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Infectious diseases are controlled by reducing pathogen replication within or transmission between
hosts. Models can reliably evaluate alternative strategies for curtailing transmission, but only if interper-
sonal mixing is represented realistically. Compartmental modelers commonly use convex combinations
of contacts within and among groups of similarly aged individuals, respectively termed preferential and
proportionate mixing. Recently published face-to-face conversation and time-use studies suggest that
parents and children and co-workers also mix preferentially. As indirect effects arise from the
off-diagonal elements of mixing matrices, these observations are exceedingly important. Accordingly,
we refined the formula published by Jacquez et al. [19] to account for these newly-observed patterns
and estimated age-specific fractions of contacts with each preferred group. As the ages of contemporaries
need not be identical nor those of parents and children to differ by exactly the generation time, we also
estimated the variances of the Gaussian distributions with which we replaced the Kronecker delta
commonly used in theoretical studies. Our formulae reproduce observed patterns and can be used, given
contacts, to estimate probabilities of infection on contact, infection rates, and reproduction numbers. As
examples, we illustrate these calculations for influenza based on ‘‘attack rates’’ from a prospective
household study during the 1957 pandemic and for varicella based on cumulative incidence estimated
from a cross-sectional serological survey conducted from 1988–94, together with contact rates from
the several face-to-face conversation and time-use studies. Susceptibility to infection on contact
generally declines with age, but may be elevated among adolescents and adults with young children.

Published by Elsevier Inc.
1. Introduction

While pathogens spread via interpersonal contacts, transmis-
sion may be modeled within and between groups of similar indi-
viduals. Appropriate levels of aggregation depend on questions of
interest and observations available. Given suitable expressions
for heterogeneous mixing, this mean field approach yields dynamic
networks whose nodes are ever changing sub-populations defined
by age, location, or other strata. Recently, there has been an explo-
sion of models in which network structure defines social contacts
among individuals (see, e.g., [24]). Epidemic-control measures
have been evaluated using both approaches.
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Individual- and population-based models have strengths and
weaknesses. Individual-based models capture the chance nature
of interpersonal contacts and permit concurrent membership in
multiple risk groups (e.g., households and schools or workplaces).
Results are presented as frequency distributions from multiple
realizations of stochastic processes, allowing policymakers to
determine the risk of outcomes more extreme than desired under
particular conditions. In contrast, the systems of differential equa-
tions comprising population-level models can often be analyzed
for general insights. Moreover, their fewer parameters can be more
easily estimated from observations. And deficiencies are easier to
remedy by comparing predictions to observations and determining
the cause of any discrepancies.

While existing formulae represent contacts within sub-
populations (e.g., age classes) and between each such group and
all others, recently published empirical studies of encounters by
which respiratory diseases might be transmitted indicate that
parents and children and co-workers also mix preferentially. We
generalize the model of Jacquez et al. [19] to include these contacts
explicitly, permitting more realistic assessments of the risks
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associated with particular outcomes of interest to policymakers.
Discrete event/time approximations of systems of differential
equations can be simulated (see, e.g., [26]), matching the stochas-
ticity of individual-based models without losing the analytical
potential of population-based ones.

Our essay is structured as follows: we begin by deriving extant
mixing formulae from first principles, and then describe recently
published observations and introduce new formulae capable of
reproducing them. Next, we illustrate the utility of such calcula-
tions by estimating age-specific probabilities of infection on con-
tact, given ‘‘attack rates’’ or risks of infection. And finally, we
estimate the corresponding infection rates, next generation matrix,
and reproduction numbers. In our discussion, we highlight the
importance of representing inter-group mixing realistically in
models designed to evaluate possible mitigation strategies. We be-
lieve that these refinements increase the range of applications for
which population modeling is appropriate.
2. Methods

2.1. Theoretical studies

Busenberg and Castillo-Chavez [3] define cij as proportions of
contacts that members of group i have with group j, given that i
has contacts. Their criteria that mixing models should meet are:

(1) cij P 0,
(2)

Pk
j¼1cij ¼ 1; j ¼ 1; . . . ; k; and

(3) aiNicij ¼ ajNjcji,

where the Ni are group sizes and ai are the average per capita con-
tact rates of groups i = 1, . . . ,k, called activities. Common formulae
derivable from these conditions follow.

2.2. Proportionate mixing

If we write cij = figj, where fi > 0 and gj > 0, then

1 ¼
Xk

j¼1

cij ¼ fi

Xk

j¼1

gj; and f i ¼ 1
Xk

j¼1

gj

,
; 8i ¼ 1; . . . ; k:

This implies that fi is a constant, say L, whereupon cij ¼ Lgj ¼ �cj:

Substituting, aiNi�cj ¼ ajNj�ci and
Pk

j¼1aiNi�cj ¼
Pk

j¼1ajNj�ci. Rearrang-
ing, aiNi

Pk
j¼1�cj ¼ �ci

Pk
j¼1ajNj. As

Pk
j¼1�cj ¼ 1; evidently �ci ¼ aiNiPk

j¼1
ajNj

:

2.3. Preferential mixing

If a proportion ei of i-group contacts is reserved for others in
group i, called preferences, and the complement (1 � ei) is distrib-
uted among all groups, including i, via the proportionate mixing
formula above,

cij ¼ eidij þ ð1� eiÞ
ð1� ejÞajNjP
kð1� ekÞakNk

;

where dij is the Kronecker delta (i.e., dij = 1 if i = j and dij = 0 if

i – j). Because aiNiP
j
ajNj
¼ �ci; we could write cij ¼ eidij þ ð1� eiÞ

ð1�ejÞ�cjP
k
ð1�ekÞ�ck

:

Jacquez et al. [19] obtained the first of these preferential mixing
expressions by allowing the fraction of within-group contacts, e,
to vary between groups in Nold’s [25] preferred mixing model.
Hethcote’s [16] equation (4.14) is the same as hers with epsilon
and its complement reversed. Similar ideas are evident in Barbour’s
[1] modeling of schistosomiasis or the extensive HIV modeling at
the beginning of the pandemic (see, e.g., [6] and references therein).
Castillo-Chavez et al. [7], and Blythe and Castillo-Chavez [2] use the
log normal distribution and an arbitrary continuous function,
respectively, for their main diagonals.

Whatever its merits, the formula of Roberts and Tobias [27],
cij ¼ dij þ e

ai

ffiffiffiffiffiffiffiffi
aiaj
p

with e < 1 in our notation, does not satisfy
Busenberg’s and Castillo-Chavez’ [3] second condition. Consider
their four-group example (but omitting the reference for general-
ity) when i = 2,X

j

c2j ¼
1
a2

e
ffiffiffiffiffiffiffiffiffiffi
a2a1
p

þ a2 þ e
ffiffiffiffiffiffiffiffiffiffi
a2a3
p

þ e
ffiffiffiffiffiffiffiffiffiffi
a2a4
p� �

¼ e
ffiffiffiffiffi
a1
pffiffiffiffiffi

a2
p þ 1þ e

ffiffiffiffiffi
a3
pffiffiffiffiffi

a2
p þ e

ffiffiffiffiffi
a4
pffiffiffiffiffi

a2
p ;

which clearly exceeds 1 unless e ¼ 0; whereupon there would be no
off-diagonal contacts.

2.4. Empirical studies

While the formula of Jacquez et al. [19] captures the most strik-
ing feature of age-specific mixing, the activity and preference for
contemporaries of older children and adolescents relative to others
(results not shown), it does not capture two patterns apparent in
recent studies of face-to-face conversations [28,22] and periods
in proximity with others [9,31]: (1) sub- and super-diagonals rep-
resenting contacts between parents and children and vice versa,
and (2) a rectangular area bounded by the working ages within
which contacts are independent of age.

2.5. Refined formulae

Accordingly, we extend Jacquez et al.’s formula to include con-
tacts between parents and children (the sub- and super-diagonals
in Fig. 1a) and among co-workers (the square in Fig. 1b) as well as
contemporaries (the main diagonal in Fig. 1a):

cij ¼ /ij þ 1�
X4

l¼1

eli

 !
fj; f j ¼

1�
P4

l¼1elj

� �
ajNjPn

k¼1 1�
P4

l¼1elk

� �
akNk

:

When ~e2 ¼~e3 ¼~e4 ¼ 0 (where ~el represents the vector whose
components are eli), this expression reduces to the formula of
Jacquez et al. [19]. Fig. 1a illustrates contacts between parents
and children as well as among contemporaries (i.e., ~e4 ¼ 0).
Fig. 1b illustrates only contacts among co-workers (i.e., ~e1 ¼
~e2 ¼~e3 ¼ 0).

Because the sub- and super-diagonals extend over ages i P G
and i 6 L–G, respectively, where G is the generation time (i.e., aver-
age age at which women bear daughters), L is longevity (i.e., aver-
age expectation of life at birth), and L > G, we define /ij as:

/ij ¼
dije1i þ diðjþGÞe2i þ IWði; jÞ e4i

Wmax�Wmin
; i P G;

dije1i þ diðj�GÞe3i þ IWði; jÞ e4i
Wmax�Wmin

; i 6 L—G:

(

Only people whose ages equal or exceed G can have children, and
only those whose ages equal or are less than L–G can have parents,
but people aged at least G but not more than L–G can have both chil-
dren and parents. In these inequalities, we mix indices and real
numbers, but if age classes are 0–4, 5–9, . . . and G = 25 years, for
example, by i > G we mean i > class 5. Other new variables are Wmin

and Wmax, average ages at entry to and exit from the workforce
(Fig. 1b), e1i–e4i, fractions of contacts reserved for contemporaries,
children (j � G), parents (j + G), and co-workers (if Wmin P i,
j 6Wmax), respectively, and the corresponding delta or indicator
function. That is,

diðj�GÞ ¼
1 if i ¼ j� G

0 otherwise

�
and IWði; jÞ ¼

1 if i; j 2W

0 otherwise;

�
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Fig. 1. Schematic contact matrices illustrating, on the left, the main and off-diagonals representing contacts among contemporaries, between children and parents, and vice
versa, and on the right, the age range within which age-independent contacts among co-workers occur. In this figure and the next, G = 25 and L = 90 years.
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where W ¼ ½Wmin;Wmax�. Notice that the non-zero elements of ~e2

and ~e3 are related. If G = 25 years, for example, then
ai � Ni � e2i = aj � Nj � e3j, for i = 6,7, . . ., j = i � 5. Accordingly, we
estimate e3i by assuming that e2i ¼

aj�Nj�e3j

ai�Ni
. Notice also that

0 6
P4

l¼1eli < 1 and that mixing among co-workers does not depend
on age provided that i P Wmin and j 6Wmax.

While delta formulations are undeniably heuristic, contempo-
raries need not be exactly the same age [16], nor need the ages
of parents and children to differ by exactly the generation time.
Accordingly, we reformulate /ij to incorporate this more realistic
feature. Let a and a0 denote the ages of susceptible and infected
individuals, respectively. Further, let a(a) denote the average num-
ber of contacts per person aged a per unit of time and N(a) denote
the number of people aged a. The continuous analogue of cij can be
formulated as:

cða;a0Þ ¼ /ða;a0Þ þ 1�
X4

l¼1

elðaÞ
" #

f ða0Þ;

f ða0Þ ¼
1�

P4
l¼1elða0Þ

h i
aða0ÞNða0ÞR1

0 1�
P4

l¼1elðuÞ
h i

aðuÞNðuÞdu
;

where

/ða;a0Þ ¼
g1ða;a0Þe1ðaÞ þ g2ða;a0Þe2ðaÞ þ IW ða;a0Þ e4ðaÞ

Wmax�Wmin
; a P G;

g1ða;a0Þe1ðaÞ þ g3ða;a0Þe3ðaÞ þ IW ða;a0Þ e4ðaÞ
Wmax�Wmin

; a 6 L� G;

8<
:

with

g1ða;a0Þ ¼
1ffiffiffiffiffiffiffi

2p
p

r1ðaÞ
e
� ða

0�aÞ2

2½r1 ðaÞ�
2 ; g2ða;a0Þ ¼

1ffiffiffiffiffiffiffi
2p
p

r2ðaÞ
e
�½a
0�ða�GÞ�2

2½r2ðaÞ�
2 ;

and g3ða;a0Þ ¼
1ffiffiffiffiffiffiffi

2p
p

r3ðaÞ
e
�½a
0�ðaþGÞ�2

2½r3ðaÞ�
2 ;
a-Ga a+G

c(
a,
a'
)
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Fig. 2. Left to right, the panels correspond to horizontal lines on Fig. 1a. People of all a
parents, adults aged >L–G their children, and those in between both. The heights of th
through Fig. 1b anywhere between y = Wmin and y = Wmax would equal e4 between x = W
where the gkða;a0Þ (k = 1, 2, 3) are Gaussian kernels with standard
deviations rk(a) and

IWða;a0Þ ¼
1 if a;a0 2W
0 otherwise;

�
where W ¼ ½Wmin;Wmax�:

Besides the above-mentioned relationship between e2ðaÞ and e3ðaÞ;
for each a; 0 6

P4
l¼1elðaÞ < 1: Fig. 2 corresponds to the horizontal

lines on Fig. 1a.
We fit a hybrid of these discrete and continuous formulations of

our model (i.e., our discrete formulation with Gaussian kernels in-
stead of deltas) to observations from the four above-mentioned
empirical studies, all of which are discrete, using the FindMinimum
function in Mathematica™. This amounts to choosing eli and rki, as
well as G, L and the Ws, that minimize an objective function, here
the mean squared error. With one starting value for each variable,
FindMinimum uses BFGS quasi-Newton methods. When there are
constraints, FindMinimum uses interior point methods. We found it
necessary to constrain ~e1 and ~rk lest the main diagonal dominate,
and fixed G, L, and the Ws after convergence. We ensured that solu-
tions were robust by using different initial conditions for simple mod-
els and solutions of simpler models (e.g., with off-diagonals identical,
without contacts among co-workers, . . .) for more complex ones.

2.6. Applications

Here we use ‘‘attack rates’’ and risks of infection, information
typically available for transmission modeling, to derive probabili-
ties of infection on contact, infection rates and reproduction num-
bers for two respiratory diseases. For purposes of illustration, we
use the above-mentioned empirical contact matrices. Should their
age classes not correspond to or include those in one’s transmis-
sion model, our mixing model could be used instead.
aa a+G a-G

e (a)
0 50 60 70 80

Age (a)
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c(
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)

0.2
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ges contact contemporaries preferentially, but children aged <G also contact their
e Gaussian curves are determined by e(a) and their widths by r(a). A similar line
min and x = Wmax, but be 0 otherwise.
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Influenza pandemics occur when recombination results in novel
strains against which there is little or no population immunity
[12], at least among children, so we can calculate the risks of infec-
tion ki ¼ � lnð1� yiÞ; where yi are commonly called ‘‘attack rates.’’
We use those from a prospective household transmission study
during the 1957 pandemic [5]. The second equation in the classic
‘‘Susceptible, Infected, and Removed’’ model, for example, is
I0i ¼ kiSi � cIi; where ki ¼ aibi

Pn
j¼1cijyj; and c is the recovery rate,
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Fig. 3. Interpolating functions fitted to geometric means of corresponding row- and colu
the left are, top to bottom, the observations of Wallinga et al. [28], Mossong et al. [22],
Si, Ii, and Ri are the numbers susceptible, infected, and removed,
respectively, and Ni = Si + Ii + Ri. We solve for the endemic equilib-
rium, rearrange and divide both sides by Ni, obtaining Ii

Ni
¼ ki

c �
Si
Ni
:

As Si/Ni � 1 during pandemics, whereupon yi = ki/c, we calculate
the bi given the ai and cij from the above-mentioned empirical
studies (i.e., ai ¼

P
jCij; cij ¼ Cij=ai).

Varicella-zoster virus is relatively stable, so increasing propor-
tions by age are immune. We fit Farrington’s [13] model,
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Zagheni et al. [31], and Del Valle et al. [9], respectively.
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FðaÞ ¼ 1� e�
R a

0
kðuÞdu

; where kðaÞ ¼ ðaa� cÞe�ba þ d; to proportions
of sera with protective antibody titers (see [23]) collected during
the third National Health and Nutrition Survey (http://www.
cdc.gov/nchs/nhanes/nh3data.htm), 1988–94, using the FindFit
function in Mathematica™. FindFit uses singular value decomposi-
tion and the Levenberg–Marquardt method for linear and nonlin-
ear least-squares, respectively, and the FindMinimum methods
described above otherwise. As the probability of remaining
susceptible, PSðaÞ ¼ e�

R a

0
kðuÞdu

; its negative derivative, �P0SðaÞ ¼
kðaÞe�

R a

0
kðuÞdu is the probability density function of first infection or

‘‘attack rate.’’ In this case, we calculate the bi via the definition of ki.
Given these bi, we can write aibicij = bij, the rates of effective

contact between members of groups i and j (alternatively, infection
of susceptible members of group i by infectious members of group
j) that are required for transmission modeling. Noting that the bij/c
are elements of the next-generation matrix, whose largest eigen-
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+
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Fig. 4. ‘‘Attack rates’’ from a prospective household study during the 1957
pandemic [5] and the fitted regression equation, Pr(a) = exp[�1.13 + 0.12a �
0.007a2 + 0.0001a3� 8� 10�07a4]/(1 + exp[�1.13 + 0.12a� 0.007a2 + 0.0001a3� 8�
10�07a4]), where a = age in years.
value is the basic or intrinsic reproduction number [10], we can
also calculate R0.
3. Results

The observed contact matrices are asymmetric, presumably be-
cause persons contacted need not also have participated in these
studies (i.e., study populations were not closed). As this violates
the third condition of Busenberg and Castillo-Chavez [3], we re-
placed reported elements by the geometric means of those from
the corresponding rows and columns before estimating the e’s
and r’s. Hsu Schmitz and Castillo-Chavez [18] describe circum-
stances under which the contributions of people not surveyed
may be estimated.

Fig. 3a–d illustrate observations thus adjusted from these re-
cent empirical studies (on the left) and our fitted models (on the
right). The observed Cij = aicij, together with influenza ‘‘attack rates’’
(Fig. 4), yield probabilities of infection on contact bi (Fig. 5a–d).
Using proportions protected and risks of infection derived from
the cross-sectional survey of antibodies to varicella instead, the
calculated bi are similar.

Together with 1/c of 3.8 days [8], these yield R0 � 3.9 for influ-
enza. We assume a 1-day latent period, but Carrat et al. [4] report
viral shedding from healthy volunteers beginning the first day
post-challenge and continuing for 4.8 days. People with varicella
may be infectious from before lesions appear until scabs form,
typically 6–7 days [17], for which R0 � 12.6.
4. Discussion

Patterns apparent in recently published studies of face-to-face
conversations and periods in proximity with others motivated us
to elaborate the preferential mixing model of Jacquez et al. [19]
to include contacts between parents and children and among co-
workers as well as contemporaries. Unlike mixing among contem-
poraries, that between parents and children and among co-workers
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tive contact, ordered left to right and top to bottom as in Fig. 3. Patterns are similar
sual conversations [22], daily periods (minutes) with others [31], and numbers of
s [9].

http://www.cdc.gov/nchs/nhanes/nh3data.htm
http://www.cdc.gov/nchs/nhanes/nh3data.htm


6 J. Glasser et al. / Mathematical Biosciences 235 (2012) 1–7
involves off-diagonal matrix elements. In cross-classified popula-
tion models, the main diagonal is responsible for direct effects;
other matrix elements are responsible for indirect ones. Thus,
modelers using extant formulae, in which mixing between groups
is proportional to their respective contacts, may have underesti-
mated indirect effects.

Suppose that one wished to assess the impact of vaccinating
young parents on pertussis among infants. Immunity-modified dis-
ease can be quite mild, but that among infants lacking maternal
antibodies typically is severe and occasionally even fatal. Mothers
with prolonged cough illnesses may not be very infectious, but
mother–infant contacts are particularly intimate. Which mixing
formula should one use? What about the impact of vaccinating
older children against influenza on mortality among elderly adults,
who occasionally die of pneumonia, which may complicate influ-
enza? These groups are no more connected than any others in
the existing formulation, but infants and young adults are directly
connected in ours. And children and elderly adults are connected
via their parents and children, respectively.

Delta formulations are convenient mathematically, but do not
allow the age range of one’s contemporaries to vary as one ages
(e.g., the range narrows perceptively among adolescents), much
less differences between the age ranges of one’s contemporaries
and one’s parents or children. By virtue of secular patterns in child-
bearing, moreover, the age ranges of parents and children may
change with age. But the Gaussian formulation allows such varia-
tion, reproducing the essential features of these observations (cf.
Fig. 3a–d), and can inform – given constant or age-specific suscep-
tibilities to infection on contact – infection rates for transmission
modeling. Truncating the Gaussian, or using the lognormal or gam-
ma distributions would ensure that ages were positive, but not that
a 6 L. Infants’ contemporaries have such a narrow age range and
persons aged a > L are so few that such complications would be
an unwarranted distraction. Applications of continuous distribu-
tions to biological phenomena require common sense.

The observed mixing matrices are qualitatively similar
(Fig. 3a–d left), but differ quantitatively. In particular, the sub-
and super-diagonals from both time-use studies exceed those
from both studies of face-to-face conversations. While people
certainly can share spaces without conversing, careful analysis
of similarities and differences between these and other encoun-
ters by which respiratory diseases might be transmitted would
be illuminating. And, if protocols permitted comparison of con-
tact patterns, as in the European countries studied by Mossong
et al. [22], differences among societies could increase our under-
standing of the manner in which social structure mediates
infectious disease transmission.

By using published observations in this manner, we have side-
stepped the exceedingly important issue of what exactly consti-
tutes a contact [11]. In our defense, the authors of these
empirical studies were thoughtful people who aimed to illuminate
a general phenomenon whose details may nonetheless differ from
one respiratory disease to another. Other infectious diseases are
transmitted via fomites or sexual relations.

Authors of two of these studies ‘‘weighted’’ contacts by duration
or intimacy. The observations of Del Valle et al. [9] are Pij =
1 � exp(�rTij), where r is the mean number of transmissions per
hour of contact between fully infectious and susceptible people
(the authors assumed 0.2) and Tij are mean contact durations (in
hours) per day (Fig. 3d). Similarly, Mossong et al. [22] reported
all daily conversations and ones involving physical contact
(Fig. 3b), so casual conversations can be obtained by difference.
While contacts among persons of working age are more common
among casual than intimate conversations (this is more apparent
in contour plots), contacts among contemporaries predominate
in both.
Observations from the earlier Dutch study [28] are average
weekly conversations and from the other time-use study, they
are average daily periods (in minutes) sharing spaces [31]. Given
proportions with protective antibodies, probabilities of infection
are qualitatively similar. Except for the study by Zagheni et al.
[31], susceptibility to influenza generally is highest among children
and declines with age. In several studies, susceptibility increases
transiently when adults could be involved in childcare (i.e., young
adults and their parents, the young children’s grandparents). Sus-
ceptibility to varicella is highest among children too, but increases
again among older adults in the time-use studies.

We have also estimated bj alone and both bi and bj simulta-
neously for several respiratory diseases, where members of group
i are susceptible and those of group j infectious. These alternative
formulations are ki ¼ ai

P
jcijbjyj and ki ¼aibi

P
jcijbjyj; where yj ¼

Ij=Nj: Somewhat surprisingly, our estimates of bi are more coherent
or intelligible than those of bj. Using these varicella observations,
for example, bj increases irregularly with age (results not shown).
That is, susceptibility seems to vary more with age than infectious-
ness does. Even if other respiratory diseases proved similar in this
respect, the corresponding probabilities for infectious diseases
transmitted via fomites or sexual contact need not follow suit.

Differences between influenza and varicella presumably reflect
population immunity. We assumed that everyone was susceptible
during the 1957 influenza pandemic, but insofar as new influenza
strains evolve from earlier ones, this conventional wisdom cannot
be correct. During the 2009 pandemic, for example, older adults
had residual immunity for reasons molecular biologists have re-
cently elucidated [30]. Varicella afflicts children primarily, but
adults who escaped infection during childhood remain susceptible,
and their risk of exposure may increase during their reproductive
years. In common with many infectious diseases, varicella is more
serious among older than younger people. Our mixing formulae
will enable population modelers to faithfully reproduce such
patterns.

Our reproduction number for varicella resembles others’ (e.g.,
[29] obtain 3–12 depending on mixing), but our estimate for influ-
enza is high, presumably because the risk of infection in house-
holds exceeds that in communities [20]. We did not consider
asymptomatic infections or residual or cross-immunity. Immunity
affects estimates directly insofar as populations at risk actually are
smaller than believed [21]. This follows from the relationship,
Ii
Ni
¼ ki

c �
Si
Ni
: Given observed ‘‘attack rates,’’ exaggeration of Si/Ni

diminishes ki/c, implying a smaller bi and thus R0. The second ef-
fect depends on the extent to which asymptomatic people are
infectious [14].

We have performed similar calculations for pertussis, based on
age-specific proportions with antibodies passively-acquired from
mothers or indicative of recent infection that decay and wane,
respectively, albeit at different rates [15].
5. Summary

Motivated by recent empirical observations of proxies for con-
tacts by which respiratory diseases might be transmitted, we
augmented the mixing model of Jacquez et al. [19] to include
preferential contacts between parents and children and among
co-workers as well as contemporaries. Hethcote [16] suggested
replacing the deltas commonly used in theoretical studies with
the Gaussian or another distribution because contemporaries need
not be exactly the same age. As similar reasoning also applies to
parents and children, we reformulated our model to include sev-
eral Gaussian kernels. We first demonstrate that our mixing model
fits the observed contact matrices, whose elements are Cij, num-
bers of conversations (or periods) that members of group i have
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(spend) with those of group j. Off-diagonal matrix elements are so-
lely responsible for indirect effects. Having thus failed to disprove
our mixing model, a hypothesis about phenomena structuring
these extraordinarily important contacts, we turn to a practical
objective. We use published or otherwise available attack rates
and forces of infection to calculate the probabilities of infection
on contact, the infection rates required for transmission modeling,
and the reproduction numbers for two vaccine-preventable dis-
eases. In these calculations, we use the empirical observations.
Should they not suffice for transmission modeling (i.e., the ob-
served age classes not match or include those modeled), our mix-
ing model could be used instead.
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