High Explosive Detonation Propagation In Slab and Rate-Stick Geometries Near The Chapman-Jouguet Velocity

Mark Short†, Scott I. Jackson and Carlos Chiquete
Shock and Detonation Physics Group,
Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

1 Introduction

There has been significant recent work on understanding the variation of high explosive detonation phase velocity \(D_0\) in a two-dimensional slab geometric relative to that in an axisymmetric cylindrical (rate-stick) geometry having the same confinement as the slab. The ratio \(R(D_0)/T(D_0)\) has been termed the steady propagation scale factor by Jackson and Short [8], where \(R\) is the radius of a rate-stick that results in a given detonation phase velocity \(D_0\), while \(T\) is the corresponding thickness of a slab that result in the same detonation phase velocity. The ratio \(R(D_0)/T(D_0)\) varies as a function of \(D_0\). In the cylindrical rate-stick geometry, the detonation shock has two curvature components; the slab component which is the two-dimensional curvature along a diameter of the rate-stick, and the corresponding axisymmetric component. Petel et. al [9], Silvestrov et al. [10] and Higgins [6] have found a propagation scale factor \(R(D_0)/T(D_0) > 1\) for the explosives studied. In contrast, Jackson and Short [7, 8] found \(R(D_0)/T(D_0) < 1\) for three explosives nominally characteristic of ideal (PBX 9501), insensitive (PBX 9502) and non-ideal (ANFO) explosives. The purpose of the current work is to use a Detonation Shock Dynamics (DSD) model to give detailed insight into the dynamics behind the variation in the propagation scale factor \(R/T\) when the detonation phase velocity \(D_0\) approaches the Chapman-Jouguet velocity \(D_{CJ}\) for different degrees of confinement. In particular, we will extend the analysis in Jackson and Short [8] for larger variations in the difference between \(D_0\) and \(D_{CJ}\).

Detonation Shock Dynamics is an intrinsic surface propagation concept that replaces the detonation shock and reaction zone with a surface that evolves according to a prescribed intrinsic surface evolution law. Developed by Bdzil and Stewart [2–4, 11], it provides an advanced capability to describe detonation wave sweep through an arbitrarily complex geometry. At leading-order, the motion of the DSD surface relates the normal velocity of the surface \((D_n)\) to the local surface curvature \((\kappa)\), or

\[
D_n = f(\kappa).
\] (1)

The curvature \(\kappa\) represents the sum of the principal curvatures for any three-dimensional surface. For a given DSD form, determination of the detonation phase velocities in the slab and rate-stick geometries also requires information on how the HE is confined. This is done at the HE/material interface through specification of the “edge” angle, which we define here as the angle between the shock normal direction and the tangent to the material interface [5]. In Jackson and Short [8], it was shown that any detonation

†Correspondence to: short1@lanl.gov
whose propagation can be adequately represented by \(D_0 \rightarrow D_{CJ} \) must necessarily have a scale factor \(R/T < 1 \), provided that, in the rate-stick geometry, the magnitude of the slab component of curvature increases monotonically with radius.

2 Formulation of Steady Detonation Propagation in Rate-Stick and Slab Geometries

Consider the steady propagation of an axisymmetric detonation in the positive axial \(z \) direction of a cylindrical explosive (rate-stick), where the DSD surface is given as a function of radial coordinate \(r \) by \(z = z_s(r) \), with a surface normal orientated in the direction of fresh reactants. Defining a level set function \(S = z - z_s(r) \), the normal to the surface is

\[
\mathbf{n} = \frac{\nabla S}{|\nabla S|} = \frac{1}{\sqrt{1 + [d(z_s(r))/dr]^2}} \left(-\frac{d}{dr} z_s(r) \mathbf{e_r} + \mathbf{e_z} \right),
\]

with a total curvature given by the sum of the slab (\(\kappa_s \)) and axisymmetric (\(\kappa_a \)) components, where

\[
\kappa = \nabla \cdot \mathbf{n} = \kappa_s + \kappa_a, \quad \kappa_s = -\frac{z_s''(r)}{(1 + [z_s'(r)]^2)^{3/2}}, \quad \kappa_a = -\frac{z_s'(r)}{r \left(1 + [z_s'(r)]^2 \right)^{1/2}}.
\]

With \(D_0 \) as the steady axial detonation phase speed, the shock angle \(\phi \) between the axial direction and the surface normal \(\mathbf{n} \) at any point on the surface is determined by

\[
\cos \phi = \frac{D_n}{D_0} = \frac{1}{|\nabla S|} = \frac{1}{(1 + [z_s'(r)]^2)^{1/2}}, \quad \frac{dz_s}{dr} = -\tan \phi,
\]

so that \(\kappa \) can be written as

\[
\kappa = \kappa_s + \kappa_a, \quad \kappa_s = \frac{d\phi}{d\xi}, \quad \kappa_a = \frac{\sin \phi}{r},
\]

where \(\xi \) is surface arc length. Switching to \(\phi \) as the independent variable, the \((r, z)\) components of the surface shape can then be calculated by integration of

\[
\frac{dr}{d\phi} = \frac{\cos \phi}{\kappa_s}, \quad \frac{dz}{d\phi} = -\frac{\sin \phi}{\kappa_s},
\]

subject to

\[
z(\phi = 0) = 0, \quad r(\phi = 0) = 0, \quad \text{and } r(\phi = \phi_{edge}) = R,
\]

where \(\phi_{edge} \) is the shock angle at the edge of the explosive \((r = R)\). Due the \(1/r\) term in the axisymmetric curvature component in (5), the integration of (6) is started at a finite small value of \(\phi \), where

\[
r \sim \frac{\phi}{\kappa_s(\phi = 0)}, \quad z \sim -\frac{\phi^2}{2\kappa_s(\phi = 0)}, \quad \phi \ll 1,
\]

and on \(\phi = 0 \),

\[
D_n = D_0, \quad \kappa_s(\phi = 0) = \kappa_a(\phi = 0), \quad \kappa = 2\kappa_s(\phi = 0), \quad \text{where } \kappa_s(\phi = 0) = f(D_0)/2.
\]

For the 2D slab geometry, the above analysis is repeated, except that \(\kappa_s = 0 \), while \(r \) now refers to the distance from the slab center to the slab edge. Boundary conditions (7) with \(r(\phi = \phi_{edge}) = T/2 \), where \(T \) is the slab thickness, can be applied directly to the integration of (6).
3 Scaling Behaviour for $D_0 \to D_{CJ}$

We assume a $D_n - \kappa$ law of the linear form

$$\frac{D_n}{D_{CJ}} = 1 - B\kappa,$$

which allows the solutions in individual layers to be derived analytically. Note that the parameter B represents a length scale that is characteristic of the reaction zone thickness. We are interested in the limit $D_0 \to D_{CJ}$, and define a small parameter ϵ such that

$$\epsilon = 1 - \frac{D_0}{D_{CJ}}, \quad \epsilon \ll 1.$$

Slab Geometry: For the slab geometry, the differential equation (6) for $r(\phi)$ becomes

$$\left[1 - (1 - \epsilon) \cos \phi \right] \frac{d(r/B)}{d\phi} = \cos \phi,$$

subject to boundary conditions (7). For $\epsilon \ll 1$, we find an inner layer in the central part of the charge described by the scalings $\phi = \mathcal{O}(\sqrt{\epsilon})$ and $r/B = \mathcal{O}(1/\sqrt{\epsilon})$, where

$$\frac{r}{B} = \sqrt{2 \epsilon} \tan^{-1} \left(\frac{\phi}{\sqrt{2 \epsilon}} \right) + \mathcal{O}(\sqrt{\epsilon}).$$

If the degree of confinement is such that $\phi_{edge} = \mathcal{O}(\sqrt{\epsilon})$, (13) describes the solution from the charge center to the charge edge. Note that contained within the inner layer is a region of size $\phi = \mathcal{O}(\epsilon)$ around $r = 0$ where $r/B = \mathcal{O}(1)$, in which

$$\frac{r}{B} \sim \frac{\phi}{\epsilon}.$$

For $\phi_{edge} = \mathcal{O}(1)$, an outer layer must be appended to the inner layer which extends to the edge of the charge. In this layer, $\phi = \mathcal{O}(1)$, $r/B = \mathcal{O}(1/\sqrt{\epsilon})$, where

$$\frac{r}{B} = \frac{\pi}{\sqrt{2 \epsilon}} - \phi - \frac{1}{\tan(\phi/2)} + \mathcal{O}(\sqrt{\epsilon}),$$

after matching with (13).

Rate-stick Geometry: For the rate-stick geometry, the differential equation (6) for $r(\phi)/B$ becomes

$$\left[1 - (1 - \epsilon) \cos \phi - \frac{\sin \phi}{(r/B)} \right] \frac{d(r/B)}{d\phi} = \cos \phi.$$

We again find an inner layer in the central part of the charge where $\phi = \mathcal{O}(\sqrt{\epsilon})$ and $r/B = \mathcal{O}(1/\sqrt{\epsilon})$. The solution in this layer is

$$\frac{\phi}{\sqrt{\epsilon}} = \frac{\sqrt{2} J_1(\sqrt{\epsilon}r/\sqrt{2B})}{J_0(\sqrt{\epsilon}r/\sqrt{2B})},$$

where J_0 and J_1 are the order 0 and order 1 Bessel functions of the first kind. As for the slab geometry, contained within the inner layer is a region near $r = 0$ where $\phi = \mathcal{O}(\epsilon)$, in which

$$\frac{r}{B} \sim \frac{2\phi}{\epsilon}.$$
Case 2: Moderately strong confinement defined by detonation shock is small, which is consistent with this analysis.

\[\frac{r}{B} = \frac{\sqrt{2\beta}}{\sqrt{\epsilon}} - \phi - \frac{1}{\tan(\phi/2)} + O(\sqrt{\epsilon}), \]

where \(\beta \approx 2.40483 \) is the first positive zero of \(J_0(\beta) = 0 \).

Scaling factor Implications. The asymptotic analysis above reveals three cases of interest for the scaling factor ratio \(R/T \):

Case 1: Strong confinement defined by \(\phi_{\text{edge}} = O(1) \). In this case, there is a single layer describing the solution for \(0 \leq \phi \leq \phi_{\text{edge}} \). In the rate-stick, the \(O(\epsilon) \) slab \(B\kappa_s \) and axisymmetric \(B\kappa_a \) components of curvature are equal across the charge. It then follows from (14) and (18) that

\[1 - \frac{R}{T} = O(\epsilon) > 0, \]

i.e. the scale factor is unity to leading-order for strong confinement defined by \(\phi_{\text{edge}} = O(1) \). Specifically, to \(O(\epsilon) \), it can be shown that \(R/T \sim 1 - \phi^2/12\epsilon \). Bdzil [1] has shown that the scale factor \(R(D_0)/T(D_0) = 1 \) can be approached in the limit where the streamline angle deflection behind the detonation shock is small, which is consistent with this analysis.

Case 2: Moderately strong confinement defined by \(\phi_{\text{edge}} = O(\sqrt{\epsilon}) \). In this case, there is again a single layer describing the solution for \(0 \leq \phi \leq \phi_{\text{edge}} \). In the rate-stick, the scaled slab and axisymmetric curvature components are again of size \(O(\epsilon) \). However, in a region of this layer defined by \(O(\epsilon) < \phi \leq \phi_{\text{edge}} \), the two curvature components are no longer equal. This drives the scale factor below unity by \(O(1) \) amounts, i.e.

\[1 - \frac{R}{T} = O(1) > 0, \]

for moderately strong confinement defined by \(\phi_{\text{edge}} = O(\sqrt{\epsilon}) \). The actual value of the ratio \(R/T \) is determined through equations (13) and (17).

Case 3: Weak or no confinement defined by \(\phi_{\text{edge}} = O(1) \). In this case, the solution for \(0 \leq \phi \leq \phi_{\text{edge}} \) is now described by two layers. The inner layer, represented by case 2 above, for \(\phi = O(\sqrt{\epsilon}) \), is joined to an outer layer where \(\phi = O(1) \). Significantly, in the outer layer, the curvature is dominated by the slab component where \(B\kappa_s = O(1) \), while \(B\kappa_a = O(\sqrt{\epsilon}) \). The outer layer solutions (15) and (19) show that in both cases the charge extent becomes independent of \(\phi \) to leading-order. Consequently, the scaling factor ratio \(R/T \) is constant to leading-order. Specifically, we find that

\[\frac{R}{T} = \frac{\beta}{\pi} + O(\epsilon), \]

where \(\beta/\pi \approx 0.7655 \), for weak or no confinement defined by \(\phi_{\text{edge}} = O(1) \).

Figure [1] shows a comparison of the scale factor variation \(R/T \) with \(\phi \) derived from a composite of solutions (13) and (15) for the slab and (17) and (19) for the rate-stick (dashed line) and from numerical solutions of (6) (solid lines). A rapid decrease in the ratio of \(R/T \) is observed for small \(\phi \) before approaching close to the limit defined by (22). The agreement between the asymptotic and numerical solutions is excellent. Figure [2] shows a comparison of the scale factor \(R/T \) variation with \(D_0 \) derived from the composite asymptotic solutions and a numerical solution of (6) for an \(O(1) \) edge angle \(\phi_{\text{edge}} = 0.7033841 \). For small \(\epsilon \), the composite and numerical solutions are in good agreement. As \(\epsilon \) increases, the solutions diverge, but the asymptotic solutions still provide a reasonable approximation to the numerical solution even at values of \(D_0 \) significantly below \(D_{C,J} \) (at \(D_0 = 7 \text{ mm/\mu s} \), \(\epsilon = 0.0974 \)).
Figure 1: Comparison of the scale factor variation R/T with ϕ derived from composite asymptotic solutions (dashed line) and from numerical solutions of (6) (solid lines). Here $B = 0.1$ cm and $D_{CJ} = 0.775525188$ cm/μs at a fixed phase velocity of $D_0 = 0.775$ cm/μs ($\epsilon = 6.772 \times 10^{-4}$). The composite and numerical solutions almost overlay in the plot.

Figure 2: Scale factor R/T variation with changes in D_0 with $B = 0.1$ cm and $D_{CJ} = 0.775525188$ cm/μs for an edge angle $\phi_{edge} = 0.7033841$. A composite asymptotic solution (dashed line) and numerical solution of (6) (solid line) are shown.
Short, M.

Asymptotics of DSD for $D_0 \rightarrow D_C$.

The agreement between the asymptotic and numerical solutions at larger ε can be improved by extending the asymptotic analysis to an additional order. For instance, the inner slab solution for $\phi = \mathcal{O}(\sqrt{\varepsilon})$ is

$$
\frac{r}{B} \sim \sqrt{\frac{2}{\varepsilon}} \tan^{-1}\left(\frac{\phi}{\sqrt{2\varepsilon}}\right) + \sqrt{\varepsilon} \left(\frac{5\sqrt{2}}{4} \tan^{-1}\left(\frac{\phi}{\sqrt{2\varepsilon}}\right) - \frac{5\phi}{6\varepsilon} \left(\frac{\phi^2}{2} + 3\varepsilon\right)\right),
$$

(23)

while the outer slab solution for $\phi = \mathcal{O}(1)$ is

$$
\frac{r}{B} \sim \frac{\pi}{\sqrt{2\varepsilon}} - \phi - \frac{1}{\tan(\phi/2)} + \frac{5\sqrt{2}}{8} \sqrt{\varepsilon}.
$$

(24)

Similar extensions can be provided for rate-stick geometry, and the results used to generate a second-order accurate R/T scaling factor variation with D_0.

References

