plotted are the corresponding experimentally
calculated points from tables 5 and 6, the slab experimental points corrected to a density
of 1.886 g/cc using the method described in section 2, and the PBX 9502 thickness-effect
curve for slabs using the density dependent PBX 9502 Dn − κ relation (3.19) and (3.20)
for parameters in table 10 with ρ0 = 1.874 g/cc. Again, given that the PBX 9502 Dn−κ
calibration was obtained via use of the rate-stick data, we observe a good fit between
the DSD diameter-effect curve and the rate-stick data. The slab thickness-effect curve
generated using the Dn − κ relation (3.18) with table 9 parameters agrees reasonably
well with the slab experimental data, even though the experimental data was generated
using lower density HE than used for the rate-sticks. When this slab data is corrected
to a density of 1.886 g/cc using the extrapolation procedure described in section 2,
the agreement between the slab data and the DSD thickness-effect curve from the Dn-
κ relation (3.18) is good. The Dn − κ relations (3.19) and (3.20) can also be used to
generate a slab thickness-effect curve with ρ0 = 1.874 g/cc, a value close to the density
of the slabs used in the testing (table 5). Despite being used outside of its fitting regime
(ρ0 = 1.890 ± 0.005 g/cc), the DSD generated thickness-effect curve approximates the
8, 12 and 16 mm thick slabs well, but thereafter generates a phase velocity significantly
above the experimental data.

Figure 13 also shows the regions of 1/R (rate-stick) and 1/T (slab) in which detonation
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Figure 12. Slab κs (red) and axisymmetric κa (green) components of curvature along with Dn

(blue) in a PBX 9501 rate-stick from r = 0 to r = R calculated when D0 = 8.7948 mm/µs. (a)
Full range of κs, κa and Dn shown. (b) Magnified region for (κs, κa) < 0.005.

failure is observed to occur experimentally. As described in section 2, for PBX 9502 rate-
sticks, the failure region is located between the radii 4 mm and 3.75 mm, while for slabs
the failure region is located between slabs of 3.75 mm and 3.5 mm thickness. Thus at
failure, Rc/Tc > 1, whereas for the velocity effect curves, R/T < 1. As noted above, since
DSD is based on a quasi-steady flow assumption, while detonation failure involves an
inherently unsteady process, the DSD construction is not suitable for describing failure
limits. However, an extrapolation of each of the diameter- and thickness-effect curves
shown in figure 13 into their corresponding regions of failure implies a crossing would
occur and the ratio R/T at failure in each geometry would become greater than one.

For the PBX 9502 Dn − κ relation (3.18), the R/T scaling as a function of phase
velocity D0 is shown in figure 14 for no confinement (φ = φs) at the explosive edge. For
D0 close to DCJ , there is a rapid increase in R/T. The ratio R/T subsequently increases
at a slower rate and then decreases. The region in which R/T begins to decrease corre-
sponds approximately to a regime where there is a change in slope in the diameter- and
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thickness-effect curves (figure 13). The change in slope occurs when the sonic plane in the
non-planar PBX 9502 detonation has transitioned through the slow carbon coagulation
reaction layer, and subsequently resides close to the end of the fast heat release layer
(Bdzil et al. 2006). Thereafter the scale factor R/T increases as D0 decreases, reaching a
value of R/T = 0.853 when D0 = 7.1 mm/µs. Figure 15 shows the curvature components
κs and κa and the normal detonation velocity Dn as a function of radius in the DSD
rate-stick calculation for D0 = 7.5 mm/µs and φ = φs at r = R. Over half of the radius
κa ≈ κs, but subsequently the slab component increasingly grows in magnitude relative
to the axisymmetric component. Again, the slab thickness-effect curve when plotted as
D0 vs. 1/T lies to the left of the rate-stick diameter-effect curve when plotted as D0
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Figure 15. Slab κs (red) and axisymmetric κa (green) components of curvature along with Dn

(blue) in a PBX 9502 rate-stick from r = 0 to r = R calculated when D0 = 7.5 mm/µs and
φ = φs at r = R.

vs. 1/R (section 3.1.2). The normal detonation velocity shows an order one decrease in
magnitude across the rate-stick.

The curvature components κs and κa as a function of radius in the PBX 9502 DSD
rate-stick calculation for D0 = 7.75524 mm/µs and φ = φs ar r = R are shown in fig-
ure 16. This is in a regime where D0 ∼ DCJ , and for most of the rate-stick, the curvature
components are small, but κs > κa everywhere. As is the case for PBX 9501, the mag-
nitude of the slab component κs rises rapidly in a boundary layer at the edge of the
rate-stick to meet the requirement φ = φs.

Figure 17 shows the lower-order DSD-calculated ANFO size-effect curves using the
Dn−κ relation (3.18) with table 9 parameters for unconfined, φ = φs, rate-stick (D0 vs.
1/R) and slab (D0 vs. 1/T ) geometries. The ANFO Dn−κ calibration was obtained via
use of the rate-stick data, and consequently a good fit between the DSD diameter-effect
curve and the rate-stick data is observed. However, when plotted as D0 vs. 1/T, the lower-
order DSD predicted thickness-effect curve for the slab lies close to the diameter-effect
curve for the rate-stick, but is a poor fit to the experimental thickness-effect data points
for the slab. Also shown are the ANFO diameter and thickness-effect curves based on
the higher-order DSD theory (3.23) and (3.28) with table 11 parameters. The thickness-
effect curve for the slab geometry generated by the higher-order DSD theory (calibrated
to the rate-stick diameter-effect data) provides a significantly better representation of the
slab data than that with the lower-order Dn−κ theory. This includes the presence of an
inflection point in the thickness-effect curve that also appears to be a property of the slab
data. The deviation of the higher-order DSD size-effect curves from the data at larger HE
dimensions is due to the value of DCJ = 5.2 km/s used in the calibration of the higher-
order DSD relation (Bdzil et al. 2002). This was obtained from an extrapolation based on
the “dice throw” series of large scale ANFO tests (Helm et al. 1976). Subsequent analysis
by Bdzil (2008) of the more carefully controlled ANFO rate-stick test series (Bdzil et al.
2002) led to the recommendation to lower DCJ to 4.8 km/s, as used by Bdzil (2008) in
the calibration of the lower-order Dn − κ form of the DSD relation for ANFO (table 9).
This suggests that a recalibration of the higher-order DSD theory for ANFO based on
a lower value of DCJ would result in an even closer agreement between the size-effect
predictions of the higher-order DSD theory and the experimental data.



Detonation Velocity Scaling 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1000  2000  3000  4000  5000  6000  7000
 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

κ
s,

 κ
a
 (

1
/m

m
)

D
n
 (

m
m

/µ
s)

r (mm)

(a)

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0  1000 2000 3000 4000 5000 6000 7000
 7.75

 7.751

 7.752

 7.753

 7.754

 7.755

 7.756

κ
s,

 κ
a
 (

1
/m

m
)

D
n
 (

m
m

/µ
s)

r (mm)

(b)

Figure 16. Slab κs (red) and axisymmetric κa (green) components of curvature along with Dn

(blue) in a PBX 9502 rate-stick from r = 0 to r = R calculated when D0 = 7.75524 mm/µs and
φ = φs at r = R. (a) Full range of κs, κa and Dn shown. (b) Magnified region for (κs, κa) <
0.0002.

The relative closeness of the lower-order Dn−κ theory based size-effect curves for the
slab and rate-stick geometries, when plotted as D0 vs. 1/T and D0 vs. 1/R respectively,
points to a R/T scaling of unity. This is reflected in figure 18, where D0 is plotted as a
function of the scale factor R/T using the lower-order Dn − κ DSD relation. There is a
rapid increase in R/T as D0 decreases slightly from DCJ . The scale factor reaches a value
of 0.951 when D0 = 4 mm/µs and 0.996 when D0 = 1.5 mm/µs. Relative to the observed
R/T scale factor in the experimental size-effect data, the Dn−κ calibration via (3.18) and
table 9 is assigning too much weight to the axisymmetric curvature component κa. This
is confirmed in figure 19, where the components κs and κa as a function of radius in the
DSD rate-stick calculation for D0 = 2.5 mm/µs are shown. It is clear that κs ≈ κa. Based
on the discussion in section 3.1.2, in order to match the ANFO slab thickness-effect data,
the slab curvature component across the rate-stick should be significantly greater than
the axisymmetric component. Also shown in figure 18 is the scale factor R/T calculated
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from the higher-order DSD theory. Again there is a rapid increase in R/T as D0 decreases
slightly from DCJ (5.2 mm/µs in this case). Subsequently, D0 drops significantly for a
moderate change in the scale factor. For the higher-order DSD based theory, the slab
component of curvature is now significantly larger than the axisymmetric component
across the rate-stick (figure 20).

The curvature components κs and κa as a function of radius for the ANFO lower-order
Dn − κ based DSD rate-stick calculation for D0 = 4.799 mm/µs are shown in figure 21.
As seen previously for PBX 9501 and PBX 9502, the magnitude of the slab component
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κs rises rapidly in a boundary layer at the edge of the rate-stick to meet the requirement
φ = φs.

4. Scaling Behaviour for D0 → DCJ

Here we conduct an asymptotic analysis of the lower-order DSD model in the limit
where the detonation phase velocity D0 approaches DCJ . The analysis gives a detailed
insight into both the dynamics behind the variation in the propagation scale factor R/T
and the multi-layer behavior of the DSD surface shapes for different degrees of confine-
ment. Rather than the more complex forms studied in section 3, here we assume a Dn−κ
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law of the linear form
Dn

DCJ
= 1−Bκ, (4.1)

which allows the solutions in individual layers to be derived analytically. Note that the
parameter B represents a length scale that is characteristic of the reaction zone thickness.
We are interested in the limit D0 → DCJ , and define a small parameter ε such that

ε = 1− D0

DCJ
, ε� 1. (4.2)

Consequently, with (4.1) and (3.4), the scaled curvatures Bκs and Bκa become

Bκs = 1− (1− ε) cosφ, Bκs +
sinφ

(r/B)
= 1− (1− ε) cosφ, (4.3)

in the slab and rate-stick geometries respectively.

4.1. Slab Geometry

For the slab geometry, differential equations (3.6) for r(φ) and z(φ) become

[1− (1− ε) cosφ]
d(r/B)

dφ
= cosφ, [1− (1− ε) cosφ]

d(z/B)

dφ
= − sinφ, (4.4)

subject to boundary conditions (3.7). Although these equations can be integrated exactly
(Bdzil 1981), we are interested in the structure of the solutions for ε � 1. We find
an inner layer in the central part of the charge described by the scalings φ = O(

√
ε),

r/B = O(1/
√
ε) and z/B = O(1), where

r

B
=

√
2

ε
tan−1

(
φ√
2ε

)
+O(

√
ε),

z

B
= ln 2− ln

[
2 +

φ2

ε

]
+O(ε). (4.5)

In this layer the scaled curvature Bκs = O(ε), while deviations of Dn from DCJ are
O(ε). Specifically, in terms of φ,

Bκs = ε

(
1 +

φ2

2ε

)
+O(ε2), Dn = DCJ

[
1− ε

(
1 +

φ2

2ε

)]
+O(ε2). (4.6)



Detonation Velocity Scaling 33

If the degree of confinement is such that φedge = O(
√
ε), (4.5) describes the solution

from the charge center to the charge edge. Note that contained within the inner layer is
a region of size φ = O(ε) around r = 0 where r/B = O(1) and z/B = O(ε), in which

r

B
∼ φ

ε
,

z

B
∼ −φ

2

2ε
, Bκs ∼ ε, Dn = DCJ (1− ε) . (4.7)

For φedge = O(1), an outer layer must be appended to the inner layer which extends to
the edge of the charge. In this layer, φ = O(1), r/B = O(1/

√
ε) and z/B = O(ln(1/ε)),

where

r

B
=

π√
2ε
−φ− 1

tan(φ/2)
+O(

√
ε),

z

B
= − ln(1/ε)− ln(1−cosφ)+O(ε ln(1/ε)), (4.8)

after matching with (4.5). Correspondingly, the scaled curvature Bκs = O(1), while
deviations of Dn from DCJ are O(1), specifically

Bκs = 1− cosφ+O(ε), Dn = DCJ cosφ+O(ε). (4.9)

A composite solution can be derived for r(φ)/B as

r

B
=

√
2

ε
tan−1

(
φ√
2ε

)
− φ− 1

tan(φ/2)
+

2

φ
, (4.10)

while for z(φ)/B,

z

B
= − ln(1− cosφ)− ln

[
2 +

φ2

ε

]
+ 2 lnφ. (4.11)

4.2. Rate-stick Geometry

For the rate-stick geometry, the differential equation (3.6) for r(φ)/B becomes[
1− (1− ε) cosφ− sinφ

(r/B)

]
d(r/B)

dφ
= cosφ. (4.12)

We again find an inner layer in the central part of the charge where φ = O(
√
ε) and

r/B = O(1/
√
ε). Defining

φ̂ =
φ√
ε
,

r̂

B
=

√
εr

B
,

r̂

B
∼ r̂0
B

+O(ε), (4.13)

and using (4.12), the equation governing r̂0/B is given by(
1 +

φ̂2

2
− φ̂

(r̂0/B)

)
d(r̂0/B)

dφ̂
= 1. (4.14)

The solution is

φ̂ =

√
2J1(r̂0/

√
2B)

J0(r̂0/
√

2B)
, (4.15)

where J0 and J1 are the order zero and order one Bessel functions of the first kind. In
this layer, the scaled curvatures Bκs = O(ε) and Bκa = O(ε), while deviations of Dn

from DCJ are O(ε). Specifically in terms of φ,

Bκs ∼ −ε
(φ/
√
ε)

(r̂0/B)
+ ε

(
1 +

φ2

2ε

)
, Bκa ∼ ε

(φ/
√
ε)

(r̂0/B)
,

Dn ∼ DCJ

[
1− ε

(
1 +

φ2

2ε

)]
.

(4.16)
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As for the slab geometry, contained within the inner layer is a region near r = 0 where
φ = O(ε), in which

r

B
∼ 2φ

ε
, Bκs ∼

ε

2
, Bκa ∼

ε

2
, D0 ∼ DCJ(1− ε). (4.17)

For φedge = O(1), we must again insert an outer layer which extends to the edge of the
charge. As for the slab geometry, φ = O(1) and r/B = O(1/

√
ε). With these scalings,

the axisymmetric curvature component is

Bκa =
sinφ

(r/B)
= O(

√
ε), (4.18)

and thus up to O(
√
ε) the rate-stick solution describing the variation of r/B with φ has

a similar form to the slab solution in the outer layer. Matching with the inner layer gives

r

B
=

√
2β√
ε
− φ− 1

tan(φ/2)
+O(

√
ε), (4.19)

where β ≈ 2.40483 is the first positive zero of J0(β) = 0. In the outer layer, the scaled slab
curvature component Bκs = O(1), the scaled axisymmetric component Bκa = O(

√
ε),

while deviations of Dn from DCJ are O(1), specifically

Bκs = 1− cosφ+O(
√
ε), Dn = DCJ cosφ+O(ε). (4.20)

A composite solution can be written as

r

B
=
r0(φ)

B
− φ− 1

tan(φ/2)
+

2

φ
, (4.21)

where r0/B is the solution to

φ√
ε

=

√
2J1(
√
εr0/
√

2B)

J0(
√
εr0/
√

2B)
. (4.22)

Also for the rate-stick, the differential equation (3.6) for z(φ)/B is[
1− (1− ε) cosφ− sinφ

(r/B)

]
d(z/B)

dφ
= − sinφ, or

d(z/B)

d(r/B)
= − tanφ. (4.23)

In the inner layer, where φ = O(
√
ε), r/B = O(1/

√
ε) and z/B = O(1), we find to

leading-order,

z

B
∼ 2 ln

[
J0

(√
εr0√
2B

)]
, (4.24)

where r0(φ)/B is again the solution to (4.22). Contained within this inner layer is a
region near z = 0 where φ = O(ε), in which

z

B
∼ −φ

2

ε
. (4.25)

In the outer layer, where φ = O(1), r/B = O(1/
√
ε) and z/B = O(1), we find after

matching with (4.24),

z

B
∼ − ln(1/ε) + 2 ln [J1(β)]− ln(1− cosφ). (4.26)

A composite solution can be written as

z

B
= − ln(1− cosφ) + 2 ln

[
φ√
2
J0

(√
εr0√
2B

)]
. (4.27)
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4.3. Scaling factors

The asymptotic analysis above reveals three cases of interest for the scaling factor ratio
R/T :
• Case 1: Strong confinement defined by φedge = O(ε).

In this case, there is a single layer describing the solution for 0 6 φ 6 φedge, given by (4.7)
for the slab geometry and (4.17) for the rate-stick geometry. Relative to the length-scale
B, the rate-stick diameter and slab height are both O(1). In the rate-stick, the O(ε) slab
Bκs and axisymmetric Bκa components of curvature are equal across the charge, i.e.
κs/κa ∼ 1 for 0 6 φ 6 φedge. It then follows from (4.7) and (4.17) that

1−R/T = O(ε) > 0, (4.28)

i.e. the scale factor is unity to leading-order for strong confinement defined by φedge =
O(ε). Specifically, to O(ε), it can be shown that R/T ∼ 1− φ2/12ε.
• Case 2: Moderately strong confinement defined by φedge = O(

√
ε).

In this case, there is again a single layer describing the solution for 0 6 φ 6 φedge,
given by (4.5) for the slab geometry and by (4.22) for the rate-stick geometry. Rela-
tive to the length-scale B, the rate-stick diameter and slab height are both O(1/

√
ε). In

the rate-stick, the scaled slab and axisymmetric curvature components are again of size
O(ε). However, in a region of this layer defined by O(ε) < φ 6 φedge, the two curva-
ture components are no longer equal. Moreover, κs/κa > 1 (4.16) with the ratio κs/κa
increasing as φ increases. The fact that the curvature components are different in the
region O(ε) < φ 6 φedge drives the scale factor below unity by O(1) amounts, i.e.

1−R/T = O(1) > 0, (4.29)

for moderately strong confinement defined by φedge = O(
√
ε). The actual value of the

ratio R/T is determined through (4.5) and (4.22).
• Case 3: Weak or no confinement defined by φedge = O(1).

In this case, the solution for 0 6 φ 6 φedge is now described by two layers. The inner layer,
represented by case 2 above, for φ = O(

√
ε), is joined to an outer layer where φ = O(1).

Relative to the length-scale B, the rate-stick diameter and slab height are again both
O(1/

√
ε). The composite solutions for 0 6 φ 6 φedge when φedge = O(1) are given by

(4.10) and (4.21). Significantly, in the outer layer, the curvature is dominated by the slab
component where Bκs = O(1) while Bκa = O(

√
ε). The outer layer solutions (4.8) and

(4.19) describing the extent of the slab and rate-stick charge size when φedge = O(1)
show that in both cases the charge extent becomes independent of φ to leading-order.
Consequently, the scaling factor ratio R/T is constant to leading-order. Specifically, we
find that

R/T =
β

π
+O(ε), (4.30)

where β/π ≈ 0.7655, for weak or no confinement defined by φedge = O(1). The specific
value of the edge confinement angle influences the scaling factor ratio at O(ε).

Figure 22 shows the variation of slab thickness and the rate-stick radius as a function
of φ for the linear Dn−κ law (4.1) with parameters B = 0.1 cm and DCJ = 0.775525188
cm/µs (this DCJ is the PBX 9502 value from table 9) at a fixed phase velocity of
D0 = 0.775 cm/µs (ε = 6.772 × 10−4), calculated with the composite solutions (4.10)
and (4.21) and also numerical solutions of (3.6) for the slab and rate-stick geometries.
The agreement between the asymptotic and numerical solutions is excellent. Figure 23
shows the corresponding variation with z of φ from the rate-stick geometry and 2z
from the slab geometry. The factor of 2 in the slab geometry ensures that the ratio
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z(rate-stick)/2z(slab) ∼ 1 in the layer where φ = O(ε) based on (4.7) and (4.25). Again
the agreement between the composite solutions (4.11) and (4.27) with numerical solutions
of (3.6) is excellent.

Figure 24 shows a comparison of the scale factor variation R/T with φ derived from
composite solutions (4.10) and (4.21) (dashed line) and from numerical solutions of (3.6)
(solid lines). A rapid decrease in the ratio of R/T is observed for small φ before ap-
proaching close to the limit defined by (4.30). Figure 25 shows the corresponding vari-
ation in the ratio of z from the rate-stick geometry and 2z from the slab geometry for
composite solutions (4.11) and (4.27) and a numerical solution of (3.6). A rapid drop
in the ratio is observed for small φ before decreasing more slowly for larger φ. Note
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that for sufficiently small ε the outer layer solutions for z, (4.8) and (4.26), indicate
z(rate-stick)/2z(slab) ∼ 1/2 when φedge = O(1). In both figures, the agreement between
the asymptotic and numerical solutions is excellent.

Figure 26 shows a comparison of the scale factor R/T variation with D0 derived from
the composite solutions (4.10) and (4.21) and a numerical solution of (3.6) for an O(1)
edge angle φedge = 0.7033841. For small ε, the composite and numerical solutions are
in good agreement. As ε increases, the solutions diverge, but the asymptotic solutions
still provide a reasonable approximation to the numerical solution even at values of D0

significantly below DCJ (at D0 = 7 mm/µs, ε = 0.0974).
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5. Summary

The detonation-velocity thickness-effect curves were experimentally measured for ideal
(PBX 9501), insensitive (PBX 9502) and non-ideal (ANFO) high explosives by propa-
gating detonation in a rectangular slab geometry. These data allowed examination of
the geometric scaling factor R(D0)/T (D0) when compared to previous diameter-effect
data obtained from a cylindrical rate-stick geometry. The diameter- and thickness-effect
data yielded a varying scaling value that was always such that R(D0)/T (D0) < 1 for all
explosives studied.

For PBX 9501 and PBX 9502, the lower-order form of the Detonation Shock Dynamics
(DSD) model was found to provide a good approximation to the observedR(D0)/T (D0) <
1 behavior, and explains why, due to the difference in slab and axisymmetric components
of curvature in the rate-stick configuration, a curvature-based theory should in general
predict a scaling different from R(D0)/T (D0) = 1. For the non-ideal explosive ANFO,
the lower-order DSD model did not reproduce the observed R(D0)/T (D0) scaling. A
higher-order DSD theory, which includes contributions due to detonation front accelera-
tion and transverse flow was found to be required to reproduce the experimental scaling.
An asymptotic analysis of the lower-order DSD model provided insights into the behav-
ior of the geometrical scaling factor R(D0)/T (D0) when the detonation phase velocity
approaches the Chapman-Jouguet detonation velocity. Three cases were identified for
different degrees of explosive confinement, yielding R(D0)/T (D0) values that increas-
ingly descended from a near unity value with increasing charge edge angle, limiting to a
constant value for O(1) edge angles.

Comparison of diameter- and thickness-effect curves provide fundamental validation on
the predictive capability of detonation models such as DSD when the model calibration
is conducted using data from one geometry, and then used to predict detonation velocity
effect curves in a different geometry. The thickness-effect data indicated that improved
DSD model calibrations are needed for ANFO and low velocity PBX 9501 detonation.
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