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Abstract. Efforts to anticipate, prevent, or control deliberate releases of bio-

logical agents are critical components of homeland security research. The lack
of data on deliberately induced epidemics naturally leads to the use of mathe-

matical models (capable of simulating realistic scenarios) in the evaluation of

policies that ensure our security. Modeling single outbreaks of a disease can
help give insight into the effectiveness of our ability to respond and control such

epidemics. We quantify the impact of delaying the response to an epidemic

in a probabilistic network model and in compartmental differential equation
models. Simulation studies are used to generate new insights on the dynamics

of deliberate releases. In these settings we can explore ways of diminishing

the impact of unexpected releases after detection. We review mathematical
models that account for public health interventions and individual behavioral

changes or incorporate the impact of “transient” populations on the spread of

deliberate releases of infectious agents like smallpox.

1. Introduction

The study of the potential impact of epidemic outbreaks that arise from de-
liberate releases of biological agents became a “hot” topic of research after the
events of September 11, 2001. Modeling techniques have been used to test the
effectiveness of preventive or control measures on “worst case” scenarios (see for
example, [27, 13, 11, 9]). In this paper, we will review recent efforts to model
the role of public health interventions in models that account for individual behav-
ioral changes or incorporate the impact of “transient” populations on the spread
of deliberate releases of agents like smallpox. Results that may be useful in the
identification of network-dependent effective intervention strategies are presented.
After briefly reviewing the concepts and definitions associated with networks, we
describe differences of epidemic patterns on small world, scale free and LLYD (Liu-
Lai-Ye-Dasgupta) networks; next we consider the potential impact of a transient
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population on disease dynamics and the potential effects that individual behavioral
changes may have on epidemic patterns in the case of smallpox.

2. Network models

One of the challenges in modeling transmission dynamics of diseases consists
in finding adequate ways to incorporate the underlying contact structures into the
model [8, 4, 43, 24, 10]. The nature of the contact network of individuals in a
given population has, in some sense, become the primary engine behind the study
of epidemics on networks and consequently, the use of particular network structures
has received considerable attention [40, 41].
The mathematical study of graphs (networks) can be traced back to the 1960’s
work of Erdős and Rényi who devised a simple algorithm to generate random net-
works [6]. The algorithm begins with a fixed number of disconnected nodes N and
then proceeds to connect (with an edge) with probability p

ER
each pair of nodes

independently. Hence, p
ER

= 0 corresponds to the case where no node is connected
to any other N − 1 nodes while p

ER
= 1 corresponds to the case where all nodes

are connected to each other (complete graph). The total number of edges when
p

ER
= 1 is

(
N
2

)
; the average number of edges is N(N−1)p

ER

2 ; and, the average degree
of a node (number of edges incident from a node) is z = (N − 1)p

ER
' Np

ER
(for

large N).

Erdős and Rény [6] showed that for large systems (large N) the probabil-
ity that a node has k edges follows the Poisson distribution P (k) = exp(−z)zk

k! ,
(k = 0, 1, ..., N). They also identified a critical or threshold value (zc) of z such
that if z > zc, then there is a connected component which is the subset of vertices
that can be reached from all other vertices in this subset via some path through
this subset of the network (the so called spanning cluster [48]). In the context of
our work on epidemics in networks, the Erdős and Rényi random graph provides
a null-model for the “comparative” study of the disease transmission on various
networks. The case p

ER
= 1 (totally connected network) would be the generator of

the networks most conducive to disease spread.

Watts and Strogatz (1998) [49] introduced a model of networks that interpo-
lates between regular (lattices) and random networks. The Watts-Strogatz (WS)
algorithm generates these networks by first constructing a one-dimensional peri-
odic ring lattice of N nodes connected to its 2K nearest neighbors (K is known
as the coordination number). Next, each edge is removed and “rewired” to a ran-
domly selected node with probability p

W S
. That is, the WS algorithm shifts one

end of the edge to a new randomly chosen node from the whole lattice with the
constraint that no two nodes are allowed to have more than one edge running be-
tween them, and no node can be connected by an edge to itself. They classified
their networks by level of randomness as measured by the disorder parameter p

W S

(from “regular” p
W S

= 0 to completely random, p
W S

= 1). In the case of regular
networks each node in the network is connected to its nearest K neighbors to the
right and K neighbors to the left. Completely random WS networks are generated
with p

W S
= 1. Watts and Strogatz showed that the introduction of a few random

connections (p
W S

' 0.01) significantly reduces the average distance between any
two nodes (characteristic path length), a property that facilitates disease spread.



MATHEMATICAL APPLICATIONS ASSOCIATED WITH THE DELIBERATE RELEASE ... 3

For small p
W S

, Watts and Strogatz showed that the average distance between nodes
grows like O(log(N)) and not as O(N). Networks constructed by the WS algorithm
have also high levels of clustering. These two characteristics (clustering and short
average distance between nodes) describe the small-world effect, a phenomenon that
has been detected in various networks including one of actors in Hollywood, the
power generator network in the western US, and the neural network of C.elegans
[49]. This “small-world effect” was documented earlier by the psychologist Stanley
Milgram using data from the letter-passing experiments that he conducted in the
1960s [36]. Newman and Watts [42] studied a slight variation of this model that
added shortcut edges with probability φ per edge in the underlying ring lattice
instead of ‘re-wiring’ the existing edges. The degree or connectivity distribution
of small-world networks depends on the disorder parameter p

W S
. In fact, when

p
W S

= 0, no re-wiring of edges occurs and hence a regular network is conserved.
As p approaches 1, the connectivity distribution converges to that obtained from
the Erdős and Rényi model.

The bell-shaped node degree distributions observed in the Erdős-Rényi, Watts-
Strogtaz, and Newman-Watts models contrast with the highly right-skewed (power-
law) degree distributions observed in a number of biological [25], social [1, 2, 3,
38, 39, 32, 12], and technological [1, 2, 29, 17] networks. Power-law degree
distributions (also known as Pareto distributions by statisticians) are given by the
parametric family:

P (k) = Ck−α

where P (k) is the probability that a randomly selected node has degree k, α is
typically between 2 and 3 (infinite variance), and C is a normalization constant
such that the integral of P (k) equals one. The degree of the nodes in a power-law
network are distributed so that most nodes have only a few connections and a few
nodes are highly connected. Barabási and Albert [1] dubbed these types of struc-
tures scale-free networks.

Liu, Lai, Ye, and Dasgupta (LLYD) [33] extended the Barabási-Albert model
for scale-free networks by allowing new connections to be made uniformly at random
to any other node in the network. Each new node connects to m existing nodes uni-
formly at random with probability p and following preferential attachment (higher
probability of connecting to higher degree nodes) with probability 1 − p. Large
LLYD networks [33] have a degree distribution P (k) ∼ k−c (Scale-Free) as p → 0
whereas P (k) ∼ e−k/m (Erdös-Rényi) as p → 1.

2.1. Epidemics on networks. Stochastic epidemic models on networks can
be used to assess the role of contact structures in the progression of epidemics
where the nodes represent individuals in the population. There is an edge between
two nodes if the individuals represented by the nodes have contact with each other
that could spread the disease. Moore and Newman [37] studied SIR (susceptible-
infected-recovered) epidemics on small world networks via site and bond percola-
tion. In the simplest setting, individuals/nodes of the network can be in one of
three epidemiological states: susceptible, infectious, and recovered (SIR). A sus-
ceptible individual in contact with i infectious individuals may become infected in
a short period of time δt with a probability given by βiδt where β is the constant
risk of infection per unit of time and δt = 1 in this discrete time model. Similarly,
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infected individuals recover with a probability given by γδt where 1
γ is the mean

period of infectivity. Recovered individuals are immune to the disease.

Pastor-Satorras and Vespignani [45] studied an SIS epidemic model where re-
covered individuals are still susceptible to future infections on scale-free networks
(generated using the BA model). They found that the disease may persist inde-
pendently of its transmissibility. An SIR process on scale-free networks leads to
similar conclusions (May and Lloyd [34]). Pastor-Satorras and Vespignani [46] and
independently Dezso and Barabási [14] concluded that immunization campaigns
targeted towards the most connected nodes or hubs increase the probability of re-
covering finite epidemic threshold behavior. However, May and Lloyd [34] showed
that in finite size networks, infections cannot spread for arbitrarily low transmis-
sion probabilities. A contrasting result has been established on highly clustered
scale-free networks [28] where a finite epidemic threshold can be recovered using
an SIS epidemic model (Egúıluz and Klemrn [16]).

We study the effect of interventions aiming at lowering the transmission rate by
reducing the susceptibility of the population (e.g., increase hygiene, use of protective
devices, vaccination) or from infectious individuals taking precautions that limit
or reduce transmission to others. Thus, we explore the impact of decay in the
transmission rate from b1 to b2 (that is, b2 < b1), a decrease that begins at the
intervention time τ . Hence, the time dependent transmission rate used in our
simulations is given by:

(2.1) β(t) =

 b1 if t < τ

b2 if t ≥ τ

where 0 < b2 < b1.
In what follows we explore the role of these interventions in reducing the final

size of epidemics in small-world and LLYD networks.
2.1.1. Epidemics without interventions. Figure 1 shows the mean final epidemic

size as a function of the transmission rate β. It is clear that for small values of
the transmission rate β, the mean final epidemic size is quite small. On the other
hand, for larger values of β, most of the nodes became infected during typical
simulated outbreaks. The simulated outbreaks corresponding to Figure 1 have an
epidemic threshold (scale-free network of finite size [34]). For homogeneous mixing
populations, the contact number (or basic reproductive number) is the average
number of secondary infections generated by an infectious case during its infectious
period in a completely susceptible population.The contact number is defined by
R0 = β/γ, as the product of the transmission rate β and the average length of
the infectious period 1/γ [23]. In homogeneous mixing populations, if R0 > 1 an
epidemic will spread. Yet in the LLYD networks the threshold condition does not
happen at R0 = 1.

Figure 2(a) shows the mean final epidemic size, as a function of the network
architecture (disorder parameter p). For each fixed value of p, the average of 50
realizations of the simulated outbreaks is depicted for R0 = β/γ = 2. Five nodes
were employed as epidemic seeds and chosen from the network uniformly at random
(dashed), and by the highest degree (solid). The epidemic seeds have no significant
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Figure 1. Mean final epidemic size as a function of the transmis-
sion rate β for scale-free networks (Barabási-Albert) of size 104.
The recovery rate was set to γ = 2/7 and, five initial infected
nodes were chosen uniformly at random. The mean (solid) of 50
realizations and 95% confidence intervals (dashed) are shown.

Figure 2. The mean final epidemic size for small-world networks
with 104 nodes and 〈k〉 = 4 with β/γ = 2 as a function of (a) the
network disorder parameter p where the dashed line is the result
of placing the five initial infectious nodes uniformly at random
versus placing them in the highest degree nodes (solid), and (b)
as a function of the transmission rate for three different levels of
disorder p=1, 0.1, 0.01 (curves from left to right).
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Figure 3. (a) The mean final epidemic size of 50 realizations
(circle-solid) and 95% confidence intervals (dashed) for LLYD net-
works with 104 nodes and m = 3, where β/γ = 2, and 5 initial
infected nodes chosen uniformly at random. (b) Ratios of variance
to mean of the connectivity distributions for the LLYD networks
used in (a).

effect on the size of outbreaks except for small values of the disorder parameter
(architectures nearly regular, p ∈ [10−3, 10−2]) .

In Figure 2(b) the mean final epidemic size is displayed as a function of the
transmission rate, for three values of the disorder parameter, p = 0.01, p = 0.1, and
p = 1. The location of the sharp epidemic threshold occurs for smaller transmission
rates as the disorder parameter increases.

In Figure 3, we show results obtained from simulations in LLYD networks. For
LLYD networks, the tuning parameter p, weights the preferential attachment and
uniform connections in the network growth model. Increments in p do not affect
the average distance between nodes of the stochastically drawn networks [30] unlike
small world networks.

The characteristic path length of LLYD networks as p → 0 remains low because
the hubs (nodes with high number of edges) act as long-range connections across
the networks. Networks with short characteristic paths have large contact numbers.
That is, network architectures as p → 0, with short characteristic paths still favor
epidemic spread. Furthermore, since the navigability is not perturbed across all
increments in p, then such optimal spread quality is propagated through the entire
family of LLYD networks. In Figure 3(a), we see that all the simulated outbreaks
(across the LLYD networks) yielded mean final epidemic sizes above 99% of the
total population. In Figure 3(b), we observe that, for those LLYD networks used in
the stochastic simulations summarized in Figure 3 (a), most networks (over 85%)
report having 10 < 〈k2〉

〈k〉 < 15.
2.1.2. Epidemics with delayed interventions. Now we investigate how inter-

vention times affect the mean final epidemic size across several network models.
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Figure 4. Mean final epidemic size as a function of the disorder
parameter p for small-world networks of size 104 nodes with 〈k〉 = 4
for various intervention times τ . The fastest intervention, τ = 3,
gives the smallest mean final epidemic size providing a reduction
of about 50% with respect to the final epidemic size without inter-
ventions.

Several simulations were carried out for specific values of the intervention time
τ ∈ {3, 5, 7, 10}. The recovery rate was set to γ = 2/7, and assumed that interven-
tions were capable of reducing transmission by 75%. Hence, the transmission rate
was set to,

(2.2) β(t) =

 4/7 if t < τ

0.25× 4/7 if t ≥ τ

In Figure 4 we show simulation results obtained on small-world networks. The
average (of 50 realizations) is plotted as a function of the networks disorder pa-
rameter p, for several intervention times τ . The average epidemic sizes undergo
a sharp transition as in our results without interventions. Figure 4 shows that
there is a gradual increase in the mean final epidemic size, as the intervention time
increases. Indeed, the fastest intervention time, τ = 3, yielded an approximate
average reduction in the final epidemic size of 50%.

For LLYD networks with interventions, the mean final epidemic size is shown
in Figure 5 as a function of the networks’ growth parameter p. Note that the effect
of interventions on the final epidemic size is not as significant as in small-world
networks. This can be explained by the presence of highly connected nodes in
LLYD networks. Figure 5 shows that the fastest intervention time, τ = 3, reduces
the average final size by 5%, compared to Figure 3(a).

3. Potential Deliberate Release in Mass Transportation Systems

Smallpox is a viral communicable disease that can be passed from person to
person by the inhalation of air droplets, from aerosols expelled from the oropharynx
of infected persons, or by direct contact with infectious individuals. Transmission
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Figure 5. The effect of intervention times on the final epidemic
size for LLYD networks of size 104 with m = 5. The reductions in
the final epidemic size due to interventions are not as significant
as for small-world networks.

is more likely whenever susceptible individuals are within a seven-foot radius from
an infectious person (long-distance airborne transmission is possible [7, 26, 50]).
Exposure, is followed by an incubation (latent/exposed) period lasting between 7
and 17 days (the mean duration is between 12 and 14 days). During the incubation
period, individuals do not show symptoms and do not feel “sick”. However, twelve
to fourteen days after infection, infected individuals become febrile, have severe
aching pains, high fever, and often must stay in bed (prodrome phase). Infected
persons are most contagious two to three days following the prodrome state, the
period of infectiousness lasts about four days. Afterwards, a rash develops over the
face that spreads to the extremities. This rash soon becomes vesicular and later,
pustular. The patient remains febrile throughout the evolution of the rash and
tends to experience considerable pain as the pustules grow and expand. Gradually,
scabs form, which leave pitted scars after separation. When death happens, it
usually occurs during the second week [21].

Smallpox and anthrax are two of the most likely biological agents to be used
in a deliberate release [47] since they are easily aerosolized and support high case
fatality rates. The earliest mathematical smallpox epidemic model is attributed to
Daniel Bernoulli [5]. His goal was to calculate the adjusted life table when smallpox
was eliminated as a cause of death [15]. Interest on homeland security issues have
resulted in the development of a series of models geared towards the exploration of
the consequences of the use of smallpox as a biological agent [20, 22, 27, 35].

Potential smallpox release targets include mass transportation systems, airport
hubs, or terminals within major metropolitan areas. Here, we use New York City
(NYC) with a population of about 8 million that includes 4.3 million subway users
during weekdays alone, to develop our mathematical model [9]. The city or met-
ropolitan area under consideration is divided into N neighborhoods and multiple
levels of mixing between individuals are introduced. The population is subdivided
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Figure 6. Diagram for the transmission of smallpox in one neigh-
borhood. The mixing between users and non users within the same
neighborhood is formulated by Bi(t) and the users among different
neighborhoods by Vi(t).

into “subway” or “mass transportation” users (SU) and non-subway or non public
transportation users (NSU). SU-individuals may have contacts with SU and NSU
individuals in their own neighborhoods as well as contacts with SU-individuals from
other neighborhoods when they share a ride in a mass transportation system. To
simplify our model, we assume that contacts between SU individuals from different
neighborhoods outside the mass-transportation system are rare (for the purpose of
disease transmission) and are ignored. We further assume that NSU-individuals
have all of the contacts that could lead to disease transmission within their own
neighborhood.

We proceed with the typical simulation by introducing a fixed number of in-
fected individuals in the public transportation system and proceed to follow the
patterns of disease spread. Newly infected individuals take the virus back to their
own neighborhoods generating infections in the NSU and SU populations. Once
the attack is recognized and smallpox is detected, mitigation policies, such as vac-
cination begin. We will use the model to quantify the impact of delays in detection
or response to the epidemic.
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We classify individuals into one of four epidemiological classes within each
neighborhood. We define Si, Ei, Ii, and Ri to be the numbers of NSU in neigh-
borhood i who are susceptible, exposed, infectious, and recovered, respectively and
Wi, Xi, Yi, and Zi the corresponding epidemiological classes for SU individuals
within the same neighborhood. The total population sizes of the two groups are
given by Qi = Si + Ei + Ii + Ri and Ti = Wi + Xi + Yi + Zi. We proceed to
define appropriate multilevel mixing structures and this, as we shall see, cannot be
done arbitrarily. Mixing patterns are a function of individual activity levels and
population size or frequency ([8, 10]). Hence, we let the constants ai and bi be
the per-capita contact rates of NSU and SU individuals of neighborhood i. Fur-
thermore, we let ωi = ρi/(σi + ρi) and τi = σi/(σi + ρi) where ρi and σi be the
rates at which the SUs get on and off the subway. Hence, ωi and τi represent the
fractions of “contact time” that a typical SU-individual spends on or off the subway,
respectively. Following the standard modeling approach for the contact structure
between various individuals, but now restricted to a particular mixing level, we
assume the proportional mixing between the population groups [4, 8, 43, 24]. The
proportional mixing “probabilities” are given in Table 1.

Mixing probability Individuals of mixing

P̃ai
= aiQi

aiQi+biτiTi
NUS of the same neighborhood i.

P̃bi
= biτiTi

aiQi+biτiTi
NSU and US of the same neighborhood i.

P̄ai = aiQi

aiQi+biτiTi
τi US and NUS of the same neighborhood i.

P̄bi = biτiTi

aiQi+biτiTi
τi US from the same neighborhood i.

P̄bi
j

= bjωjTjPN
k=1 bkωkTk

ωi US from neighborhoods i and j.

Paiaj = 0 (i 6= j) NUS of neighborhoods i and j .

Paibj
= 0 (i 6= j) NSU of neighborhood i and US of neighborhood j.

Table 1. Formulas for mixing probabilities.

As it was noted, these mixing proportions cannot be arbitrarily defined and in
fact, it can be checked that for each neighborhood the following two “conditional
probability” identities hold:

P̃ai + P̃bi = 1, i = 1, 2, ..., N.(3.1)

P̄ai
+ P̄bi

+
N∑

j=1

P̄bj
= τi + ωi = 1, i = 1, 2, ..., N.(3.2)

Figure 6 schematically describes the movement of people of different type and dif-
ferent epidemiological status for a typical neighborhood.
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The model equations first introduced in ref. [9] are:
dWi

dt
= Λi − Vi(t)− (µ + qil1)Wi,(3.3)

dXi

dt
= Vi(t)− (µ + φ + qil2) Xi,(3.4)

dYi

dt
= φXi − (µ + α + d) Yi,(3.5)

dZi

dt
= αYi − µZi + qil1Wi + qil2Xi,(3.6)

dSi

dt
= Ai −Bi(t)− (µ + qil1) Si,(3.7)

dEi

dt
= Bi(t)− (µ + φ + qil2) Ei,(3.8)

dIi

dt
= φEi − (µ + α + d) Ii,(3.9)

dRi

dt
= αIi − µRi + qil1Si + qil2Ei, i = 1, ..., N,(3.10)

where the infection rate for those who do not use mass transportation is

(3.11) Bi(t) = βiaiSi

(
P̃ai

Ii

Tiτi + Qi
+ P̃bi

Yiτi

Tiτi + Qi

)
,

and the infection rate for mass transportation users is

(3.12) Vi(t) = βibiWi

P̄ai

Ii

Tiτi + Qi
+ P̄bi

Yiτi

Tiτi + Qi
+

N∑
j=1

P̄bi
j

Yjωj

Tjωj


with

Qi(t) = Si(t) + Ei(t) + Ii(t) + Ri(t),

Ti(t) = Wi(t) + Xi(t) + Yi(t) + Zi(t).

The multilevel mixing possibilities complicate the expressions for the incidence rates
in Equation 3.12. Parameters are defined in Table 2.

The proportionate mixing ([8, 4, 43, 24]) is used. Suppose, in general, that
there are two types of individuals. The probability that a type 1 individual has a
contact with type 2 individual, given that the type 1 individual has had a contact,
is equal to the weighted proportion of type 2 individuals activity in the total pop-
ulation (that is, it is independent of type 1 individuals). Because SU individuals
do not spend their entire time in their “home” neighborhood, some modifications
are required. Here, we deal with this by assuming proportional budgeting of SU
contacts. For example, P̃ai

= aiQi

aiQi+biτiTi
computes the mixing probability between

non-subway users from the same neighborhood i. The numerator aiQi is the av-
erage activity of NSU while the denominator aiQi + biτiTi gives the average total
activities in neighborhood i, noticing that SU within neighborhood activity has to
be weighted by the additional factor τi.
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Parameters Definitions
Λi Recruitment rate of subway users
Ai Recruitment rate of non-subway users
µ Natural mortality rate
d Mortality rate due to smallpox
qi Per capita vaccination rate
l1, l2 Vaccination efficacy in susceptible and exposed populations
φ Progression rate from latent to infectious
α Recovery rate
σi The rate at which an SU leaves the subway
ρi The rate at which an SU gets in the subway
ai Average number of contacts of NSU per unit of time
bi Average number of contacts of SU per unit of time
βi Transmission rate per contact
1
ρi

The average time spent on the subway
σi

σi+ρi
The proportion of time spent off the subway (SU)

ρi

σi+ρi
The proportion of time spent on the subway (SU)

Table 2. Definitions of parameters. Here, i is the index of a neighborhood.

As it was done in ref. [9], we apply the above model to a city like New York
City. We consider a highly simplified situation such that we stratify the population
into only two “neighborhoods.” The first includes regular residents while the second
consists of temporary residents (such as tourists). Parameters that are somewhat
consistent with the situation in NYC are estimated and listed in Table 3 (The
rationale behind parameter selection can be found in [9]). The selections of τ1 = 0.6
and τ2 = 0.1 follow from the assumption that non-residents spend considerably more
time on mass transportation than residents. Residents are assumed to spend most
of their time in their own neighborhood, that is, not within the mass transportation
system.

µ d l1 l2 φ α β a1 a2 b1 b2

0.033 0.0116 0.97 0.3 0.086 0.086 0.5 5 10 15 30
Table 3. Parameter values

It is assumed that smallpox is released in the subway system and that initially
Y1(0) and Y2(0) are positive. Furthermore, we let Y1(0) = 70 and Y2(0) = 30 (that
is, there are 100 persons infected initially on the subway). The initial values of W1,
S1, W2 and S2 are chosen to satisfy W1(0)+S1(0) = 8, 000, 000 and W2(0)+S2(0) =
200, 000. The rest of initial values are set to zero, that is, I1(0) = I2(0) = X1(0) =
X2(0) = Z1(0) = Z2(0) = R1(0) = R2(0) = 0.

The impact of varying the parameters q1 and q2 and the vaccination rates for
the resident population and tourist populations are then explored. Specifically, the
impact of varying q1 and q2 on the basic reproductive number, R0, is explored
visually. Figure 7 gives a plot of R0(q1, q2) as a function of q1 and q2. The regions
where R0(q1, q2) < 1, R0(q1, q2) = 1 and R0(q1, q2) > 1 are also marked in the
same figure. We note that the vaccination rate for the resident population needs
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to be greater than 0.46 and that the impact of the nonresident population is less
important (for a city outbreak) but not irrelevant (its vaccination rate could be as
low as 0.26). Preliminary simulations have supported mass vaccination (MV) as
the “best” strategy for NYC. It was seen that the last smallpox outbreak in NYC in
1947 was caused by 8 cases, but it ended with 6 million people vaccinated (almost
complete coverage)[18]. Our initial introduction of 100 infections may or may not
be consistent with a deliberate release (we have no data). Model simulations in the
above scenario agree with R. Larsen’s recommendations, but only in the event of a
large-scale outbreak [31].

Delays in the implementation of a control policy like vaccination lead to quite
distinct scenarios. When everybody is vaccinated as soon as the first infected is
detected, then only 27 people die as a result of this release under MV (see Figure
8).

Not surprisingly, response time plays a critical role whenever the goal is to
reduce the total number of deaths. Figure 8 compares the number of cases and
total deaths in situations where there is an immediate response, a one-day delay,
a two-day delay, and a three-day delay. As can be seen from Figure 8, a one-day
delay results in 26 additional deaths and 100 more cases even if 80% of the total
population is vaccinated (q1 = q2 = 0.8) on the second day. A two-day delay in
the vaccine implementation results in (66 more deaths) with 131 additional deaths
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if vaccination were to start 3 days later. Figure 8 also shows the appearance of
a second wave about 8 days after the initial release of smallpox on the public
transportation system despite the vaccination policy.

From these simulations and as specified in [9] delays in response to an attack
(vaccination implementation) and exclusive emphasis on the resident population
may result in serious consequences (but see the next section). Hence, the develop-
ment of effective surveillance systems is critical.

4. Effects of Behavioral Changes during a Deliberate Release of
Smallpox

Concern that smallpox could be used as a biological weapon has prompted
scientists and government officials to prepare emergency response plans in the event
of a deliberate or accidental release. The smallpox response policy of the Center for
Disease Control and Prevention (CDC) includes the statement, “Any vaccination
strategy for containing a smallpox outbreak should use the ring vaccination concept.
This includes isolation of confirmed and suspected smallpox cases with tracing,
vaccination, and close surveillance of contacts to these cases as well as vaccination
of the household contacts of the contacts” [51]. However, CDC’s policy does not
explicitly take into account the impact of individuals’ decisions to change their
behavior.

In addition to the public health interventions mentioned above, changes in be-
havior in the affected population in response to a smallpox attack are expected.
For example, people could decide to wash their hands more frequently, wear pro-
tective masks, and avoid crowded places; people could stay home from work; and
businesses could close. It is surprising that the likely occurrence of these behav-
ior changes has not been included explicitly in previous computer simulations of
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Figure 8. Total deaths and cases for different response times.
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a smallpox epidemic [9, 19, 27, 35]. Without including behavioral changes, the
simulations predict unrealistic “worst” case scenarios. Recent experiences with
the SARS epidemics show that an outbreak of a deadly disease like smallpox would
generate dramatic behavioral changes [44].

To assess the impact of individual and community behavioral changes in re-
sponse to a disease with high mortality, we divide the population in two groups:
the normally active group (subscript n) and the less active group (subscript `).
We assume that individuals in the less active group reduce their average number of
contacts in response to information about smallpox cases in the community. Indi-
viduals in each activity group (j = n or `) are characterized by their epidemiological
status as: susceptibles, exposed, infectious, vaccinated, quarantined, isolated, re-
covered, or dead. The transfers between epidemiological compartments are shown
diagrammatically in Figure 9.

Figure 9. Schematic relationship between normally active and
less active individuals (j = n, `) for smallpox infection. The ar-
rows that connect the boxed groups represent movement of indi-
viduals from one group to an adjacent one. Susceptible individuals
(Sj) can become exposed (Ej), be quarantined (Q) or vaccinated
(V ). Exposed individuals can either become infectious (Ij) after
an incubation period or be vaccinated. Quarantined individuals
can either be vaccinated or isolated (W ). Infectious individuals
can be isolated or can either recover (R) or die (D). Similarly,
isolated individuals can either recover or die.
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Using the transfer diagram in Figure 9, we arrive at the following nonlinear
system of differential equations:

V̇ = αS(Sn + S`) + αE(En + E`) + αQQ,

Ṡn = −λnSn − (ϕS + αS)Sn, λn = γnβ

(
γnIn + γ`I` + γcW

γnAn + γ`A` + γcAc

)
,

Ṡ` = −λ`S` + ϕSSn − αSS`, λ` = γ`β

(
γnIn + γ`I` + γcW

γnAn + γ`A` + γcAc

)
,

Q̇ = fnλnSn + f`λ`S` − (ω + αQ)Q,

Ėn = (1− fn)λnSn − (ϕE + ω + αE)En,

Ė` = (1− f`)λ`S` + ϕEEn − (ω + αE)E`,(4.1)

İn = ωEn − (ϕI + µ + δ + θ)In,

İ` = ωE` + ϕIIn − (µ + δ + θ)I`,

Ẇ = θ(In + I`) + ωQ− (µ + δ)W,

Ṙ = δ(In + I` + W ),

Ḋ = µ(In + I` + W ).

Parameter definitions are summarized in Table 4.

Parameter Description Dimension Baseline
<unc Basic Reproductive Number 1 3

δ Recovery relative rate Day−1 (16)−1

θ Isolation relative rate Day−1 (5)−1

µ Death relative rate Day−1 0.0267
ω Incubation relative rate Day−1 (15)−1

αS Vaccination relative rate for susceptibles Day−1 0.01
αE Vaccination relative rate for exposed Day−1 0.015
αQ Vaccination relative rate for quarantined Day−1 0.0167
ϕS Sn behavior change relative rate Day−1 0.076
ϕE En behavior change relative rate Day−1 0.082
ϕI In behavior change relative rate Day−1 0.089
fn Fraction of Sn found by contact tracing 1 0.8
f` Fraction of S` found by contact tracing 1 0.8

Table 4. Parameter definitions and values that fit the cumulative
number of cases for the model.

We carried out numerical simulations and assumed that 0.001% infected indi-
viduals in a population of 1 million people enter the incubation phase after being
successfully infected during a smallpox attack. The standard intervention pro-
cedures for smallpox control are isolation, quarantine, ring vaccination, and mass
vaccination. Another factor that would affect the extent and duration of a small-
pox epidemic is the reduction in contacts of people in response to information about
the smallpox epidemic. Based on the extensive behavioral changes that occurred
during the SARS outbreaks, it is clear that similar reductions in contact rates
would also occur after the deliberate release of a biological agent such as smallpox.
In ref. [13], we used a computer simulation model to examine the effects on the
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epidemic after a smallpox attack of the standard smallpox interventions combined
with behavioral change in the population. Although the changes in behavior in
our simulations are gradual and moderate, they have a dramatic impact on the size
and length of the smallpox epidemic.

For single intervention strategies, we assumed that all interventions start 20
days later. Estimates on the transmission of smallpox indicate that 1 infected
person may infect 3 to 6 others. Therefore, the basic reproductive number was
set to 3. The baseline scenario shows that almost everyone in the population
is infected with smallpox in the absence of interventions. Figure 10 shows that
with isolation only, the epidemic decays very slowly with 296 smallpox cases at
365 days. When only quarantine is used, the total cumulative smallpox cases is
lower, at 223. Ring vaccination of quarantined people, leads to slightly fewer total
smallpox cases. With high behavioral change there are only 108 total smallpox
cases. Mass vaccination (see [13]) leads to a total of 1640 smallpox cases, which
is much higher than any other intervention.

For combined intervention strategies, we assume that all interventions start 20
days after the initially infected people enter the incubation phase. In Table 5 the
strategy of isolation combined with ring vaccination and mass vaccination is quite
effective with only 50 total smallpox cases. With high behavioral change the total
smallpox cases decreases to 40, and the epidemic is shorter. Results with medium
and low behavioral change have slightly more smallpox cases and slightly longer
epidemics.
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Figure 10. Cumulative number of smallpox cases for various sin-
gle intervention strategies. An intervention of high behavioral
change only leads to 108 total smallpox cases (+) while ring vac-
cination only leads to 191 total smallpox cases (:). A quarantine
only strategy leads to 223 total smallpox cases (−−) and isolation
only leads to 296 total smallpox cases (∗).

The numerical simulation results show that without any interventions, al-
most everyone is infected by the final day. This is not surprising, since with an
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Table 5. Estimates of cumulative total of smallpox cases for com-
bination intervention strategies.

Intervention 60 days 180 days 365 days Final daya

Isolation, RV∗ & MV∗ 45 50 50 98
Isolation, RV, MV & HBC∗ 38 40 40 81
Isolation, RV, MV & MBC∗ 40 42 42 83
Isolation, RV, MV & LBC∗ 42 44 44 86

a Days from infection of index cases until outbreak is controlled (when the number of cases

reaches 99% of the final epidemic size).
∗ Ring Vaccination (RV), Mass Vaccination (MV), High Behavioral Changes (HBC), Medium

Behavioral Changes (MBC), and Low Behavioral Changes (LBC).

uncontrolled reproduction number of 3, the initial growth is exponential. In the
simulations, behavioral changes without any other interventions were able to con-
trol the epidemic. In other words, the behavioral change intervention was more
effective than any other single intervention. All strategies in Table 5 with mass
vaccination do yield shorter outbreaks with fewer total smallpox cases than the
same strategies without mass vaccination. Hence, the addition of mass vaccination
does lead to slightly better results, but the small improvements are probably not
worth the cost of vaccinating so many people. Our simulations show that following
a smallpox release, mass vaccination is the least effective strategy, when cost and
logistic difficulties are considered.

Although the parameter values were estimated from epidemiological data, we
explored the sensitivity to various components of the model, including the effects
of changes in <0, delays in implementing intervention strategies, and the number
of initially exposed individuals (see ref. [13] for details). We found that the
simulation results are most sensitive to the uncertainty associated with <0, the
time at which intervention start, the number of index cases, and the isolation rate.

We conclude that for simulations of a smallpox outbreak to be useful in guiding
public health policy, they must consider the impact of behavioral changes. Policies
regarding recommendations on behavioral changes need planning, before they can
become part of the smallpox response plan. The qualitative conclusions reached
here are useful in providing estimates of the effects of behavioral changes.

5. Concluding Remarks

The research reported in this paper is motivated by concerns about the potential
impact of deliberate releases of biological agents and our nation’s readiness to limit
the consequences of such a disaster. Do we have the appropriate framework in
which we can explore the consequences of events for which we have no data? In
order to highlight the importance and relevance of stochastic approaches in this
context, we address questions of interest using two approaches: stochastic epidemics
in networks and deterministic “classical” epidemics. The fact that each approach
is best suited for specific questions becomes immediately evident and the need to
use both (and other approaches) is overwhelmingly clear. Deterministic epidemic
models can indeed incorporate dynamic network structures that account for changes
in population size and behavior modification in a tractable manner while network
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epidemic models are extremely useful in identifying in a probabilistic sense the role
of divergent contact structures on disease patterns–including the final epidemic size.
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