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ABSTRACT 

 
A number of agent-based and network models have been proposed for the analysis of the 
spread of infectious diseases, but most of these models are inherently static and do not 
explicitly incorporate the social structures of real populations. We use an agent-based 
model that captures geospatially varying demographic characteristics, travel patterns of 
individuals, and contact opportunities at households, work locations, schools, social 
recreational venues, hospitals, restaurants, shops, and other locations. The population 
consists of 19 million synthetic individuals interacting in a landscape of 6.4 million 
households and 938 thousand business places, geolocated on 700 thousand road 
segments, representing a six-county region of Southern California (Los Angeles, Orange, 
Riverside, San Bernardino, Ventura, and San Diego counties). Individual and household 
demographic characteristics are specified at the most finely granulated level that can be 
extracted from U.S. Census data.  We simulate the social contact structure by computing 
every person to person interaction in space and time, using statistical models of the 
geographic distribution of population demographics, households, mixing places, and the 
movement of individuals as they undertake their daily activities.  
 
We show some interesting results about how the degree of mixing depends on the age of 
the individuals and their primary non-household activity.  We also show how the relative 
magnitude of contact rates between individuals during weekdays and weekends affects 
the contact structure dynamics. Models that use realistic populations are better able to 
capture the true dynamics of disease spread and may be useful in guiding public health 
policy. The simulations here can help improve current models of disease transmission 
and may provide an insight into patterns of interactions between real individuals.  
 
INTRODUCTION 
 
A social network can be represented as a graph of relationships and interactions within a 
population. Many natural and man-made systems can be represented by graphs composed 
of nodes (such as individuals, airports, or web pages) that are connected by edges 
representing social or physical relationships (such as friendship, airline routes, or 
hypertext links) (Strogatz, 2001). Analyzing the interactions of a social network can yield 
a deeper and more accurate understanding of the system. 
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The most critical part in epidemic modeling lies in how the process of human contact that 
underlies transmission is represented. Traditional models (Anderson and May, 1991; 
Hethcote, 2000) represent communities as compartments of identical individuals mixing 
uniformly and randomly—in other words, these models assume that each individual in 
the population is in contact with every other individual. Because of the recognition of the 
complex nature of disease spread a new type of modeling has emerged. The new 
paradigm is social networks and agent-based models (Watts and Strogatz, 1998; Pastor-
Satorras and Vespignami, 2001; Newman, 2002; Germann et al. 2006; Ferguson et al. 
2006; Stroud et al. 2007). Epidemic models on social networks differ from 
compartmental models in that transmission is a stochastic process and it occurs between 
discrete individuals, which allow these models to preserve demographic and 
epidemiological differences in disease transmission. However, the problem with many 
models is that the contact networks are approximated to be static, thus excluding realistic 
changes that occur in the social contact network structure in response to the events of 
interest. 
 
Disease spread has been modeled in artificial societies that consist of individuals residing 
in scale-free networks (Pastor-Storras and Vespignani, 2001) and small-world networks 
(Watts and Strogatz, 1998).  The former characterized by degree distributions that follow 
a power-law, and the latter characterized by high levels of clustering and global 
connectivity. However, these methods are not intended to capture realistic contact 
networks. Other techniques for building realistic social networks include: tract-to-tract 
worker flow (Germann et al. 2006), Landscan data (Ferguson et al. 2006), and survey 
studies (Edmunds et al. 1997; Wallinga et al. 2006; Stroud et al. 2007).   
 
German et al. (2006) developed an individual-based model, called EpiCast, to analyze the 
potential spread of pandemic influenza in the United States. EpiCast is a simulation in 
which the synthetic population consists of 140,500 identical structured communities of 
2,000 individuals each. Each community has 855 households, four neighborhoods, one 
high school, one middle school, four elementary schools, and some playgroups for 
preschoolers. Individuals mix at home each night, and in a mixing group (work or school) 
during the day. Each of 43,323 census tracts in the United States are assigned one or 
more of these communities, depending on the number of people who live in the census 
tract. U.S. Census tract-to-tract worker flow data is used to move workers from their tract 
of residence at night to their tract of work during the day. Because each community is 
modeled with an identical distribution of household size and identical values of other 
demographic measures, spatial variation in disease severity due to spatially varying 
demographics is not seen. 
 
Another approach for simulating disease spread in massive artificial societies is satellite 
imagery through the use of Landscan data. The Landscan data uses a worldwide spatial 
grid of 30 arc-second cells (approximately 1 km square), and satellite imagery and other 
data to estimate the number of people who occupy each grid cell. Ferguson et al. (2006) 
developed a model using Landscan data to construct synthetic households, schools, and 
workplaces and used the assumption that household size and age distributions did not 
vary geographically. Population movement was computed to match commuting distance 
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distributions and long-range travel patterns. The model observed spatial variation in the 
timing of the pandemic peak but did not report spatial variation due to demographics. 
 
Edmunds et al. (1997) collected observational data on contacts of 65 individuals and 
estimated their social network. They concluded that the contact network of this study 
group could be approximated by a normal distribution. Wallinga et al. (2006) conducted a 
larger study consisting of 1,813 individuals and collected information on social contacts 
and analyzed age-specific contact patterns. These types of studies provide valuable 
information on the rates and patterns of mixing that may influence the spread of 
infectious diseases. However, this methodology may not be applicable for large-scale 
studies.  
 
The model presented here attempts to overcome these limitations by direct simulation of 
the spread of infection through an agent-based generated network. Three components in 
this agent-based model, not present in other agent-based models (Germann et al. 2006, 
Ferguson et al. 2006), are important in capturing more precisely the pattern of observed 
realistically mixing populations (Del Valle et al. 2007). First, a seasonality component 
represents changes in contact rates, which occur due to school-term and vacation patterns 
(Edmunds et al. 1998).  This seasonal input or forcing is implemented by school and 
partial work closures associated with school term, holiday times, and weekday and 
weekends contact patterns.  Second, spatially varying demographics are constructed to be 
consistent with each U.S. Census block group where the synthetic population is matched. 
Spatial variation is important for capturing severity and timing of disease spread and 
appropriately forecasting and preparing for future epidemics. Third, classrooms are 
stratified by age, which is consistent with mixing patterns observed in school grounds.  
Children attending elementary schools mix more in their classrooms with other school 
children of their own age than with children of other ages.  
 
Here, we show how to use survey studies to generate social networks and extract realistic 
mixing patterns. We then analyze the simulated movement of this population and 
characterize the emergent contact distribution at different social settings and timings. 
Finally, we show how these factors affect the dynamics of disease spread.  
 
METHODOLOGY 
 
Construction of the Artificial Society 
 
In a real population, the course of an epidemic in space and time is a stochastic process 
engendered by the transmission opportunities that are created by physical proximity of 
individuals as they go about their daily activities. EpiSimS (Epidemic Simulation 
System) (Stroud et al. 2007) creates a virtual abstraction of the unknowable space-time 
web of social contacts by making software agents to represent each individual and 
simulating the movement and activities of each agent. The unique approach taken in 
EpiSimS is to construct the attributes and behaviors of each agent in a way that captures 
the maximum amount of relevant information from massive data sets about real people 
and places (primarily the U.S. Census (USCB, 2000), the Dun & Bradstreet business 
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database (D&B, 2003), the National Household Travel Survey (NHTS) (USDOT, 2003), 
and the NAVTEQ road database (NAVTEQ, 2004)). The methodology used to construct 
the synthetic population from census data, to assign activities to individuals based on 
household activity surveys, and to assign locations to activities, has been described and 
characterized in detail (Beckman et al. 1995). Additional details about the artificial 
society used in this analysis are presented here.  
 
The Synthetic Individuals 
 
A synthetic population consisting of 18,828,569 agents was constructed to match the 
actual population of six southern California counties (Los Angeles, Orange, San Diego, 
Riverside, San Bernardino, and Ventura). The U.S. Census subdivides these six counties 
into 3,978 census tracts, which are further subdivided into 12,226 census block groups. A 
statistical procedure called iterative proportional fitting is used to create a synthetic 
population that matches the marginal distributions at the block group level, while 
retaining the demographic correlation structure of the Census tract tabulations. It creates 
the joint distribution, matching the marginal distributions by taking samples from the 
partial set of full records. The result is a set of households and individuals geographically 
distributed with correct demographics, statistically indistinguishable from the real 
population. In each block group, the synthetic population matches the actual population 
in several statistical measures: the number of residents, the number of households, the 
householder’s age distribution, the household size and membership distribution, the 
household income distribution, number of workers, and the number of vehicles. There are 
a total of 6,345,751 households, of which 1,455,712 are agents living alone, 1,532,985 
are married agents with young agents living at home, and the rest are various 
combinations of agents of various ages. The EpiSimS synthetic population represents the 
most finely granulated characterization of individuals and household structures that can 
be extracted from the U.S. Census data. This is a unique feature of the EpiSimS 
approach, in contrast to other large-scale simulations (Germann et al. 2006, Ferguson et 
al. 2006) in which the distribution of household structure is independent of location. 
 
The synthetic population of southern California represents only individuals reported as 
household residents in the 2000 U.S. Census. It does not represent the 2.11% of the 
population reported as living in group quarters (for example, jails, dorms, nursing-care 
facilities). It is not clear to what extent the synthetic population captures the activity 
patterns of the undocumented population, which made up an estimated 6.5% of the 
California population in 2000 (USINS, 2003). The artificial society does not include 
visiting tourists, and does not explicitly treat guests in hotels or travelers in airports. 
 
Activity Schedule 
 
The survey data (USDOT, 2003) EpiSimS uses to generate the sequence of activities that 
each agent undertakes each day contains the time that the person started traveling to their 
next activity, the time spent in transit, the mode of transportation, the time that the person 
arrived at the activity location, and the amount of time the person engaged in that 
activity. In addition to being at home, activities include work, shopping, eating in a 
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restaurant, attending school or college, visiting a doctor, riding in or driving a carpool 
(designated by the NHTS activity serve passenger), social recreation, visiting another 
household, and an NHTS activity category designated other.  
 
The NHTS is a comprehensive household survey of both daily and long-distance travel. It 
collected surveys from about 26,000 nationally representative households consisting of 
approximately 60,000 individuals, which document about a quarter-million daily trips 
and 45,000 long-distance trips. Data were collected from March 2001 to May 2002. 
Households were asked about all trips (daily travel) they took on a specific randomly 
assigned day, including how far they traveled, what they did when they got there, and 
how long they stayed there. For each synthetic household, EpiSimS identified a subset of 
the NHTS surveys that came from actual households with similar composition and 
demographics to the synthetic household. One of these surveys was selected at random 
and the reported activity schedule of that actual household was applied to the members of 
the synthetic household.  
 
This approach provides a much richer artificial society than simpler day-night 12-hour 
time step models (Germann et al. 2006, Ferguson et al. 2006). As in the household 
surveys used to construct the activity schedules, some synthetic individuals work 
evenings or nights and spend the day at home. 
 
To determine the weekday schedules, we used non-holiday weekdays from the NHTS 
household survey and assigned these activities to our individual agents.  To account for 
absenteeism, we allow 84% of the workers to go to work on weekdays and 35% on 
weekends (USDOL, 2008).  Whereas 95% of students go to school on each simulated 
weekday, which is consistent with school absenteeism (USDOE, 2008), none attend 
school on weekends.  The percentage of workers and students who stay home each day is 
randomly chosen to allow for variability within the simulation. When an adult or a child 
is chosen to take the day off from work or school (due to absenteeism), respectively, the 
model assumes that these individuals will remain home for as long as they were supposed 
to be at work or school, which is dictated by their itineraries. 
 
Locations 
 
EpiSimS represents each business, school, restaurant, office, and shop that has a business 
address listed in the Dun & Bradstreet business directory database as a location. Each 
business is characterized by its geographic location, the type of business that is conducted 
there (from its standardized industry classification, or SIC, code), and the number of 
workers who are employed there. There are 938,000 separate business locations 
represented in the southern California landscape.  
 
The actual physical road network consists of road segments and intersections. NAVTEQ 
(2004) provides the latitude and longitude of the end-points of every road segment (that 
is, stretch of road between two intersections) in the United States, updated quarterly. The 
road network in the six southern California counties has 700,000 road segments. EpiSimS 
maps each business address to a road segment (sometimes combining rural road 
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segments) and places that business location at the latitude and longitude of the road 
segment center. Each road segment is mapped to a census block. The U.S. Census data 
provides the number of households in each census block. EpiSimS apportions this 
number of households onto the associated road segments. The numbers of students 
attending each school are drawn from the National Center of Educational Statistics (), 
along with the school address and the range of grades. 
 
Assignment of Activities to Locations 
 
EpiSimS uses a two-stage gravity algorithm to assign a location to each non-household 
activity of each individual. The gravity model is widely used in traffic analysis and has 
been described in detail (Voorhees, 1956; FHWA, 1978; Martin and McGuckin, 1998). 
Each individual has an anchor activity. For workers, the anchor is their work activity; for 
students, it is their school activity; otherwise, it is the place of residence. The first stage 
of the gravity algorithm assigns a location to the anchor activity of each worker and 
student.  
 
The EpiSimS implementation of the gravity algorithm in effect sets the probability that 
worker i works at location j to be proportional to 
 
 e

! N j e
"#dij

/ dij , Eq. 1-1 
 
where dij is the travel distance in meters from the residence of worker i to work location j, 
and Nj is the number of workers that are employed at location j. The coefficient values 
 γ=0.377 and β=0.000209 have been fit to ensure that the number of workers assigned to 
each work location matches the Dun & Bradstreet data, and that the distribution of 
commute distances from home to work matches the distribution extracted from the NHTS 
data. The second stage gravity model that assigns locations to non-anchor activities 
follows a similar formulation, except the distance is replaced by the sum of the distance 
from the anchor activity to the non-anchor activity plus the distance from the non-anchor 
activity to the place of residence.  
 
Sub-location modeling 
 
EpiSimS partitions each location into sub-locations to model how people interact within a 
location. The sub-locations are intended to represent individual classroom mixing groups 
within a school location, shops within a shopping center, or workgroups within a business 
location. Furthermore, EpiSimS has the capability to model transmission between 
students at the same school who are not classmates, workers at the same business address 
who are not in the same work group, and individuals who live in different households on 
the same city block.  
 
The number of sub-locations at each location is computed by dividing the location’s peak 
occupancy by the appropriate mixing group size. The mean workgroup size varies by SIC 
code. Two data sources were used to estimate the mean workgroup size by SIC code. Yee 
and Bradford (1999) conducted a survey to determine the average worker density in the 
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workplace, quantified as workers per square feet, by SIC code. The U.S. Department of 
Energy’s Energy Information Administration conducted an extensive survey of 
commercial building usage, including workers per building, floors per building, and 
enterprises per building, by SIC code (Michaels, 2003). The mean workgroup size was 
computed as the average from the two data sources (normalizing the worker density data) 
and ranges from 3.1 for transportation workers to 25.4 for health service workers.  
 
RESULTS 
 
The Social Contact Network 
 
The dynamics of disease spread are determined in large part by the dynamic structure of 
the social contact network. EpiSimS does not impose a social contact network in the 
population but allows it to emerge from the individual activity patterns of millions of 
individuals. More than 80 million activities occur each day. The simulation keeps track of 
every individual as they travel between locations and is, therefore, able to determine the 
contacts, including identities of those in contact, the location, the duration of the contact, 
and the nature of the activity where the contact took place. Thus, time dependent person-
to-person social contact networks based on the sequence of activities each person carries 
out throughout the day can be extracted from the simulation. 
 
Weekday vs Weekend Contacts 
 
The topology of the graph determines the population’s connectivity and consequently 
how effectively an infectious disease can be disseminated on it.  Although much work 
has been done to map and analyze disease spread on static networks, little is known about 
the impact of dynamic networks.  Here we take a step towards filling this gap: we have 
constructed an agent-based simulation model in which the agents have weekday and 
weekend schedules, which has enabled us to characterize the impact of dynamic contacts.  
 
Two individuals that are present in the same sub-location (e.g. room or mixing group) at 
the same time are taken to be in contact for purposes of modeling the spread of airborne 
infections. The strength of those connections varies depending on the duration of contact 
and the type of activity occurring in the shared location.  
 
Figure 2 shows the degree distribution of the population for the weekend and weekday 
schedules, specifying how many individuals have a given number of contacts. The 
number of contacts a person has each day ranges between 0 and 149 (mean 12.8) and 0 
and 209 (mean 18.1) for the weekend and weekday, respectively. Neither simple contact 
structure models (as in fully mixed contact groups of specified size) nor analytic contact 
structure models (as in power-law distributions) capture the structure seen in the 
emergent social contact structure.  
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FIGURE 2. Weekday and weekend contact distribution of the population of Southern 
California. Note that the distributions show an exponential decay behavior. A. The degree 
distribution of weekday and weekend contacts in log-linear scale, showing how many 
people have a given number of contacts per day. B. The degree distribution of weekday 
and weekend contacts in linear scale showing the first 20 contacts.  
 
Figure 3 shows the degree distribution of contacts per person (per day) in the three top-
level social settings and aggregated over the remaining six activities for weekdays and 
weekends. With the exception of household contacts, it is clear from observation of 
figure 3 that the distribution of the context of contacts varies from weekday to weekend.  
During the weekend, adults tend to have fewer work related contacts, and children do not 
have school related contacts. However, household related contacts do not vary from 
weekday to weekend, although the time spent at home by members of the household 
might change. The contact distribution for the remaining of the activities is moderately 
affected by the weekday and weekend schedules. Tables 1 and 2 show the average 
number of contacts for weekdays and weekends by activity category. The largest average 
number of contacts occurs at college and while shopping for both weekdays and 
weekends. Note that although the number of classes offered at colleges during the 
weekends is less than the weekdays, we chose not to reduce the college activities on the 
weekends in order to account for the social contacts college students have on the 
weekends. With the exception of work, school, and other, the average number of contacts 
does not vary much from weekday to weekend.  
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FIGURE 3. Weekday and weekend contact distribution of the population of Southern 
California for the four top-level activities. A. The household degree distribution of 
weekday and weekend contacts in log-linear scale, showing how many people has a given 
number of contacts per day. B. The work degree distribution of weekday and weekend 
contacts in log-linear scale. C. The school degree distribution of weekday contacts in 
linear scale.  We assume that schools are closed on the weekends, consequently, there are 
no contacts generated at schools on the weekends. D. The degree distribution of weekday 
and weekend contacts in log-linear scale for college, shopping, social, visit, other, and 
passanger activities.  
 

Table 1. Breakout of average, standard deviation, minimum, and maximum average 
number of contact by activity category for a weekday schedules 

Activity Mean STD Min Max 
Home 3.3 2 0 53 
School 9.9 3.3 1 48 
Work 7.8 6.3 1 156 
College 21.2 9.9 1 81 
Visit 3.4 2.5 1 75 
Other 6.3 6.8 1 130 
Social 7.8 5.8 1 55 
Shop 14.8 12.1 1 153 
Carpool 2.2 1.8 1 35 
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Table 2. Breakout of average, standard deviation, minimum, and maximum average 
number of contact by activity category for a weekend schedule. 

Activity Mean STD Min Max 
Home 3.3 2.1 0 41 
School 0 0 0 0 
Work 3.7 4.5 1 127 
College 21.4 9.6 1 69 
Visit 3.8 2.7 1 72 
Other 4.3 5.3 1 114 
Social 7.8 5.8 1 55 
Shop 14.1 11.6 1 148 
Carpool 2.1 1.7 1 35 
 
 
Weekday vs Weekend Contacts by Age 
 
Figure 4 shows the average number of contacts per person per representative weekday or 
weekend by age, aggregated for all activities and for the top three activity categories. The 
average number of contacts ranges between 9 and 16 (mean 13.6) for all age groups 
during the weekend and between 12 and 21 (mean 18) for all age groups during the 
weekday. In general, school-aged children tend to have more contacts than adults during 
the weekday; however, the roles are reversed during the weekend. The average number of 
contacts of older adults (> 60) varies moderately between weekdays and weekends, 
which might be due to the fact that their activities do not change much from day to day. 
For household related contacts, the average number of contacts decreases with age, such 
that older individuals (> 50) have fewer contacts than younger individuals (< 50). Work 
related contacts decreased two-fold for most working adults during the weekend. The 
reason why children appear under the work related contacts is because working adults 
interact with children at schools and day care centers, which are considered workplaces. 
The average number of ‘other’ related contacts decreased dramatically from weekend to 
weekday for all age groups.  
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FIGURE 4. Weekday and weekend contact distribution of the population of Southern 
California as a function of age, aggregated over all activities and for the three top-level 
activities. A. The degree distribution of weekday and weekend contacts as a function of 
age aggregated over all activities. B. The household degree distribution of weekday and 
weekend contacts as a function of age. C. The work degree distribution of weekday 
contacts. D. The ‘other’ degree distribution of weekday and weekend contacts as a 
function of age. This social setting corresponds to the NHTS activity category designated 
as ‘other’.  
 
The average number of contacts per student per representative school day is shown in 
Figure 5. EpiSimS assigns students to classroom mixing groups with other kids of the 
same calendar age (Figure 5). In real classrooms, there will typically be a mix of six and 
seven year olds in first grade. In EpiSimS, however, six year olds are only with six year 
olds. For the simulations presented here, the classroom mixing group size parameter is set 
to 10, so that 10 kids of the same age are placed in a room with a teacher. On each 
successive school day, students are assigned to a randomly selected classroom of the 
appropriate age group so that they do not mix with exactly the same students each day.  
 



 12 

 
 
FIGURE 5. The distribution of contacts by age among students in southern California. 
A. The school degree distribution of weekday contacts as a function of age. B. The total 
number of school related contacts between age groups. The color indicates the simulated 
number of contacts between persons of each age pair.  
 
Weekday vs Weekend Contact Duration 
 
Although duration of contact plays a crucial role in the transmission of infectious 
diseases, to our knowledge, this mechanism has not been analyzed in the literature. The 
duration of each contact is as important as the number of contacts. The duration is 
defined as the total length that two people spent together in the same sub-location.  If a 
person has contact with the same person several times a day, all the contact durations of 
the multiple encounters are added up and the total aggregated length makes the final 
contact duration.  
 
Figure 6 shows the distribution of contact durations for the weekday and weekend 
schedules. There are many short-duration contacts (6+ contacts per weekday per person 
last less than 30 minutes) representing casual interactions. Structure related to weekday 
activities of the population (e.g. 6 hours school related activities and 8 hours work shifts) 
is readily apparent. The average contact duration per person is 3.5 hours for both 
weekdays and weekends; however, the standard deviation is 5 hours for the weekend 
schedule and 3 hours for the weekday schedule.  
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FIGURE 6. The distribution of contact duration among people in southern California. A. 
The distribution of weekday contact duration. B. The distribution of weekend contact 
duration.  
 
Table 3 and 4 show the average contact duration by activity category for the weekday and 
weekend schedule, respectively. For the weekday, the longest contacts occur at home, 
with an average contact duration of more than 8 hours, followed by school and work with 
an average duration of contact of 6 and 4.5 hours, respectively. During the weekend, the 
longest contacts occur at home, with an average contact duration of almost 11 hours. 
Note that there are no school contacts because schools are closed on the weekends.  
 

Table 3. Breakout of average, standard deviation, minimum, and maximum duration per 
contact by activity category for a weekday schedule. 

Activity Mean STD Min Max 
Home 8 hrs 11 min 3 hrs 41 min 1 sec 23 hrs 45 min 
School 5 hrs 59 min 1 hr 49 min 1 sec 15 hrs 15 min 
Work 4 hrs 33 min 2 hrs 48 min 1 sec 19 hrs 55 min 
College 2 hrs 25 min 1 hr 57 min 5 sec 14 hrs 25 min 
Visit 1 hr 23 min 1 hr 23 min 1 sec 17 hrs 10 min 
Other 1 hr 2 min 1 hr 21 min 1 sec 17 hrs 48 min 
Social 55 min 59 min 2 sec 19 hrs 25 min 
Shop 23 min 29 min 2 sec 17 hrs 10 min 
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Carpool 11 min 25 min 2 sec 9 hrs 39 min 
 

Table 4. Breakout of average, standard deviation, minimum, and maximum duration per 
contact by activity category for a weekend schedule. 

Activity Mean STD Min Max 
Home 10 hrs 57 min 5 hrs 53 min 1 sec 23 hrs 45 min 
School 0 0 0 0 
Work 3 hrs 8 min 2 hrs 38 min 1 sec 17 hrs 25 min 
College 2 hrs 27 min 1 hr 57 min 5 sec 14 hrs 25 min 
Visit 1 hr 36 min 1 hr 37 min 1 sec 20 hrs 55 min 
Social 55 min 59 min 2 sec 19 hrs 15 min 
Other 49 min 1 hr 8 min 1 sec 14 hrs 30 min 
Shop 23 min 28 min 2 sec 18 hrs 45 min 
Serve 11 min 25 min 2 sec 10 hrs 9 min 
 
 
Impact of Social Network on Disease Spread 
 
In order to gain further insight into the effects of weekday and weekend contact patterns 
for the social network of southern California, we analyzed the impact of pandemic 
influenza spread. The disease model considered for this experiment is from the influenza 
model by Longini et al. (2004), as described by Stroud et al. (2004).  
 
Disease progression is characterized by 14 disease states. A susceptible individual who 
becomes infected progresses through a sequence of disease states, beginning with non-
infectious incubation followed by a pre-symptomatic infectious stage. From there, an 
individual can become symptomatic-infectious, or asymptomatic-infectious. The 
asymptomatic-infectious passes through a less-infectious stage and then recovers. The 
symptomatic-infectious splits into two levels of severity: some continue their activities, 
some stay home. Those who continue their activities pass through a less-infectious stage 
on their way to recovery. Those symptomatics who stay home split into manifestations 
with and without severe complications such as pneumonia that would require 
hospitalization. Non-circulating symptomatics will either die or progress through a 
convalescent stage on their way to recovery. The duration of each state is a stochastic 
variable, with distributions of sojourn times matched to case history distributions 
(Longini et al. 2004).  
 
For this experiment we considered two scenarios: a model in which individuals have a 
continuous schedule and another where individuals have a schedule consisting of 
weekdays, weekends, and holidays. The continuous schedule model averages weekdays 
and weekends to get a representative day (during which 5/7 of the population engage in 
their weekday activities, and 2/7 engage in their weekend activities). Also, holidays and 
summer schedules are averaged in with school year schedules. The result of this 
approximation is that on a representative day, roughly half of the students are in school, 
since about half the days in a year are school days. In contrast, the weekday/weekend 
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schedule model allows 95% of the students in school for 5 days followed by no students 
for 2 days and 84% of the working population in work activities for 5 days followed by 
35% for 2 days. We then seeded the simulation with the same 102 infected individuals for 
both scenarios. 
 
Figure 7 shows the results of pandemic influenza spread on a static and dynamic contact 
network.  Student dismissals and work closures on weekends and holidays have a big 
impact on the epidemic spread. As more school dismissals and/or workplace closures are 
added to the scenario, the social contact network thins out and thus it takes longer for the 
disease to spread around southern California. Note that the clinical attack rate drops from 
35.6% for the static network to 29.3% for the dynamic network. Accurate predictions of 
these quantities can be critical to efficiently plan allocation of limited resources.  
 
Our analysis suggest that the common measure of the transmissibility of a disease known 
as the effective reproduction number (R0), which is the average number of secondary 
cases produced by a typical infectious individual during its infectious period, is very 
different for these two approaches. Although these procedures are quantitatively similar, 
they produce completely different social dynamics, which in turn alter the spread of the 
disease. The topology of the network has a great influence in the overall behavior of the 
spread of the epidemic. Our findings show that the true mixing patterns of humans are far 
more complex than as usually represented by simple networks. Thus, our results show 
that simulation assumptions can have severe implications for modeling human disease 
spread on realistic social networks.  
 

 
 
FIGURE 7. Epidemiological predictions of pandemic influenza on two classes of 
networks: static (continuous) and dynamic (weekday/weekend) contact networks. A. The 
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current percentage of the southern California population that is symptomatic, showing the 
impact of different mixing assumptions on disease spread. B. The cumulative percentage 
of the population that has developed symptoms.  
 
CONCLUSION 
 
The structures of human contact networks play a crucial role in the transmission of many 
infectious diseases, since infection is often spread by contact between infective and 
susceptible individuals. There are different approaches used to generate social networks. 
We used a survey-based model to generate the social contact network of nearly 19 
million individuals and showed the different mixing patterns for weekdays and weekends. 
We showed that mixing assumptions could have a significant effect on predictions of 
influenza spread. In particular, we showed that the topology of the network could have 
severe implications on the reproduction number (R0), which it is typically used to 
determine whether or not an epidemic occurs and if so, its severity. 
  
We argue that models that use dynamic contact networks and realistic mixing patterns are 
better able to capture the dynamics of infectious-disease transmission than models that 
use static and homogeneous mixing assumptions. The emergent degree distribution of the 
baseline social network is in agreement with contact patterns observed in small 
convenience samples (Edmunds et al. 1999; Wallinga et al. 2006). The simulations 
suggest that dynamic contact networks can break paths of transmission and prolong the 
spread of an infectious disease.  
 
Capturing realistic mixing patterns can have a profound influence in the predictions of 
future disease spread and the resources needed to contain an outbreak.  It is clear from the 
results of this study that different assumptions can give different answers to the same 
questions. Thus, if the model predictions are being used to guide public health policy, it is 
essential to use realistic mixing assumptions. The simulations here are useful in providing 
estimates of the effects of dynamic mixing patterns for future epidemic guidelines. 
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