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Abstract

Genetic studies report the existence of a mutant allele D32 of CCR5 chemokine receptor gene at high

allele frequencies (�10%) in Caucasian populations. The presence of this allele is believed to provide partial

or full resistance to HIV. In this study, we look at the impact of education, temporarily effective vaccines
and therapies on the dynamics of HIV in homosexually active populations. In our model, it is assumed that

some individuals possess one or two mutant alleles (like D32 of CCR5) that prevent the successful invasion

or replication of HIV. Our model therefore differentiates by genetic and epidemiological status and nat-

urally ignores the reproduction process. Furthermore, HIV infected individuals are classified as rapid,

normal or slow progressors. In this complex setting, the basic reproductive number R0 is derived in various

situations. The separate or combined effects of therapies, education, vaccines, and genetic resistance are

analyzed. Our results support the conclusions of Hsu Schmitz that some integrated intervention strategies

are far superior to those based on a single approach. However, treatment programs may have effects which
counteract each other, as may genetic resistance.
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1. Introduction

Currently, AIDS is the fourth leading cause of death globally and the leading cause in Africa.
As of the year 1996, approximately 23 million people were HIV positive worldwide. As of 2001, 36
million people were reported to be HIV positive worldwide [1]. These data indicate an increase of
approximately 13 million new infections (over 50%) in five years. The devastating global impact of
HIV has increased research efforts to find an effective vaccine, or drugs that would stop the
progression and transmission rate of HIV. These efforts have been mildly successful since HIV
evolves resistance to drugs and mutates extremely fast. Recent genetics studies indicate a corre-
lation of mutant genes in HIV co-receptors that may provide protection against HIV. This gives
us the hope that researchers may be able to develop a drug that may mimic the resistant gene or
that gene therapy may be useful in preventing HIV. This �insertion� of a resistant gene might be
able to lower the transmission rates of HIV/AIDS, and also stop the HIV infection from pro-
gressing to AIDS (in which final stage individuals have a life expectancy of about two years [2]).

Recent genetic studies [3–7] have observed that many individuals with multiple exposure to
HIV-1 remain seronegative, while some of those infected by HIV-1 progress at rates significantly
slower or faster than the norm. Researchers have correlated these findings with some mutant
genes in HIV co-receptors. Studies found the presence of mutant alleles such as D32 and m303 of
CCR5 suggesting resistance or protection against HIV for some individuals [8–10]. It seems that
mutant alleles have somehow changed the structure of the helper T cells in such a way that it is
very difficult for the virus�s receptor to connect to it. Hence, the virus stops replicating, and
individuals show a resistance to HIV. Individuals with two mutant alleles seem to have full
protection against HIV infection. Individuals with one mutant allele seem to have partial resis-
tance and, if infected, progress more slowly than individuals without mutant alleles. For Hsu
Schmitz [11], these conclusions indicated the ‘‘existence of genetic heterogeneity with respect to
susceptibility to HIV infection and to rate of AIDS progression in general populations’’. Using
this inference, Hsu Schmitz investigated the impact of genetic heterogeneity via a deterministic
model for homosexually active populations [11,12]. Hsu Schmitz concluded that treatment and
vaccination were helpful in reducing the transmission rate, but they were not sufficiently effective
to eradicate the disease if they were implemented alone.

Vaccines in development may only give a temporary immunity to HIV/AIDS. Antiviral drugs
used in treatment, such as AZT (zidovudine), ddc (dideoxycytidine) and ddl (dideosyinosine), also
worked temporarily. These antiviral drugs block the replication of the virus. However, the virus�s
high rate of mutation eventually catches on, and drug resistance becomes important [13,14].
Moreover, vaccination and treatment are costly at both the individual and population levels.
Hence, education may play an important role in altering the course of this pandemic. Blower and
McLean [15–17] studied theoretical models of partially effective HIV vaccines and the potential
changes in risky behavior associated with a vaccination campaign, and found that the benefits
offered by an only partly effective vaccination program may be offset by rises in potentially
infectious contacts unless an education campaign accompanies it.

Following this concept and based on Hsu Schmitz�s model [12], we construct a similar model in
which a susceptible population is subject to vaccination, education and treatment. In our model,
education means counseling to have fewer partners, abstain, and/or otherwise reduce risky
behavior. Our primary goal (suggested in part by such discussions as [18]) is to investigate the
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effects of education, temporary vaccination and treatment on HIV transmission in a homosexually
active population with genetic heterogeneity.

This paper is divided into the following sections. Section 2 explains the complex model and
includes the diagram of the compartmental model which illustrates the dynamics of the popu-
lation under study. Section 3 explains in great detail the different cases for the reproductive
number, R0. Conclusions and final thoughts are in Section 4.
2. The model

Following Hsu Schmitz [12] we classify the homosexually active population into three classes of
susceptible individuals: non-resistant (S1), partially resistant (S2) and fully resistant (S3) to HIV
infection. Infected individuals are classified as rapid (I1), normal (I2) and slow (I3) progressors.
Throughout this paper, the index i refers to the non-infected groups, i.e., susceptible, vaccinated
and educated individuals, and the index j refers to infected classes capable of transmitting the
disease, i.e., infected and treated individuals. In this model we assume that AIDS patients are
sexually inactive; hence, AIDS patients do not affect the HIV transmission process (alternatively,
we can define progression as the point where AIDS patients end sexual interaction with the at-risk
population).

Also as in [12], we assume that recruitment into the sexually active population occurs at a
constant rate, p. Of this recruitment, the three susceptible groups receive the respective fixed
fractions gi (i ¼ 1; 2; 3), indicating the frequencies of relevant genotypes, where

P
i gi ¼ 1. Because

in general the frequencies of mutant alleles are lower than those of non-mutant alleles, it is
reasonable to assume that
g1 > g2 > g3; ð1Þ
that is, most individuals have no resistance, a small fraction have partial resistance, and an even
smaller fraction have complete resistance.

In order to concentrate on investigating the effects of genetic heterogeneity, we will assume
homogeneity of pairing and mixing behavior whenever possible. Because most individuals do not
know their genotypes at loci related to HIV susceptibility and/or AIDS pathogenesis, we may
assume, as in [11,12], that genetic heterogeneity does not influence pairing behavior. To simplify
our model, we further assume that disease status does not affect pairing behavior, either, as in
[11,12,15–17,19–21]. Therefore the average number of partners per unit time is given by c for all
individuals. Here we assume proportional mixing of individuals [12,22]. All individuals are subject
to the same per-capita natural removal rate, l.

The infectivity of Ij individuals is described by the per-partnership transmission rate bj ¼ bjb
(j ¼ 1; 2; 3). For the sake of simplicity, we assume b and bj are constant over incubation time as in
[15,19–21]. Since we assume that fast progressors (I1) have the highest viral load, and are therefore
most infectious, while slow progressors (I3) have the lowest viral load, and hence are least
infectious, we can relate the bj by
b1 P b2 P b3: ð2Þ
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If we use the transmission rate of I2 as reference, thus rescale b and define b2 ¼ 1, then relation (2)
implies that the multipliers
b1 P 1 and 06 b3 6 1: ð3Þ

Because of S2-individuals� partial resistance to HIV, the transmission rate bjb of any infected

partner is reduced to xbjb, where 0 < x < 1 is the factor representing the partial resistance.
Newly infected Si-individuals (i ¼ 1; 2) join the three infected groups with respective fixed

proportions fij, which, like the gi, satisfy
06 fij 6 1 and
X3
j¼1

fij ¼ 1: ð4Þ
We expect the new infecteds who have no resistance (S1) to generate a larger proportion of rapid
progressors (I1) and a smaller proportion of slow (I3) progressors than those coming from S2, that
is,
f11 > f21 and f13 < f23: ð5Þ

In fact, in Section 3 we will take f21 ¼ 0, that is, we will suppose that no partially resistant
individuals become rapid progressors.

We denote the per-capita progression rates for Ij individuals by cj (j ¼ 1; 2; 3). Since 1=cj is the
average incubation time of Ij-individuals, we must have
c1 > c2 > c3: ð6Þ

A certain proportion (pi) of newly recruited Si-individuals is assumed to enter the at-risk

population vaccinated. As in [12,15,17], we assume that the vaccines have a �take� proportion of �
(0 < � < 1), so that ½100� ð1� �Þ�% of the vaccinated individuals are effectively unvaccinated and
are as vulnerable to infection as other unvaccinated individuals. We similarly assign a vaccine
efficacy of n (0 < n < 1) and an average protection duration of 1=x units of time: the effectively
vaccinated individuals (a fraction pi� of the new recruits) of each genotype, denoted by Vi , still
have ½100� ð1� nÞ�% chance of being infected before the vaccine�s protection wears off [12,15,16].
The ranges of � and n do not include 0 and 1 because 0 implies the vaccine is useless and 1 implies
the vaccine is perfect; neither is realistic. We assume no reduction in infectivity for vaccinated
individuals who become infected. Although individuals might become more active (i.e., have more
sexual partners per unit of time) after being treated or vaccinated, in order to focus on the role of
genetic heterogeneity and for simplicity, we again assume, following [12], that neither treatment
nor vaccination changes people�s pairing behavior, so the common pairing activity c and the
proportional mixing pattern are still in effect. (This model structure does not preclude an ongoing
vaccination program: in this case, 1=x can be interpreted as the average duration of the program
before individuals drop out. A vaccination program in which no one ever drops out is the special
case in which x ¼ 0.)

Moreover, a certain number of the infected Ij-individuals (j ¼ 1; 2; 3) are assumed to be
effectively treated at a rate mj (rather than immediately upon infection as in [12]). We assume that
treatment reduces an individual�s (Tj) transmission rate from bj to abj, with 06 a < 1, and the
progression rate from cj to ycj, where 06 y < 1. The ranges of a and y exclude 1, as current
knowledge indicates treatment does reduce infectivity and rate of progression.
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To model the effects of a public education campaign, we assume that a certain number of
individuals from the susceptible class Si (i ¼ 1; 2; 3) are educated at a rate a. Individuals in the Ei

classes are those on whom education has had some effect in changing their behavior to reduce
potentially infective contacts. We denote byW the overall effectiveness of the education campaign –
that is, the factor by which the average infection rate of educated individuals is reduced, relative
to the infection rate of non-educated individuals. In this context, therefore, 0 < W < 1. Its range
does not include 0 and 1 because 0 implies that education is useless and 1 implies that education is
completely effective.

Now, let the total population be denoted by
U :¼
X3
i¼1

ðVi þ Si þ EiÞ þ
X3
j¼1

ðIj þ TjÞ: ð7Þ
Then the forces of infection for S1 and S2 individuals are
rS1 ¼ b
X3
j¼1

bjIj

 
þ a

X3
j¼1

bjTj

!,
U; ð8Þ

rS2 ¼ xrS1 ; ð9Þ
for V1- and V2-individuals are
rV1 ¼ ð1� nÞrS1 ; ð10Þ

rV2 ¼ xrV1 ¼ xð1� nÞrS1 ; ð11Þ
and for E1- and E2-individuals are
rE1
¼ ð1�WÞrS1 ; ð12Þ

rE2
¼ xrE1

¼ xð1�WÞrS1 : ð13Þ
The numbers of newly infected Si-, Vi- and Ei- individuals (i ¼ 1; 2) are now
dSi ¼ cSirSi ; ð14Þ

dVi ¼ cVirVi ; ð15Þ

dEi ¼ cEirEi : ð16Þ
These newly infected individuals enter the jth (j ¼ 1; 2; 3) infected group (Ij) at the rate
qj ¼
X2
i¼1

fijðdSi þ dVi þ dEiÞ: ð17Þ
The mathematical model is described by the following system of equations, where i ¼ 1; 2 and
j ¼ 1; 2; 3 (see also Fig. 1; Tables 1 and 2 summarize the parameters):
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Fig. 1. Diagram of the compartmental model.
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_Vi ¼ gippi�� ðlþ xÞVi � dVi ;
_V3 ¼ g3pp3�� ðlþ xÞV3;
_Si ¼ gipð1� pi�Þ þ xVi � ðlþ aÞSi � dSi ;
_S3 ¼ g3pð1� p3�Þ þ xV3 � ðlþ aÞS3;
_Ei ¼ aSi � lEi � dEi ;

_E3 ¼ aS3 � lE3;

_Ij ¼ qj � ðlþ mj þ cjÞIj;
_Tj ¼ mjIj � ðlþ ycjÞTj;

UðtÞ ¼
X3
k¼1

ðVk þ Sk þ Ek þ Ik þ TkÞ:

ð18Þ



Table 1

Estimates of some model parameters, from [12]

As in [15]:

Per-capita natural removal rate l ¼ 1=32 yr�1

Recruitment rate p ¼ 2000 yr�1

Product of per-partnership transmission rate of normal progressors and pairing activity bc ¼ 0:62 yr�1

Estimated from data in [8]:

Genotype frequencies g1 ¼ 0:75, g2 ¼ 0:23, g3 ¼ 0:02

Implied by [9]:

Reduction factor for susceptibility x ¼ 0:65

As in [11]:

Per-capita rates of progression for rapid progressors c1 ¼ 1=2 yr�1

Per-capita rates of progression for normal progressors c2 ¼ 1=8 yr�1

Per-capita rates of progression for slow progressors c3 ¼ 1=16 yr�1

Distributing fractions of infected groups for individuals without resistance f11 ¼ 0:128, f12 ¼ 0:655, f13 ¼ 0:217
Distributing fractions of infected groups for individuals with partial resistance f21 ¼ 0:063, f22 ¼ 0:605, f23 ¼ 0:332

Table 2

Parameters related to vaccination, education and treatment

Parameters related to vaccination:

pi proportion of Si-individuals who enter the population vaccinated

� proportion of vaccinated individuals in whom the vaccine �takes�
n vaccine efficacy (infection reduced by a factor of ð1� nÞ)
x inverse of average duration of vaccine protection

Parameters related to education:

a rate at which susceptibles are successfully educated

W efficacy of education (infection reduced by a factor of ð1�WÞ)

Parameters related to treatment:

mj rate at which Ij-individuals enter treatment

a treatment-induced reduction factor for infectivity

y treatment-induced reduction factor for progression to AIDS
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2.1. Global stability of disease-free equilibrium

Under certain conditions the disease-free equilibrium (DFE) Ij ¼ Tj ¼ 0 (j ¼ 1; 2; 3) is globally
stable, as the following result shows using a Lyapunov function.

Theorem 2.1. Suppose that
cbmax
j

bj
lþ cj

;
abj

lþ ycj

 !
< 1: ð19Þ
Then the disease-free equilibrium is globally stable.
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Proof. Let L ¼
P

jðIj þ TjÞ be our Lyapunov function. Certainly L ¼ 0 at the DFE only.
L0ðtÞ ¼
X3
j¼1

(
� ðlþ cjÞIj � ðlþ ycjÞTj þ

cb
U

X3
k¼1

bkðIk þ aTkÞ � ½f1jðS1 þ ð1� nÞV1

þ ð1�WÞE1Þ þ xf2jðS2 þ ð1� nÞV2 þ ð1�WÞE2Þ�
)

< cb
X3
k¼1

bkðIk

"
þ aTkÞ

#X3
j¼1

f1j
S1 þ V1 þ E1

U

�
þ xf2j

S2 þ V2 þ E2

U

�

�
X3
j¼1

ðl
�

þ cjÞIj þ ðlþ ycjÞTj
�
¼ cb

X3
k¼1

bkðIk

"
þ aTkÞ

#
S1 þ V1 þ E1

U

�
þ x

S2 þ V2 þ E2

U

�

�
X3
j¼1

ðl
�

þ cjÞIj þ ðlþ ycjÞTj
�
< cb

X3
k¼1

bkðIk

"
þ aTkÞ

#
�
X3
j¼1

ðl
�

þ cjÞIj þ ðlþ ycjÞTj
�

¼ cb
X3
j¼1

bjIj

"
�
X3
j¼1

ðlþ cjÞIj

#
þ acb

X3
j¼1

bjTj

"
�
X3
j¼1

ðlþ ycjÞTj

#

¼
X3
j¼1

ðlþ cjÞ cb
bj

lþ cj

"
� 1

#
Ij þ

X3
j¼1

ðlþ ycjÞ cb
abj

lþ ycj

"
� 1

#
Tj:
By hypothesis (19) we get L0 < 0 because each of the terms in the sum over j is negative. Therefore
the disease-free equilibrium is globally stable. h

Note that the expression
cbbj
lþcj

in the hypothesis represents the overall infection rate of an Ij
individual cbbj multiplied by the average time spent in that stage, 1=ðlþ cjÞ, in a situation where
most of the population is susceptible and there is no vaccination, education or treatment. Likewise
the expression

acbbj
lþycj

represents the overall infection rate of a Tj individual, multiplied by the

average duration in that stage, 1=ðlþ ycjÞ. If (19) holds, then these expressions are all (j ¼ 1; 2; 3)
less than 1, meaning that even in the absence of control measures the disease is doing a poor job of
reproducing itself. Under these circumstances, it is not surprising that the disease is guaranteed to
die out.

If we compare the respective reproductive measures for Ij and Tj given above, we see marked
similarities, the differences stemming from the reduced infectivity and removal rate of the treated
classes. In general one cannot say which of the two expressions is larger, because the reductions in
the two rates act counter to each other with respect to disease persistence in the population. It will
be useful to define the factor by which the removal rate is reduced,
Hj �
lþ ycj
lþ cj

; ð20Þ
the ratio of the reduced removal rate to the original removal rate. Note
Hi ¼ 1� ð1� yÞ ci
lþ ci

so ci < cj () Hi > Hj;
by assumption of (6) we have H1 < H2 < H3.
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For each j, if a < Hj, then the reduced infectivity �outweighs� the factor by which mortality is
reduced, and Tj individuals contribute less to the spread of HIV than do Ij individuals. If in fact
a < H1, then (19) reduces to
cbmax
j

bj
lþ cj

< 1:
If instead a > Hj for a given j, then the removal rate is reduced more than the infectivity for that
class, and a treated j-class individual actually contributes more to further infection than an
untreated j-class infective. In this case the treatment benefits the individual more than the pop-
ulation at large. If in fact a > H3 then (19) reduces to
cbmax
j

abj
lþ ycj

< 1:
In the following section we shall extend the analysis of HIV�s capacity to persist by comput-
ing the disease�s overall reproductive number, to see how disease control strategies may affect it.
3. The basic reproductive number

3.1. Computation of R0

As mentioned in [23] the reproductive number (R0) is the effected number of secondary cases
produced by a typical infected individual during its entire period of infectiousness in a demo-
graphically steady susceptible population. Therefore, in order to study whether HIV will invade a
population or stabilize over a given region we must investigate R0. We now compute the
reproductive number when treatment, education and vaccination are applied to the population,
following the �next-generation operator� method of [23,24]. The computation is done by linear-
izing our system (18) around the disease-free state and looking for conditions that guarantee the
growth of the three infected classes, Ij, as well as the three treated classes, Tj.

We rewrite the resulting six-dimensional system in the following form:
_X ¼ ðM�DÞX;
where
X ¼

I1
I2
I3
T1
T2
T3

2
666666664

3
777777775
; D ¼

g1 0 0 0 0 0

0 g2 0 0 0 0

0 0 g3 0 0 0

0 0 0 u1 0 0

0 0 0 0 u2 0

0 0 0 0 0 u3

2
666666664

3
777777775
;
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M ¼ cb

b1s1 s1 b3s1 ab1s1 as1 ab3s1
b1s2 s2 b3s2 ab1s2 as2 ab3s2
b1s3 s3 b3s3 ab1s3 as3 ab3s3
m1 0 0 0 0 0

0 m2 0 0 0 0

0 0 m3 0 0 0

2
666666664

3
777777775
; ð21Þ
and
s1 ¼ f11ðdS1 þ dE1
þ dV1Þ;

s2 ¼ f12ðdS1 þ dE1
þ dV1Þ þ xf22ðdS2 þ dE2

þ dV2Þ;

s3 ¼ f13ðdS1 þ dE1
þ dV1Þ þ xf23ðdS2 þ dE2

þ dV2Þ;

gj ¼ lþ mj þ cj;

uj ¼ lþ ycj:
The six eigenvalues of the matrix MD�1 are 0, 0, 0, 0, k� and kþ, which are given by
k� ¼ 1

2
R0I

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0I
þ 4a~RI � ~RT

q �
and kþ ¼ 1

2
R0I

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0I
þ 4a~RI � ~RT

q �
; ð22Þ
where
R0I ¼ c k1 f11
b1

g1

��
þ f12

b2

g2
þ f13

b3

g3

�
þ xk2 f22

b2

g2

�
þ f23

b3

g3

��
;

~RI ¼ c
k1f11b1

g1
; ðk1f12

�
þ xk2f22Þ

b2

g2
; ðk1f13 þ xk2f23Þ

b3

g3

�
;

~RT ¼ m1

u1

;
m2

u2

;
m3

u3

� �
;

ð23Þ
and
ki ¼ gi 1

��
� a
lþ a

W

�
1

�
� l
lþ x

pi�
�
þ ð1� nÞ l

lþ x
pi�

� ��
: ð24Þ
Because all elements in the expression for kþ are positive, it is clear kþ > 0. Therefore, kþ is the
dominant eigenvalue of MD�1; this is the basic reproductive number, R0 [23].

We can see from the form of (22) and (23) that the reproductive number for the model is a
combination of the secondary infections caused by the infected and treated classes. Notice that the
square root denotes the two-step process required for a treated individual to �generate� another
treated person, since when s/he infects a person, the person must become infected first before
being treated. R0I is the reproductive number in the absence of treatment, while ~RI and ~RT

represent the two stages (initial infection and entering treatment) involved in replacing a treated
individual.
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In the following sections we shall interpret more precisely the factors involved in R0.

3.2. Simple model

To facilitate the interpretation of R0 for our complex model, we first consider a homogeneous
population and a single progression rate; note that the presence of only a single genotype and
progression rate will eliminate the gi and fij and remove the remaining subscripts. By doing so we
obtain a five-dimensional model with the following reproductive number (where the subscript S
denotes �simple�):
R0S ¼
1

2

cbk
lþ mþ c

8<
: þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cbk

lþ mþ c

� �2

þ 4a
cbkm

ðlþ ycÞðlþ mþ cÞ

� �s 9=
;; ð25Þ
where
k ¼ 1

�
� a
lþ a

W

�
1

�
� l

lþ x
p�
�
þ ð1� nÞ l

lþ x
p�

� �
: ð26Þ
It is worthwhile to notice that k contains only parameters involving education and vaccination.
The two factors of the first term denote the reduction factor for education and the proportion of
non-vaccinated individuals respectively. The factors of the other term represent the reduction
factor for vaccination and the proportion of vaccinated individuals respectively. Notice that the
range of k will always be between 0 and 1, which implies that education and vaccination will
always reduce the value of R0S . (A more detailed analysis is given for the full model in the next
section.)

For convenience let
R0SI ¼
cbk

lþ mþ c
and R0ST ¼ m

lþ yc
; ð27Þ
by making these substitutions we can write R0S as follows:
R0S ¼
1

2
R0SI

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0SI ðR0SI þ 4aR0ST Þ

q �
; ð28Þ
which parallels the structure of (22). The square root in R0 represents the two-step process that a
treated person takes before s/he can actually generate another treated individual. This form has
been seen before in other models for diseases with multiple infectious stages (cf. [25,26]). We can
also observe that
R0SI < R0S < R0SI þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0SIR0ST

p
;

epidemiologically, the first inequality follows from the fact that treated individuals contribute to
infections, and the second comes from the overlap between the two �replacement� processes
(replacing I-individuals and T -individuals). An analogous statement holds for the full model (18).

We have seen above that vaccination and education always reduce the value of R0S ; however,
we have also seen that while treatment reduces an individual�s infectivity, it also prolongs the
individual�s time as an infective. Therefore, in order to analyze the effect of treatment on R0S , we
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shall take the derivative of (25) with respect to the treatment rate m, and show under what cir-
cumstances
oR0S

om
< 0:
Substituting this derivative into the above inequality yields
2a
lþ c
lþ yc

� cbk
lþ mþ c

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cbk

lþ mþ c

� �2

þ 4a
cbkm

ðlþ ycÞðlþ mþ cÞ

s
< 0;
which gives the following inequality:
a <
cbk
lþ c

lþ yc
lþ c

� �
;

which we can rewrite as
a
H

< R0S jm¼0; ð29Þ
where H � lþyc
lþc represents the factor by which treatment reduces the rate of progression to AIDS.

Hence, treatment will reduce R0S (and benefit the population at large as well as the individual)
when it reduces infectivity at least R0S jm¼0 as many times as it reduces the removal rate.

Anderson et al. [19], using a similar model in which vaccination and treatment are the same,
ongoing therapy (which is assumed to be permanent and non-preventative), derived a similar
conclusion: if a ¼ 1, then R0S jm¼0 > 1þ c

lþc must hold (their inequality 1a) in order for the
community at large, as well as individuals, to benefit from implementing a new treatment pro-
gram. (For comparison purposes, inequality (29) can be rewrittenR0S jm¼0 > 1þ ð1� yÞ c

lþc.) More
generally, they found that the condition analogous to (29) is
a < ð1
�

� yÞR0S jm¼0 þ y
�
� ð1� yÞ c

lþ c
:

Note that the condition (29) for overall effectiveness of a treatment program resembles the
condition a=Hj < 1 considered at the end of Section 2.1, under which Tj-individuals contribute less
to the spread of infection than do Ij-individuals. It is interesting to note that ifR0S jm¼0 > 1 and the
disease is endemic in the population, then condition (29) is less restrictive than a=H < 1, that is,
treatment may reduce R0S even if it reduces the removal rate more than it reduces infectivity (as
long as (29) holds). This fact may seem counterintuitive until one notices that
lim
m!1

R0S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
H
R0S jm¼0

r
; ð30Þ
that is, treatment can only reduce (or, if (29) does not hold, increase)R0S to the geometric mean of
a=H and its original value. Therefore, if a treatment program prolongs an individual�s sexually
active lifetime more than it reduces the individual�s infectivity (a=H > 1), it can never reduce R0S

below 1.
The analysis of this homogeneous population will be helpful in understanding the analysis of

R0 for the heterogeneous population, which is presented in the following sections.
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3.3. Effects of vaccination and education

If mj is set to 0 (j ¼ 1; 2; 3), which implies that no treatment is applied to the population,R0 will
simplify to the following expression, similar to R0I as given in (23):
R0 ¼ c k1 f11
b1

lþ c1

��
þ f12

b2

lþ c2
þ f13

b3

lþ c3

�
þ xk2 f22

b2

lþ c2

�
þ f23

b3

lþ c3

��
;

and the only thing that will change when either vaccination or education, or both, are applied is ki.
Let us first consider the simplest case, which is when only three susceptible classes S1, S2 and S3

and the three infected classes I1, I2 and I3 are taken into consideration (that is, in the absence of
any disease control measures). Then, ki will be denoted by
ki ¼ gi; ð31Þ

and thus R0 is given by the sum of the secondary infections caused by each of the infected classes
contained in our model.

Now, if only vaccination is applied to the population, then ki will be given by
ki ¼ gi 1

�
� n

l
lþ x

pi�
�
; ð32Þ
R0 will be reduced based on the fact that gi is being multiplied by a factor which is always less
than 1. This factor is the reduction term due to the vaccine, and depends on the efficacy and
duration of the vaccine and the proportion of people who are vaccinated.

If only education is applied to the population, then ki will take the following form:
ki ¼ gi 1

�
� a
lþ a

W

�
; ð33Þ
multiplying gi is the reduction factor due to education, which is always less than 1, regardless of
the proportion a

lþa who are educated and the efficacy W of the program – in other words, every
little bit helps (to reduce R0).

If both vaccination and education are applied to the population, then the value of ki is given by
(24). (We can see that the expression in (24) has ki < gi by considering it as a weighted average of
the expressions given in (32) and (33).) This expression implies that the joint intervention of
education and vaccination will have an effect on the basic reproductive number which is inter-
mediate between that of vaccination alone and that of education alone; however, this conclusion
is an artifact of our modeling decision to limit complexity by educating only non-vaccinated
individuals (education of vaccinated individuals would add more classes to our already-large
model), and in reality the two reduction factors should be cumulative rather than alternative. A
realistic comparison for policy purposes should also include a measure of cost for both types of
program.
3.4. Effects of treatment

When treatment is applied to the population, the basic reproductive number, denoted by R0T

with T indicating treatment, is as given in Section 3.1:
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R0T ¼ 1

2
R0I

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0I
þ 4a~RI � ~RT

q �
; ð34Þ
where
R0I ¼ c k1 f11
b1

g1

��
þ f12

b2

g2
þ f13

b3

g3

�
þ xk2 f22

b2

g2

�
þ f23

b3

g3

��
;

~RI ¼ c
k1f11b1

g1
; ðk1f12

�
þ xk2f22Þ

b2

g2
; ðk1f13 þ xk2f23Þ

b3

g3

�
;

~RT ¼ m1

u1

;
m2

u2

;
m3

u3

� �
:

Notice again that the square root appears in R0T when treatment is present due to the two-step
process required for a treated individual to generate another treated. The analysis of the previous
section with regard to the effects of vaccination and education holds in the presence of treatment:
the only difference is again in the ki, and reducing the ki reduces R0. We therefore proceed to an
analysis of treatment�s effects on R0.

To examine the effectiveness of treatment not only in the individual level, but also in the
population level to slow down the spread of the disease, we take the partial derivatives ofR0T with
respect to mi and look for conditions under which the derivatives are less than 0. For convenience,
let
F1 ¼ ck1f11b1; F2 ¼ cðk1f12 þ xk2f22Þb2; F3 ¼ cðk1f13 þ xk2f23Þb3;
so that
R0T ¼ 1

2
~RI � ð1; 1; 1Þ
h i(

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~RI � ð1; 1; 1Þ
h i2

þ 4a~RI �
m1

u1

;
m2

u2

;
m3

u3

� �s )
:

Now, taking the partial derivative of R0T with respect to m1 and setting
oR0T
om1

< 0 we obtain the
following:
oR0T

om1

< 0 () a
H1

< ~RI � 1

�
þ m1

u1

H1; 1þ
m2

u2

H1; 1þ
m3

u3

H1

�
;

which we can rewrite as
oR0T

om1

< 0 () a
H1

< ~F � 1; 1

�
þ m2

g2

H1

H2

�
� 1

�
; 1þ m3

g3

H1

H3

�
� 1

��
; ð35Þ
where
~F ¼ F1
lþ c1

;
F2

lþ c2
;

F3
lþ c3

� �
and ~F � ð1; 1; 1Þ ¼ R0T jm1¼m2¼m3¼0:



S. Del Valle et al. / Mathematical Biosciences 187 (2004) 111–133 125
We can likewise derive conditions
oR0T

om2

< 0 () a
H2

< ~F � 1

�
þ m1

g1

H2

H1

�
� 1

�
; 1; 1þ m3

g3

H2

H3

�
� 1

��
ð36Þ
and
oR0T

om3

< 0 () a
H3

< ~F � 1

�
þ m1

g1

H3

H1

�
� 1

�
; 1þ m2

g2

H3

H2

�
� 1

�
; 1

�
: ð37Þ
Since H1 < H2 < H3 < 1, we have that
1 < 1þ m1

g1

H2

H1

�
� 1

�
< 1þ m1

g1

H3

H1

�
� 1

�
;

1þ m2

g2

H1

H2

�
� 1

�
< 1 < 1þ m2

g2

H3

H2

�
� 1

�
;

1þ m3

g3

H1

H3

�
� 1

�
< 1þ m3

g3

H2

H3

�
� 1

�
< 1;
so that if we multiply (35)–(37) by H1, H2 and H3 respectively, we see that
oR0T

om1

< 0 ) oR0T

om2

< 0 ) oR0T

om3

< 0:
Therefore, the condition under which any (small) increase in treatment will reduce R0T is (35). If
currently m1 ¼ m2 ¼ m3 ¼ 0 and we wish to begin a treatment program, this condition becomes
a
H1

< ~F � ð1; 1; 1Þ ¼ R0T jm1¼m2¼m3¼0:
As treatment rates rise, (35) becomes more strict, approaching
a
H1

< ~F � 1;
H1

H2

;
H1

H3

� �
: ð38Þ
If this latter condition is met, then increasing any mj always reduces R0T .
If we make the simplifying assumption that treatment does not differentiate among types of

progressors, then we have m1 ¼ m2 ¼ m3 ¼ m, and we obtain a condition of similar form,
oR0T

om
< 0 () a

H0

< ~F � 1

�
þ m
g1

H0

H1

�
� 1

�
; 1þ m

g2

H0

H2

�
� 1

�
; 1þ m

g3

H0

H3

�
� 1

��
; ð39Þ
where H0 is an average removal rate reduction factor,
1

H0

¼
~W � 1

H1
; 1
H2
; 1
H3

� 	
~W � ð1; 1; 1Þ

;

weighted by
~W ¼ F1
g21

;
F2
g22

;
F3
g23

� �
:
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When m ¼ 0, (39) simplifies to a
H0

< R0T jm¼0. As m ! 1, (39) approaches a
H0

< ~F � H0

H1
; H0

H2
; H0

H3

� 	
. If

both conditions are met, then increasing m always reduces R0T (regardless of m).
In either case (mj distinct or identical), the interpretation of these conditions remains the same

as that of Section 3.2: a new treatment program will reduce R0T when it reduces infectivity at least
R0T jmj¼0 8j as many times as it reduces the removal rate. We should start a treatment program only
under such conditions. The only difference for the heterogeneous model is that in considering
whether to step up an existing treatment program, the condition becomes a weighted sum of the
infection classes� (j) contributions to the epidemic. (It is also true that the treatment rates enter the
conditions, but we may consider instead the limiting conditions given above, which guarantee
improvement regardless of the mj.)

It is again true in general that a treatment program which prolongs individuals� sexually active
lifespans more than it reduces their infectivity cannot be used to reduce R0 below 1; we offer as
justification the simple observation (cf. (30)) that, in the case where mj ¼ m 8j,
lim
m!1

R0T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

1

H1

;
1

H2

;
1

H3

� �
�~F

s
:

We can see from the form of (34) that treatment does not interfere with the effects of vacci-
nation or education, in the sense that the presence of a treatment program (mj > 0 for some j)
does not prevent vaccination or education from reducing R0T via the ki. (The ki do affect the
weighted sums discussed above, however, through the Fj.) Comparing the effects of treatment to
those of vaccination or education, however, is difficult analytically, and enlightening only when
we consider particular parameter values, as will be done in Section 3.6.

3.5. Effects of genetic resistance

The form of R0T also yields information on the effects of genetic resistance on the spread of the
HIV epidemic. Because genetic resistance slows progression rate as well as reduces the likelihood
of infection, there is the potential for the same counteractive effects on R0T as with treatment
programs, if the partial protection provided to S2 individuals prolongs their eventual infective
period more than it reduces their risk of infection. The complete genetic resistance provided to S3
individuals obviously benefits the population as a whole, but if slower progressors cause more
infections than faster progressors, we need to establish some conditions under which partial
genetic resistance in some proportion of the population also benefits everyone. We shall therefore
consider when the presence of partial genetic resistance reduces R0T . Also, in order to simplify the
analysis and resulting conditions, for the remainder of this section we will assume a uniform
vaccination policy pi ¼ p; similar results hold when the pi are distinct.

R0T as given is less than R0T jg1¼1 if the two components seen in (34) are reduced:
R0I < R0I jg1¼1

� 	
and a~RI � ~RT < a ~RI � ~RT jg1¼1

� 	
; ð40Þ
that is, if the average number of secondary infections caused by an infective or treated individual,
respectively, decreases when g2; g3 > 0. From (34) we see that in order for R0T to be reduced, it is
necessary that at least one of the two conditions in (40) hold, and sufficient that both of them
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hold. In order to put conditions (40) into a form which allows us to compare the two effects of
partial genetic resistance, we will define two quantities,
KI ¼
ck
P3

j¼1

bj
gj
f1j

ck
P3

j¼1

bj
gj
f2j

and KT ¼
ack

P3

j¼1

mj

gj

bj
uj
f1j

ack
P3

j¼1

mj

gj

bj
uj
f2j

: ð41Þ
KI is the ratio of the average number of infections caused by an infected S1 individual while in the I
classes to the average number of infections caused by an infected S2 individual while in the I classes.
If KI < 1, the redistribution of progression rates (the f2j) caused by partial genetic resistance
actually increases the overall number of secondary infections from untreated infectives. Similarly,
KT is the ratio of the average number of infections caused by an infected S1 individual while in the T
classes to the average number of infections caused by an infected S2 individual while in the T
classes; the factors mj=gj are the proportions of each type of infective who get treatment. If KT < 1,
the redistribution of progression rates caused by partial genetic resistance increases the number of
secondary infections from treated infectives. These definitions allow us to rewrite (40) as
x
KI

< 1þ g3
g2

and
x
KT

< 1þ g3
g2

: ð42Þ
These conditions automatically hold true if, on average, slower progressors infect fewer indi-
viduals than faster progressors. In this case, both effects of genetic resistance are beneficial to the
population as a whole. That is, if an average I3 individual causes fewer infections before removal
than an average I2 individual, and likewise for I2 with respect to I1, which we can write
ck
b3

g3
< ck

b2

g2
< ck

b1

g1
; ð43Þ
then
X3
j¼1

bj

gj
f2j ¼

b1

g1

�
� b2

g2

�
f21 þ

b2

g2

�
� b3

g3

�
ðf21 þ f22Þ þ

b3

g3

<
b1

g1

�
� b2

g2

�
f11 þ

b2

g2

�
� b3

g3

�
ðf11 þ f12Þ þ

b3

g3

¼
X3
j¼1

bj

gj
f1j;
which implies that KI > 1. (The inequality above comes from (5).) We can show a similar result in
the case that an average slow progressor causes fewer infections while in the treated class than an
average normal progressor, and likewise for normal progressors with respect to fast progressors, i.e.,
m3

g3
ack

b3

u3

<
m2

g2
ack

b2

u2

<
m1

g1
ack

b1

u1

)
X3
j¼1

mj

gj

bj

uj
f2j <

X3
j¼1

mj

gj

bj

uj
f1j ) KT > 1: ð44Þ
Under the hypotheses (43) and (44) both of the conditions in (42) clearly hold (since x < 1).
Finally, even if slower progressors do cause more infections on average than faster progressors

(KI , KT < 1), partial genetic resistance in some of the population can reduce R0T if x is sufficiently
small, or if g3 is sufficiently large relative to g2 (cf. (42)). In other words, genetic resistance acts to
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limit the spread of HIV if it prevents infections more than it prolongs infectivity. Otherwise, as can
be true with treatment, partial genetic resistance may be beneficial at the individual level but
detrimental at the population level.

3.6. Parameter analysis

We now estimate values for our model parameters in order to draw some conclusions based on
the above analysis of the reproductive number. In the discussion below, we will use parameter
values derived in [11,12] for the example of gay men in San Francisco and the CCR5-D32 allele
mutation. Here rapid progressors are defined as those with an incubation time less than 3.5 years,
slow progressors as those whose incubation time is greater than 13 years, and normal progressors
as those with intermediate incubation times. Table 1, reproduced from [12], lists these parameters
(note f21 > 0 here, so it has been incorporated intoR0). In addition, we fix values for the remaining
parameters as follows (except as noted in the figures, where two parameters at a time are varied).

The two remaining parameters inherent to the infection process are b1 and b3, the infectivity
multipliers for rapid and slow progressors, respectively, relative to the infectivity of normal pro-
gressors. Data are not currently readily available to predict infectivity based on progression rate, so
for illustrative purposes we will take b1 ¼ 4 and b3 ¼ 1=2. Likewise, no vaccine against HIV is
readily available at present, so for the sake of argument we will consider 75% vaccination
p1 ¼ p2 ¼ 0:75, a take proportion � ¼ 0:9, 95% protection (n ¼ 0:95), and a mean duration of
1=x ¼ 20 yr. Similarly, to illustrate the effects of a hypothetical public education campaign we will
take an �education rate� of a ¼ 1=32 yr�1, comparable with the removal rate l (so that in the
absence of infection about half the population would be reached before leaving the at-risk pop-
ulation), and again (to parallel vaccine efficacy) 95% effectiveness,W ¼ 0:95. (One study of two gay
populations in America [27] found a reduction in risky behavior of roughly 20–30% following an
education campaign. Using a ¼ l as above, this corresponds to a more moderate efficacy
W 2 ½0:4; 0:6�, but as discussed in the next paragraph, even this may be enough to make a differ-
ence.) Finally, of the treatment parameters there is some evidence that currently available treat-
ments may reduce the rate of progression to AIDS by as much as 50%, so we take y ¼ 1=2. There
are not, however, data readily available to indicate how much treatment reduces infectivity; for
illustration we consider likewise a 50% reduction, a ¼ 1=2. We will also consider no discrimination
of treatment rate by type of progressor, and therefore take m1 ¼ m2 ¼ m3 ¼ 1=2 yr�1 (which cor-
responds to about 75% of infectives being treated before leaving the sexually active population).

By plotting the reproductive number for the complex model as a function of a andW, we obtain
the graph shown in Fig. 2, which describes the impact of education on the spread of HIV. It can
be seen in this graph that R0 < 1 as long as a (the rate at which susceptibles go to the educated
class) is not close to 0 (approximately a > 1=20) and W (effectiveness of education) is at least 60%
effective. This means that educating even some small portion of susceptible individuals about the
dangers of HIV will have a significant effect in reducing the next generation of newly infective
persons, i.e., R0. Hence, education appears to be an effective control measure.

To see the impact of vaccination on the reproductive number, we graph R0 as a function of n
(vaccine effectiveness) and x (duration of protection against HIV). The result, in Fig. 3, shows
thatR0 < 1 only if x is close to 0 (i.e., the mean duration of protection is considerably longer than
the 20 years estimated above), and n is approaching one. That is, the program is effective only
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when the vaccine�s protection is essentially complete, and either lasts indefinitely or is renewed
regularly before it can wane. Given the limitations of vaccines currently under development and
the possibility of dropouts even for ongoing programs, these conditions may be unrealistic.
Calculations also show that for a vaccine with duration and take proportion as estimated above,
R0 remains above one even if everyone is vaccinated (pi ¼ 1) and protection is complete (n ¼ 1).
Since � ¼ 0:9 is fairly optimistic, this appears to place the onus of protection on the longevity of
the vaccine (1=x).

The graphs in Fig. 4 depict the effects of a uniform treatment program on R0. In Fig. 4(a) we
see that the effect of the uniform treatment rate m saturates quickly (for approximately m > 1=4),
and, given the estimate y ¼ 1=2, R0 < 1 for a < 0:4 or so, and almost any treatment rate. In other
words, if treatment can reduce infectivity by 60% or more, the infection may be contained.
However, Fig. 4(b) shows that this threshold for a moves with y, as described in Section 3.4: in
order for treatment to reduce R0 below one, treatment must reduce infectivity more than pro-
gression rate, by a factor here of R0jm¼0 � 1:4 (in comparison, our parameter estimates give
a=H1 ¼ 0:94 and a=H0 ¼ 0:84). This result, coupled with the analysis of Section 3.4, signals a focus
for researchers and treatment developers to study the reduction in infectivity a program affords.

Finally, we can consider the effects of partial genetic resistance in a heterogeneous population.
For these estimates, the relevant quantities defined in the previous section have values KI ¼ 1:16
and KT ¼ 1:01, suggesting that slower progressors do contribute less to infection than faster
progressors, in which case both effects of partial genetic resistance are beneficial to the population
as a whole. Note, however, that these quantities depend significantly on the values of b1 and b3,
accurate data for which is not available.

The attentive reader will have noticed that the values of R0 in all the graphs are close to 1. In
fact, for the set of parameters given above, R0 ¼ 1:13; improvement of one or more of the control
program parameters as described above is sufficient to make R0 < 1. This number, together with
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the graphs, suggests that it is possible to bring the spread of HIV under control by the joint
interventions of education, vaccination and treatment. Without any of these interventions we find
R0 ¼ 3:5, in accordance with the ranges given in [11,12]. Multiple control measures are therefore
much more likely to be effective than any single one.

It should be noted that this paper has concentrated purely on analysis of the reproductive
number, and given no consideration to the possible existence of endemic equilibria when R0 < 1,
as has been observed in some highly structured models (e.g., [28,29]). Due to the complexity of our
HIV model, we leave investigation of endemic equilibria to future work, although we note our
model lacks the cyclic mobility between classes of different vulnerabilities to infection and the
multiple stages of non-linear transition rates commonly observed in models which exhibit such
behavior.
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4. Conclusions

We have presented a novel model to incorporate genetic heterogeneity into HIV/AIDS epi-
demiology, in conjunction with three disease control measures. We have used the basic repro-
ductive number for this model to discuss the relative contributions of each feature to reducing the
spread of HIV. Our results support the conclusions of Hsu Schmitz and Blower & McLean that
some integrated intervention strategies (e.g., vaccination, education and treatment together) are
far superior to those based on a single approach. However, treatment programs or features such
as partial genetic resistance, which protect an individual, may also complicate disease control in
the population as a whole by prolonging the infective period. Blower and McLean found that a
partially effective HIV vaccination campaign could make matters worse if it created a feeling of
invulnerability among the vaccinated that led to a significant rise in risky behavior; with the
treatment program and genetic diversity modeled here, however, the complication is inherent in
the nature of the protection provided.

In order for treatment programs or partial genetic resistance to benefit the population as a
whole, they must reduce infectivity more than they prolong it. In the case of treatment, a, the
reduction factor for infectivity, must be sufficiently small compared to the Hj, the reduction
factors in the removal rates (cf. (35) and (39)), just as Anderson et al. found for a homozygous
model. Treatment programs reduce R0 if the infectivity is reduced more than the infective lifespan
is prolonged. This result emphasizes improvement of treatments over increase of treatment rates
when viewed from a disease control perspective.

As regards genetic resistance, the complete resistance to infection afforded a few individuals
naturally benefits everyone, as those are decoupled from the entire process. However, in cases
where slower progressors may actually infect more people than rapid progressors by remaining
sexually active longer, the tendency of partial genetic resistance to slow the progression rate of HIV
may benefit the individual but not the population. Genetic resistance helps lower HIV�s ability to
reproduce when it reduces (x) the risk of infection more than it prolongs (KI , KT ) the infective
period by redistributing (f2j) progression rates (cf. (42)). The parameter estimates developed in this
paper for genetic resistance and a hypothetical treatment program do suggest that both phenomena
will benefit the population as a whole, by acting to lower the reproductive number of HIV.

Our numerical analysis appears to signal a high potential for a public education campaign to
reduce the spread of HIV (throughR0) compared to a vaccination campaign under the conditions
simulated in our model. The graph in Fig. 2 suggests that effectively educating at least some small
portion of the susceptible individuals will reduce the generation of secondary infections signifi-
cantly, whereas Fig. 3 shows a shallower response (of R0) to vaccination parameters, suggesting
that a vaccine program like the one modeled would be effective only when the vaccine grants
almost complete immunity to HIV for a long period of time. However, it is important to separate
the effects of the model structure from the effects of actual campaigns: in this paper we have
studied a system in which (following McLean & Blower and Hsu Schmitz, among others) par-
ticipation in vaccination programs (whether onetime or ongoing) is determined before (or at)
entry into the at-risk population and may end at any time, whereas education is targeted to those
already susceptible, and is assumed to have permanent effects. Neither program is assumed to be
affected by incidence levels. This system corresponds most closely to a population in which both
the disease and a vaccination program are established, and a sustained public education campaign
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is introduced as an additional control measure. In such a situation, an education campaign does
appear to have high potential for disease control. However, it would also be possible to consider
control programs with other characteristics (including a model in which these two programs
switch features with each other), and our conclusions may depend on the structures we model.

At present, an education program therefore appears to be a good option in reducing the further
spread of HIV, in part because (as observed, e.g., in [18]) reliable vaccination and treatment
programs are not yet readily available, and in part because as a population-level effort it is less
costly than individual-level efforts like vaccines and treatment. With sufficient thought and cre-
ativity, a sustained, dynamic education campaign should also not suffer the same kind of
diminishing returns as the vaccination and treatment programs presently in use or envisioned
seem biologically obliged to do: the protection afforded by vaccines may wane over time, and
antiviral drugs used in treatment are not 100% effective because after some time the highly
mutable virus can still replicate even in the presence of these drugs. However, this conclusion is
not a recommendation against vaccination or treatment: we cannot ethically abandon those
already infected, or our efforts to prevent new infections. Instead, researchers must work to
continue improving the effectiveness of such biological disease control measures in reducing
infectivity, whether they are new vaccines or medical therapies trying to keep ahead of HIV�s
ability to mutate. Gene therapy, which has already proven successful in some limited experimental
cases, seems likely to develop into a major research area, so the effects of genetic resistance
investigated in this article may soon join the ranks of the other disease control measures modeled.

At present obviously R0 > 1 for the spread of HIV in populations across the world. Public
education campaigns frequently follow the outbreak of HIV in many of these populations.
Medical treatment has become available in some areas, and research continues to advance in the
search for preventative medical measures such as vaccines. The model studied in this paper
suggests that the joint intervention of all these measures may be effective in overcoming the virus�s
ability to invade a population, even when the disease spreads effectively in the absence of these
measures (e.g., R0 ¼ 3:5 for the partially hypothetical homosexual population studied).
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