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Abstract

We present a method for estimating transmission matrices that describe the mixing and the probability
of infection between age groups. Transmission matrices can be used to estimate age-dependent forces of
infection in age-structured, compartmental models for the study of infectious diseases. We analyze the social
network generated by the synthetic population of Portland and extract mixing patterns. Our results show
that the mixing within the population consists of two groups, children and adults. Children interact most
frequently with other children close to their own age, while adults interact with a wider range of age groups
and the durations of typical adult contacts are shorter than typical contacts between children. Furthermore,
the transmission matrix shows that children are more likely to acquire infection than adults.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A major determinant in understanding the spread of diseases is our lack of data on the mixing
patterns in the population. It is important to appropriately account for the formation of contacts
to accurately understand disease spread and develop control measures. Correctly accounting for
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the mixing patterns in a population may be crucial to accurately predict the path of a disease and
thus where the outbreak could be intercepted most effectively.

Mathematical models can estimate the likelihood of a disease outbreak based on the basic
reproduction number. The basic reproduction number (�0) is the average number of secondary
cases produced by a “typical” infectious individual during its infectious period (Diekmann et
al., 1990). The rate at which infectious individuals spread the disease depends on the num-
ber of adequate contacts (the contacts that will result in infection) between infecteds and
susceptibles. Several studies have shown that averaging the mixing patterns of heterogeneous
populations can cause �0 to decrease or remain unaltered (Isham and Mdley, 1996). Thus, if
we determine the mixing patterns in the population, we can obtain better estimates of �0. This
result can help modelers predict the severity of an outbreak and the best means of containing
it.

Because of the recognition that heterogeneous contact patterns govern sexually transmitted
diseases (STDs), several techniques have been developed to incorporate heterogeneous mixing in
mathematical models for STDs. However, not much effort has been channeled into incorporating
heterogeneous mixing for other infectious diseases. Numerous models have studied the effects
of different mixing functions or mixing matrices in the form of compartmental models for STDs
(Anderson et al., 1990; Blythe and Castillo-Chavez, 1989; Hyman and Stanley, 1989; Hyman and
Li, 1997; Hyman et al., 1999; Knolle, 2004). Some of the techniques developed to incorporate
non-random mixing into epidemic models include restricted mixing (Jacquez et al., 1988), propor-
tionate mixing (Hethcote and Van Ark, 1987; Nold, 1980), preferred mixing (Hethcote and Yorke,
1984), selective mixing (Koopman et al., 1989), and non-proportionate mixing (Anderson and
May, 1991). These techniques involve defining an n × n matrix, the elements of which represent
adequate contacts between individuals in age group i and age group j. However, these matrices
require knowledge of the forces of infection, the mixing structure, and the steady states of the
endemic disease. The forces of infection are usually estimated using serological data, but these
data are often not available for many diseases.

Survey studies of mixing patterns can be useful tools in understanding disease spread. Several
studies have reported data on mixing patterns from different populations and their impact on the
spread of sexually transmitted diseases (Aral et al., 1999; Ghani and Garnett, 1998; Laumann and
Youm, 1999; Youm and Laumann, 2002), however, only a limited number of studies have reported
data on mixing patterns that could lead to the transmission of airborne infections (Beutels et al.,
2006; Edmunds et al., 1997, 2006; Wallinga et al., 2006).

Edmunds et al. (1997) studied a sample of 65 individuals and estimated contact patterns
that could lead to the spread of airborne infections. They concluded that older adults mix with
themselves and all other age groups at the same rate, and that younger adults do not. They also
found that people have a different mixing pattern during the weekend than on weekdays. However,
some of the limitations of this study are the sample size, the lack of quantification of duration of
contact, and the fact that all the participants were adults, even though a great number of diseases
are transmitted by children.

A recent study by Wallinga et al. (2006) showed that school-aged children and young adults
are more likely to become infected and transmit disease to others than the rest of the population.
The also estimated age-specific transmission parameters using data from self-reported surveys.
However, this study is limited by recall bias, the lack of quantification of duration of contact, and
their definition of contact, which ignores casual contacts (i.e. people in the same room or bus).
Nevertheless, their study is a step forward towards understanding the impact of social contacts on
disease transmission.
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A review article by Wallinga et al. (1999) discussed the use of networks in developing contact
patterns and the spread of airborne infectious diseases. They noted that more studies are needed
to better understand contact patterns to predict disease spread. A commentary by Halloran (2006)
also discusses the need of more empirical studies to estimate transmission parameters for models
with complex mixing structures.

Any realistic model for the spread of infectious diseases must take into account the mechanism
of its transmission, the heterogenities of risk between individuals, the spatial and local nature of
interactions among the population, and the probability of transmission per contact (Isham and
Mdley, 1996; Grenfell and Harwood, 1997; Wallinga et al., 1999). However, the standard com-
partmental models assume homogeneously mixing populations and thus ignore many of these
important properties that are crucial for the modeling of human disease-transmission. Therefore,
while traditional compartmental models have proved to be useful in developing theoretical epi-
demiological insights, the complex nature of the mixing patterns in the population and transmission
routes could have severe implications.

Diseases are often spread through social contact, thus, contact information is a key to control-
ling an epidemic. Here we apply tools from social network epidemiology (Meyers et al., 2004;
Newman, 2002; Zaric, 2002; Read and Keeling, 2003) to extract mixing patterns that may be
responsible for the spread of disease. In social network modeling, the structure of a community is
represented by a graph consisting of nodes, representing people, and edges, representing contact
between two people. Social networks allow for more realistic representation of populations and
their social contact structure.

We use a social network generated by the synthetic population of Portland, Oregon, to determine
mixing patterns between age groups. We analyze the simulated movement of these individuals
and determine the likelihood of infection. A transmission matrix is estimated based on the mixing
patterns observed in the population. This matrix can be used in mathematical models to determine
age-dependent forces of infection.

2. Realistic social networks

Computer simulation techniques have increasingly been used to model the spread of infectious
diseases within human populations (Ackerman et al., 1984; Adams et al., 1999; Halloran et al.,
2002). One of the earliest attempts was made by Ackerman et al. (1984), who introduced a discrete-
time, stochastic model for influenza and illustrated the impact of different vaccination strategies.
Their influenza model was based on a structured population of 1000 individuals in five age groups
with subgroup mixing in families, neighborhoods, preschool play groups, schools, and total com-
munity mixing. Halloran et al. (2002) used a similar approach to develop a discrete-time, stochastic
simulation model of smallpox spread to compare the effectiveness of various intervention strate-
gies in a community of 2000 people. In contrast to Ackerman’s model, Halloran et al. (2002) used
the 2000 US Census data to obtain the average age distribution of the population and approximate
household sizes. Adams et al. (1999) developed an elaborate stochastic simulation model named
GERMS to study the spread of sexually transmitted diseases. Their model estimated in detail the
contact patterns for partnership formation and the probability of infection. However, one of the
main drawbacks of all these models is the fact that the user inputs the contact patterns and thus the
results could be biased by these inputs. EpiSimS (Epidemic Simulation System) allows the contact
patterns to emerge from the simulation and it is thus a further evolution of these pioneer attempts.

EpiSimS is a discrete event stochastic simulation model used for the spread of disease in large
urban populations (Barrett et al., 2005; Chowell et al., 2003; Del Valle et al., 2006; Eubank,
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2002; Eubank et al., 2004, 2006; Stroud et al., 2006a,b). The original EpiSimS model was based
on the city of Portland, Oregon, in which the simulated movement of more than 1.6 million
individuals was constructed. Each individual in the simulation was instantiated according to
actual demographic distributions drawn from census data, so that the synthetic population had the
correct demographics, e.g. age distribution, household statistics, population density, etc.

In EpiSimS a region is represented physically by a set of road segment locations and a set
of business locations. EpiSimS treats each road segment as two locations (one for each side of
the road) and the midpoint of each road segment is geo-located. The 2000 US Census tabulates
the population and number of households in each of 8.5 million census blocks using 100% of
the surveys. Each census block maps geographically to several road segments (typically the
four road segments that go around a city block). EpiSimS distributes accordingly the census
block residential population and number of households to these road segment locations. The
city of Portland was mapped into 181,230 locations such as households, schools, workplaces,
and shopping centers. Information on the number of actual physical locations in Portland were
obtained from the Enhanced TIGER data set.

The US Census tabulates demographic and economic characteristics at each of 200,000 Census
block groups, using a 5% sample of the surveys. Block group data are tabulated so that only
marginal distributions can be extracted (e.g. the distribution of household income). The US Census
also tabulates demographic and economic characteristics for each of 65,443 census tracts, again
using a 5% sample of the surveys, from which joint distributions can be extracted (e.g. the joint
distribution of household income and household size). A statistical procedure called iterative
proportional fitting is used to create a synthetic population that matches the marginal distributions
at the block group level, while retaining the demographic correlation structure of the Census tract
tabulations. It creates the joint distribution, matching the marginal distributions by taking samples
from the partial set of full records. The result is a set of households and individuals geographically
distributed with correct demographics, statistically indistinguishable from the real population.

For each household in the synthetic population, an appropriate activity pattern is selected from
the surveys according to a procedure called binary tree matching on the chosen demographics. For
example, the population could be split into households with income above or below $50 K/year,
split again according to those with and without children under 5, and so on. In each of these
final categories there will be a set of survey households appropriate to the synthetic household,
and one is chosen randomly. Surveys are chosen by household not individual, to insure that a
household’s activities are correctly correlated. Each individual’s schedule specifies the starting
and ending time, the type, and the location of each assigned activity. There are eight types of
activities: home, work, shopping, visiting, social recreation, passenger server (e.g. bus driver),
school, and college; plus a ninth activity designated other. Information about the time, duration,
and location of activities is obtained from the National Household Transportation Survey.

Publicly available land use data describes the number of users of a location and the type of
activity being done. Travel time between any two locations is a simple function of distance and
travel mode (i.e. car, walk, bike, etc.), from an external table of typical travel times by time of
day, or from a micro-simulation accounting for the interaction of all travelers plans through the
day. The surveys are studied to determine which demographic fields optimally classify important
characteristics, such as the total time spent per day in each type of activity.

From these three components (synthetic population based on census data, business locations
based on business directory data, and activity schedules based on the National household Trans-
portation Survey data), EpiSimS computes which individuals are together at the same location
at the same time. The number of people at various locations and at various times varies widely,
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from zero up to many thousands. Not every pair of individuals who happen to be at the same
location at the same time will be close enough to transmit disease. In EpiSimS, each location
is partitioned into one or more rooms where the various types of activities take place. Disease
transmission events can only occur between individuals that occupy the same room at the same
time. For example, a school location will be sub-divided into classrooms. The households on a
city block are represented as a single geo-located location, which is divided into separate rooms,
each representing individual households. Each individual belongs to a household, and the sublo-
cation model puts each individual in the correct room when they are at home. For some activity
categories, e.g. home or work, a person does that activity in the same room each day, with the same
other people. However, for other activity categories, such as shopping, the person is assigned to
a randomly selected room at the location designated in the schedule.

Each activity type has a room size parameter, specified in the configuration file. The room
size parameter represents the typical maximum mixing group size in activities of that type. The
room size parameter is used in combination with a partition file to calculate how many rooms
there are for each activity type at each location. The partition file is created by pre-processing the
schedule file into an hour-by-hour synopsis of how many people are engaged in each activity at
each location. The number of rooms is computed as the maximum hourly occupants at a location
for a given activity type, divided by the room size parameter for that activity type. The parameter
values used in the configuration file for this analysis are, school: 8, college: 12, shop: 3, work:
13, and social recreation: 6. Some rooms may contain individuals engaging in different activities:
a teacher is assigned to each school room, visitors are temporarily added to households, and
individuals with an activity assigned as “other” are added to random non-home rooms.

The simulation starts by creating a network represented as a bipartite graph, GPL, where P
describes people and L locations (Fig. 1). Each person and location is represented as a vertex
in the network and the edges represent movement of individuals between locations. Each edge
in GPL has different weights, which represent duration in each location. The simulation keeps

Fig. 1. Schematic representation of EpiSimS social contact network. A bipartite graph GPL with two types of vertices
representing five people and four locations. The edges connecting the people and the locations represent movement of
individuals between locations throughout the day. The thickness of the edges represents the weight or time spent at
different locations. A location is divided into rooms and each contact between two people in a room is represented by an
edge. The result is GP, a person–person social network.
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Fig. 2. Daily average number of contacts per person in age group j. The average number of contacts per person is defined
by dividing the total number of contacts made by age group j by the size of age group j.

track of every single individual on a second-by-second basis and is therefore able to determine
the contacts, including identities of those in contact, the location, the duration of the contact, and
the nature of the activity where the contact took place.

EpiSimS integrates all this information into a computer model in order to provide estimates
of physical contact patterns for large human populations. Because we are interested in human
contact patterns and their impact on the spread of infections diseases, we focus on GP, a graph
containing only people (Fig. 1). The simulation generates time dependent person–person social
contact networks based on the sequence of activities each person carries out throughout the day.

We begin by analyzing some of the properties of the social contact network, GP, generated
by the synthetic population of Portland over 1 day. The GP graph consists of 1,615,860 nodes
(e.g. people) and 13,143,900 edges (e.g. connections). The GP graph is not fully connected but
has a giant component of 1,591,010 people and an average degree of 16.52. We estimated the
average number of contacts per person in each age group (Fig. 2). In general, older adults have
fewer contacts than children and middle aged adults. The average number of contacts generated
by the synthetic population of Portland, Oregon is consistent with previous studies (Edmunds et
al., 1997; Wallinga et al., 2006). The average number of people contacted per person can give us
an estimate of how many secondary cases can potentially acquire infection from one index case.
Note that the properties of this network will most likely change in the presence of an infectious
disease due to isolation measures and changes in behavior by the affected population (Del Valle
et al., 2005).

Although the parameter values used to estimate the average number of people per room were
obtained from different data sources, there is still some uncertainty in their values. For example,
we used the average student–teacher ratio to determine the average classroom size in Portland,
Oregon. However, the student–teacher ratio varies widely across Portland and thus, you may loose
some of the heterogeneity that is present in the population. Therefore, we performed sensitivity
analysis to determine the effects of changes in the “sub-location” model on the simulation results.
Our simulation results (Robbins et al., 2006) show that the average degree (average number of
contacts per person) is sensitive to variations in size of the sub-location. That is, when the number
of people present in each room increases, the average degree increases and vice versa. However, we
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Fig. 3. Age distribution of the synthetic population for the city of Portland. The population consists of 1,615,860 individuals
of ages ranging from 0 to 90 years. The population is described by a double-hump distribution with mean of 34.37 and
median of 33.

found that the spread of the disease is most sensitive to changes in the size of work sub-locations.
This might be due to the population makeup, since over 60% of the population are between 19 and
64. We also found that the mixing structure is robust to changes in the sub-location model. That
is, there are always two blocks of mixing and the weak coupling between children and adults.

2.1. Population

EpiSimS uses a synthetic population that resembles the real population of Portland, Oregon
in the course of carrying out their daily activities over one randomly chosen day. Fig. 3 shows a
histogram of the age distribution of the population. Portland is somewhat unusual because of the
disproportionately large population of young adults, resulting in a double-hump distribution.

2.2. Daily number of contacts

A contact was defined as being present in the same sub-location (e.g. room) which is relevant for
the spread of airborne infections. Nevertheless, each contact has a weight or duration (described
in the next section), which in turns modifies the probability of transmission.

We estimated the total number of contacts between age groups, Cij , by using the GP social
contact network. The total number of contacts between age groups for the social network of
Portland is given in Fig. 4. Notice that this matrix is symmetric, so that Cij = Cji for all i and j.
That is, the number of contacts that people of age i have with people of age j is the same as the
number of contacts that people of age j have with people of age i.

We also determined the average number of contacts per day of a person in age group i with
people in age group j, by dividing the total number of contacts Cij , by the total population size
Ni in age group i. The resulting n × n matrix is defined as γij .
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Fig. 4. The total number of contacts between age groups in EpiSimS. The contact rates are defined by the elements of the
n × n matrix, Cij , where Cij represents the total number of contacts of all people of age i with people of age j per day.
Observe two blocks of mixing and a weak coupling between adults and children.

2.3. Duration of contacts

Although duration of contact plays an important role in the spread of infectious diseases, to
our knowledge, this mechanism has not been analyzed in the literature. The duration of each
contact is as important as the number of contacts. The duration is defined as the total length that
two people spent together in the same sub-location. If a person has contact with the same person
several times a day, all the contact durations of the multiple encounters are added up and the
total aggregated length makes the final contact duration. See Heesterbeek and Metz (1993) for
theoretical explanations of the effects of contact duration on epidemic spread. In the simulation,
people have an average of 16 contacts per day and Fig. 5 shows the distribution of these contact

Fig. 5. The distribution of contact duration among people in Portland, Oregon. There are many short-duration contacts
representing casual interactions. Structure related to the daily activities of the population is evident.
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Fig. 6. The distribution of the average contact duration in each of the four top-level activity categories. The average and
standard deviation for these contacts are given in Table 1.

Table 1
Breakout of average duration per contact by activity category

Activity category Average duration Standard deviation

Home 12 h 24 min 5 h 8 min
School 3 h 47 min 2 h 40 min
Work 3 h 4 min 2 h 29 min
College 2 h 8 min 1 h 37 min
Social recreation 59 min 58 min
Visiting 37 min 49 min
Other 33 min 1 h 8 min
Shopping 30 min 36 min
Passenger server 6 min 12 min

durations. There are many short-duration contacts (four contacts per day per person are less than
30 min) representing casual interactions. Structure related to the daily activities of the population
(e.g. 6 h school related activities and 8 h work shifts) is readily apparent.

Fig. 6 shows the distributions of contact durations in each of the four top-level EpiSimS activity
categories. Table 1 shows the average contact duration by activity category. The longest contacts
occur at home, with an average contact duration of over 12 h, followed by school and work (our
results are consistent with Hamermesh et al., 2005 and Aguiar and Hurst, 2006).

Given the duration of each contact, we estimated the total duration of all contacts between age
groups, Dij . Notice that this matrix is also symmetric, so that Dij = Dji for all i and j. Then, we
estimated the average duration of contact in hours that someone of age i has with someone of
age j, Tij , by dividing the total duration of all contacts by the total number of contacts. That is,
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Fig. 7. The average duration of contact per day in hours between people of age i and age j, Tij . The two most striking
features of Tij are that people interact with others of similar age and children also interact with their parents.

Tij = Dij/Cij , where Dij is the total duration of all contacts between people of age i and people
of age j, and Cij is the total number of contacts between people of age i and people of age j. The
symmetric contact matrix Tij is shown in Fig. 7.

3. Estimating the transmission matrix

Here we demonstrate how the social contact network generated by EpiSimS can be used to
estimate a transmission matrix. The force of infection λi is the relative rate at which susceptibles
of age i acquire infection. For heterogeneous mixing, the forces of infection reflect the age-related
differences in the degree of mixing and contact, within and among age groups.

Empirical evidence of age-related differences in λi have been documented for several childhood
infections by Anderson and May (1982, 1991) and Grenfell and Anderson (1985), Farrington et
al. (2001), and Shkedy et al. (2006). They estimated forces of infection as a function of age
using serological data or records of case notifications. These studies suggest that the age-related
differences in the force of infection are important factors in modeling infectious diseases. Their
results show that for human diseases the force of infection λi, tends to increase with age up to
about 5–15 years, and then to decrease in later years. Farrington et al. (2001) also showed how
to estimate the basic reproduction number using the forces of infection for different diseases
obtained from serological survey data.

The standard method used in mathematical models to take account of age-dependent mixing
patterns of the population is to define a transmission matrix or WAIFW (who acquires infection
from whom) matrix (Anderson and May, 1991; Kanaan and Farrington, 2005). The WAIFW
matrix describes how individuals mix with other age groups. The elements of the WAIFW matrix,
βij , represent the rate at which an infective of age j will infect a susceptible of age i. However,
this technique requires knowledge of the forces of infection (obtained from serological data and
often not available), the mixing structure, and the steady states of the endemic disease (Anderson
and May, 1991). Nevertheless, the pre-judgment of the mixing structure may be unrealistic, so
that the data leads to mixing matrices with negative entries. Therefore, there is a great need to
develop new methods to estimate age-dependent forces of infection.
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We use the social network of the synthetic population of Portland to estimate a transmis-
sion matrix and, consequently, age-dependent forces of infection. We assume that the population
is demographically divided into different age groups that can progress through various infec-
tion stages (Hyman et al., 1999). For this model, we consider 91 age groups and m infection
stages.

We define the force of infection λi as the rate of disease transmission from infected people
in all age groups to susceptibles in age group i. That is, λi is the sum of the rate of disease
transmission from all infection stages in all age groups for age groups 1 ≤ j ≤ 91 and infection
stages 1 ≤ k ≤ m, to the susceptible group, Si. This means that a susceptible person in age group
i can get infected by a person in any infection stage in any age group. Thus

λi =
91∑

j=1

m∑
k=1

λijk(t). (1)

where λijk is the rate of disease transmission from the infected people Ijk in infection stage k of
age group j to the susceptibles in age group i. We calculate λijk in (1) as the product of the number
of contacts per unit time that each individual in age group i has with age group j; the probability
of disease transmission per contact between an infected in stage k of age group j and a susceptible
in age group i; and the fraction of those contacts that are infected. That is

λijk =
(Number of) (Probability of) (Fraction of)

(Contacts per) (Disease Transmission) (Contacts that)

(Unit Time) (per Unit Time) (are Infected)

In terms of the EpiSimS data, we can define the force of infection λijk as the product of the
average number of contacts, γij; the probability of disease transmission, which is the product of
the susceptibility (αi) of a susceptible in age group i, the infectivity (ξjk) of an infective in stage
k of age group j, and the probability of transmission Pij based on the average duration of contacts
between age groups i and j and the fraction of contacts that are infected. That is

λijk = (γij(t)) (αiξjkPij)

(
Ijk(t)

Nj(t)

)
, (2)

where Ijk is the number of people in infection stage k of age group j and Nj is the size of age
group j. Let σ be the mean number of transmission events per hour of contact between fully
infectious and fully susceptible people. For events that occur randomly in time, the number of
occurrences in a period of time of length t obeys a Poisson probability law with parameter σt.
Thus, the probability of no occurrences in time interval t is e−σt and the probability of at least one
occurrence is 1 − e−σt . Using the mean duration Tij of contacts between a person in age group
i with people in age group j, we assume that the probability of transmission in this time interval
Tij is given by

Pij = 1 − e−σTij . (3)

We can fit this model to past epidemics to estimate the transmissibility parameter, σ. That
is, if we know �0 for a particular disease, we can estimate σ (Chowell et al., 2007). Using Eq.
(3) with σ = 0.2 and the average durations of contact per pair, Tij we obtain the probability
of transmission based on average duration of contacts for all age groups, Pij (Fig. 8). Because
of the larger average duration of contact among people of the same age, the probabilities of
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Fig. 8. Pij , probability of transmission based on duration of contacts between a susceptible in group i and an infected in
group j. Notice that there is a high probability of transmission along the diagonal for all age groups.

transmission are high along the diagonal for all age groups. Furthermore, observe a weak coupling
between middle aged adults and young individuals, possibly due to child-parent duration of
contact.

Lastly, we define βij as the rate of disease transmission between a susceptible in age i with
people in age j, which is the product of the average number of contacts, the susceptibility, the
infectivity, and the probability of disease transmission, that is, βij = γij × αi × ξjk × Pij . Using
γij , αi = 1, ξjk = 1, and Pij (Fig. 8), we estimate a transmission matrix βij (Fig. 9), for the
given social network. For simplicity, we assume in this example that all age groups are equally
susceptible (αi = 1), and that all infected individuals are equally infectious (ξjk = 1), regardless
of the infection stage or age group. The transmission matrix, βij shows the rate at which an infected
person in age group j will infect a susceptible person in age group i. The transmission matrix in

Fig. 9. Transmission matrix βij (WAIFW). Observe that children and teenagers are more likely to acquire infection than
the rest of the population.
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Table 2
Transmission matrix (WAIFW) of the daily number of adequate contacts per person between the aggregated age groups

Age 0–4 5–12 13–19 20–29 30–39 40–49 50–59 60–69 70–90

0–4 1.23 1.94 0.72 1.23 1.57 0.41 0.18 0.09 0.07
5–12 1.17 3.37 1.52 0.51 1.63 0.79 0.16 0.08 0.06

13–19 0.58 2.01 1.91 1.06 1.67 1.99 0.61 0.27 0.16
20–29 0.6 0.41 0.65 2.50 2.29 2.01 1.12 0.54 0.26
30–39 0.62 1.07 0.79 1.80 2.86 1.93 0.95 0.51 0.24
40–49 0.19 0.60 1.15 1.93 2.36 2.53 1.11 0.53 0.28
50–59 0.12 0.22 0.61 1.87 2.06 1.9 1.57 0.67 0.31
60–69 0.10 0.14 0.33 1.09 1.32 1.09 0.77 0.99 0.45
70–90 0.06 0.10 0.12 0.49 0.57 0.54 0.35 0.40 0.92

Note that the table is not symmetric because the average time a person of age i spends with a person of age j is not the
same as the time a person of age j spends with a person of age i. For example, many adults live in households without
children, but children do not live in households without adults.

Fig. 9 exhibits two blocks of mixing, young individuals (< 20 years) and adults (> 20 years).
This matrix is consistent with the prevailing opinion that the probability of disease transmission
between children is high. Adults are described as likely to acquire infection from a wider range
of age groups, mainly middle aged groups.

Moreover, we partition the population into nine categories: 1–5, 6–12, 13–18, 19–30, 31–40,
41–50, 51–60, 61–80, and 81–91, and aggregate the elements of each category using the data that
generated Fig. 9. Table 2 shows the average values for the transmission rates for the aggregated
age groups. The transmission rates represent the daily probability that an infected person of age
j will transmit the disease to a fully susceptible population.

The transmission matrix βij can be used to obtain the forces of infection needed in a mathe-
matical model with age structure. In order to estimate the force of infection for an specific disease,
one would need to estimate the susceptibilities (αi) for each age group, the infectivities (ξjk) and
the transmissibility parameter (σ) for the disease.

4. Conclusions

Contact patterns play an important role in determining the progression of epidemics. We have
introduced a method for obtaining useful information on the mixing patterns of a social contact
network, which might lead to the spread of airborne infections. We argue that mathematical
models that use contact matrices based on social networks will be better able to capture age-
specific infection patterns of infectious diseases than models that use transmission parameters
based on homogeneous mixing or ad hoc assumptions.

Estimating forces of infection is crucial when using models for specific infectious diseases.
The forces of infection determine the rate of disease transmission and are based on the age-related
differences in the degree of mixing and contacts within the population. We used the average
number of contacts and a probability distribution based on the average duration per contact to
estimate a transmission matrix. With the appropriate specification of disease-related parameters
of susceptibility and infectivity, this matrix can be used to estimate age-dependent forces of
infection for any disease.

Our results show that in general there are two main blocks of mixing within the population:
young individuals (< 20 years) and adults (> 20 years). Furthermore, we observe a weak
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coupling between children and middle aged adults, probably due to child-parent contacts. The
transmission matrix in Fig. 9 shows that school children are more likely to become infected than
the rest of the population. This may be due to long duration of contacts children have with other
children at school. In contrast, adults interact with a wider range of age groups, but their duration
of contact is shorter.

Our study is limited because the current version of EpiSimS does not stratify classrooms by
age and therefore the probability of having a contact with any age group in each school is the same
for all children. However, children attending elementary schools mix more in their classrooms
with other school children of their own age than with children of other ages. The spread of
many childhood diseases is governed by the pattern of contact among children and therefore it
is important to incorporate realistic mixing patterns. While recognizing some of the limitations
in the current EpiSimS simulation model, EpiSimS represents a potentially powerful resource in
the face of an actual outbreak.

For mathematical models of infectious diseases to be useful in guiding public health policy,
they must consider age-dependent forces of infection. Individual behavior is crucial for the spread
of infectious diseases and predicting disease spread is difficult. Therefore, new techniques such as
the one developed here are needed as alternative tools when aggregate behavior cannot be applied
to the population. The adequate-contact matrix developed is useful in providing estimates of the
age-dependent forces of infection for mathematical models. However, much more needs to be
known about the interactions between people that lead to infection before it will be possible to
accurately predict an epidemic.
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