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Abstract We use mathematical models to assess the impact of behavioral changes
in response to an emerging epidemic. Evaluating the quantitative and qualitative im-
pact of public health interventions on the spread of infectious diseases is a crucial
public health objective. The recent avian influenza (H5N1) outbreaks and the 2009
H1N1 pandemic have raised significant global concerns about the emergence of a
deadly influenza virus causing a pandemic of catastrophic proportions. Mitigation
strategies based on behavior changes are some of the only options available in the
early stages of an emerging epidemic when vaccines are unlikely to be available
and there are only limited stockpiles of antiviral medications. Mathematical mod-
els that capture these behavior changes can quantify the relative impact of different
mitigation strategies, such as closing schools, in slowing the spread of an infectious
disease. Including behavior changes in mathematical models increases complexity
and is often left out of the analysis. We present a simple differential equation model
which allows for people changing their behavior to decrease their probability of
infection. We also describe a large-scale agent-based model that can be used to an-
alyze the impact of isolation scenarios such as school closures and fear-based home
isolation during a pandemic. The agent-based model captures realistic individual-
level mixing patterns and coordinated reactive changes in human behavior in order
to better predict the transmission dynamics of an epidemic. Both models confirm
that changes in behavior can be effective in reducing the spread of disease. For ex-
ample, our model predicts that if school closures are implemented for the duration
of the pandemic, the clinical attack rate could be reduced by more than 50%. We
also verify that when interventions are stopped too soon, a second wave of infection
can occur.
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1 Introduction

Pandemics are global epidemics and are often associated with a high morbidity and
mortality burden. There have been three pandemic influenza outbreaks in the 20th
history: the Spanish flu (1918-19), the Asian flu (1957-58), and the Hong Kong flu
(1968-69) [35]. The 1918-1919 influenza pandemic (known as the Spanish flu) was
the most devastating in recent history, where at least 20 million died [33]. In the
United States, about 675,000 lives were lost to the Spanish flu with an estimated
mean case fatality rate of 2% [55]. This case fatality rate is an order of magni-
tude larger than the case fatality rates observed in seasonal flu epidemics in normal
years. Recurrent outbreaks of H5N1 around the world and the most recent pandemic
(H1N1) 2009 suggest that a deadly pandemic is eminent.

Nearly half of the world’s population resides in urban areas [53]. Air travel con-
nects these urban centers in a global network where a new influenza strain can spread
around the world in few weeks, as recently experienced with pandemic (H1N1)
2009. Influenza’s short incubation period, the lack of pharmaceutical interventions,
and its potential of spreading rapidly around the world poses a significant global
challenge to public health authorities. Mathematical models can help in meeting
this challenge, if the model includes the most significant properties of the transmis-
sion dynamics. In particular, the model most account for how people change their
behavior in response to an epidemic threat.

Evidence suggests that in the presence of a deadly disease and lack of pharmaceu-
tical interventions, people will change their behavior to avoid infection [45, 18, 24].
Recent studies have evaluated the impact that non-pharmaceutical interventions,
such as school closures, social distancing, and travel restrictions, could have on the
spread of the next influenza pandemic [23, 17, 27, 16]. However, none of these stud-
ies have incorporated intentional changes in individual behavior, such as avoiding
gatherings, increasing hygiene, or staying home. Furthermore, these studies have
assumed that these non-pharmaceutical interventions would remain in effect for the
duration of the pandemic. Typically, people resume their normal behaviors due to
lack of resources or as the perceived risk declines [30]. Recent studies on the im-
pact of basic public health measures implemented during the 1918 pandemic [8, 30]
indicate that non-pharmaceutical interventions did not last for the duration of the
pandemic.

Mathematical models for the spread of infectious diseases have been extensively
used to gain insights into the transmission dynamics of infectious diseases. Sev-
eral approaches have been used for these studies including simple compartmental
models [47, 34], network models [38], and agent-based models [37, 21, 27, 51].
These models have provided new insights on important issues such as the effects of
drug-resistance [49, 7], treatment [37, 43], vaccination [3, 48], non-pharmaceutical
interventions [13, 18], and on the overall dynamics of infectious diseases [31].

Diseases often spread through person-to-person contacts; therefore, realistic mix-
ing patterns can be crucial to accurately predicting the path and severity of the dis-
ease [19]. The course of an epidemic through a population is determined by the inter-
actions among individuals and the process of transmitting a pathogen is a stochastic
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(random) process based on the length of time the individuals are in contact with
each other and the strength of the contact. Agent-based models can capture this re-
alistic contact structure and allow the simulation to explore how contact networks
and different demographic characteristics affect disease transmission.

Several studies have shown the importance of population structure when mod-
eling disease spread [22], but only a few studies have incorporated realistic mixing
populations [21, 27]. The accurate representation of population heterogeneity is one
of the greatest challenges of epidemic modeling. While substantial progress has
been made over the years with the introduction of different mixing functions [32]
and mixing matrices [2] for compartmental models, they are still far from achieving
a good approximation to real world scenarios. In recent years, new approaches that
incorporate more realistic contact structures have been developed to allow for non-
random interactions among populations [57, 4, 25, 51]. For example, Zaric [57]
compared random and nonrandom mixing patterns for network epidemic models
and showed that different mixing assumptions led to different epidemic outcomes.
In particular, they found that random mixing generally results in a greater number of
new infections than non-random mixing. Similarly, Bansal et al. [4] used several real
and simulated datasets of human contact networks to analyze their impact on dis-
ease spread. They concluded that homogeneous-mixing models are appropriate for
host populations that are nearly homogeneous. However, network models are more
appropriate to better capture and predict disease spread through heterogeneous host
populations. Furthermore, Fukś et al. [25] used an agent-based model of Southern
and Central Ontario to investigate the spatial correlations of disease spread. They
concluded that spatial correlations were difficult to destroy if neighborhood sizes
were inhomogeneous. Finally, Stroud et al. [51] showed a strong correlation be-
tween local demographic characteristics and pandemic severity. This study used an
agent-based model of Southern California with a heterogeneously mixing popula-
tion, and concluded that the average household size in a census tract was strongly
correlated with the clinical attack rate.

Here, we use a simple mathematical model to show how behavioral changes can
be easily introduced into epidemiological models. In addition, we use a large-scale
agent-based model to assess the potential impact of temporary and permanent be-
havioral changes including school closures in containing a pandemic influenza and
analyze how these changes affect the contact structure and transmission dynamics.

2 Methods

We will consider two approaches to incorporate behavior changes in a mathemat-
ical model. We first describe a simple system of five ordinary differential equa-
tions (ODEs) to describe disease dynamics based on the Kermack-McKendrick
susceptible-infected-recovered model (SIR) [34]. We extended this model by us-
ing the approaches introduced in Del Valle et al. (2005) [18]. The second approach
is based on a stochastic agent-based model, Object-Oriented Platform for People in
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Infectious Epidemics (OPPIE). This is an extension of the Los Alamos Epidemic
Simulation System (EpiSimS) [19, 21, 51] and includes dynamic behavior changes.

2.1 Ordinary Differential Equation Model

In our ODE model, the population is divided into two subgroups: a group that does
not change its behavior or has normal behavior (subscript n), and a group that adopts
a new behavior in response to an outbreak (subscript b). People move back and
forth between the two groups (reducing susceptibility or infectivity) depending on
the behavior adopted. Individuals in each activity group are characterized by their
epidemiological status: susceptible, Sn and Sb and infectious individuals, In and Ib;
the transfers are shown diagrammatically in Figure 4. Because we are primarily
interested in the effectiveness of changes in behavior for a single outbreak, we use a
closed system with no migration in or out of the population, and births and natural
deaths are not included in the model.

We define t0 as the beginning of the epidemic. Movement of individuals between
the two groups depends upon disease incidence in the population. It is assumed that
a certain fraction of the population will change their behavior to protect themselves
against infection or reduce their chances of spreading the disease. Let ϕSbSn and
ϕIb In be the transfer rates from the Sn and In classes to the Sb and Ib classes, respec-
tively, and ϕSnSb and ϕIn Ib be the transfer rates from the Sb, and Ib classes to the
Sn and In classes, respectively. The rate coefficients are modeled by step-functions
given by:

ϕi =

 0, t < τ

ci, τ < t < τmax
0 t > τmax

for i= Sn, In, Sb, and Ib, where the parameter c is a positive constant that determine
the rate of movement and τ is the time that determines when the new behavior is
adopted.

Using the transfer diagrams in Figure 1, we obtain the following system of dif-
ferential equations:
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Fig. 1 Schematic relationship between people who adopt a new behavior in response to an epi-
demic and people who do not change their behavior. The arrows that connect the boxed groups
represent movement of individuals from one group to an adjacent one. Susceptible individuals (Sn
or Sb) can become infected (In or Ib) at rates λn or λb; infected individuals recover at a rate µ; and
people change their behavior based on the transfer rates ϕSb , ϕIb , ϕSn , or ϕIn .

dSn

dt
= −(ϕSb +λn)Sn +ϕSnSb

dIn

dt
= −(ϕIb +µ)In +ϕIn Ib +λnSn

dSb

dt
= −(ϕSn +λb)Sb +ϕSbSn

dIb

dt
= −(ϕIn +µ)Ib +ϕIb In +λSb

dR
dt

= µ(In + Ib)

(1)

where λn (for normal behavior) and λb (for modified behavior) are the forces of
infection. λn and λb incorporate the probability of transmission per contact, β , the
reduced number of contacts because of symptomatic infection, θ , and 1−η j, (j =
s or i), which accounts for the effectiveness of the behavior in reducing either sus-
ceptibility (ηs) or infectivity (ηi). β is defined as the susceptibility of the population
multiplied by the infectivity of the disease multiplied by the average number of con-
tacts an individual has per day. The forces of infection for both groups are shown
by:
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λn = β

[(
θ In

ρ

)
+(1−ηi)

(
θ Ib

ρ

)]

λb = β

[
(1−ηs)

(
θ In

ρ

)
+(1−ηi)(1−ηs)

(
θ Ib

ρ

)]
(2)

where ρ = N− (1−θ)(In + Ib) and N is the total population (Sn +Sb + In + Ib +R).
In the forces of infection, ηi is incorporated into the θ Ib/ρ infectious fractions be-
cause individuals in the Ib class have adopted a new behavior and ηs is incorporated
into the infectious fractions in λb because individuals in the susceptible class (Sb)
have also adopted a new behavior. These forces of infection and appropriate initial
conditions complete our model formulation.

2.2 The Agent-based Model

The OPPIE simulation platform is an agent-based model that combines the demographic-
based population of a region, a network of specific business and home locations, and
the movement of individuals between locations as daily itineraries. We simulated the
spread of an influenza epidemic using a synthetic population constructed to statisti-
cally match the 2000 U.S. Census population demographics of Southern California
at the census tract level. There are 20 million individuals living in 6 million house-
holds, with an additional 1 million locations representing actual schools, businesses,
shops, and social recreation addresses. This synthetic population only represents in-
dividuals reported as household residents; thus, visiting tourists, guests in hotels,
and travelers in airports are not explicitly included.

Each individual has a schedule of activities based on the National Household
Transportation Survey (NHTS)[40]. A schedule specifies the type of activity, the
starting and ending time, and the location of each assigned activity. There are six
types of activities: home, work, shopping, social recreation, school, and other. The
time, duration, and location of activities determines which individuals mix together
at the same location at the same time, which is relevant for airborne transmission.

Each location is geographically located using the Dun & Bradstreet commercial
database. Each building is subdivided based on the number of activities available at
that location. There are one or more buildings per activity that are further subdivided
into rooms or mixing places. Schools have classrooms, work places have workrooms
or offices, and shopping malls have shops. Typical room sizes can be specified;
for example, for workplaces the mean workgroup size varies by standard industry
classification (SIC) code. The number of rooms in each building is computed by
dividing the peak occupancy by the appropriate mixing group size. We used two data
sources to estimate the mean workgroup by SIC including a study on employment
density [56] and a study on commercial building usage from the Department of
Energy [39]. Based on these two data sources workgroup sizes range from 3.1 for
transportation workers to 25.4 for health service workers. The average workgroup
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size over all types of work is 15.3. For the analyses presented here, the average
mixing group sizes are: 8.5 at a school, 4.4 at a shop, and 3.5 at a social recreation
venue.

2.2.1 Disease Progression Model

Airborne diseases spread primarily from person to person during close proximity
through contact, sneezing, coughing, or via fomites. In OPPIE, an opportunity for
disease spread between two individuals occurs when they occupy a mixing location
together. Whether or not a susceptible individual becomes infected is based on how
long they co-occupy within a mixing place, the presence of infectious individuals, a
high-level description of the activity they are engaged in, and their age.

A location represents a street address, and a room or mixing place represents
a specific place where people have face-to-face interactions. When an infectious
person is in one of these mixing-locations with a susceptible person for some time,
we estimate a probability of disease transmission, which depends on the variables
identified above.

A susceptible person j has a dimensionless susceptibility multiplier S j and an
infectious person i has an infectious multiplier Ii. The probability that the susceptible
individual j becomes infected during an activity is computed as:

Pj = 1− e
−∑

i
T S jIiti j

(3)

where T is the average transmissibility per unit time, ti j is the duration of contact,
and the sum extends over all infectious people that occupied the room with individ-
ual j.

Disease progression of the epidemic is modeled as a Markov chain consisting
of five main epidemiological stages: uninfected, latent (non-infectious), incubation
(partially infectious), infectious, and recovered. Infected individuals start in the in-
cubation stage and remain their for a period of between 0 and 0.5 days, 0.5 or 1.0
days, before transitioning to the symptomatic or recovered stages, respectively. The
average incubation time is 1.9 days and average duration of the symptomatic stage
is 4.1 [37]. The disease model assumes that 50% of adults and seniors, 75% of
students, and 80% of preschoolers will stay home within 12 hours of the onset of in-
fluenza symptoms. These people can then transmit disease only to household mem-
bers or visitors. Based on previous studies [37], 33.3% of infections are assumed
to be sub-clinical. Individuals in the sub-clinical stage are only half as infectious as
those in the symptomatic stages and continue their normal activities as if they were
not infected. The infection rate for children is assumed to be double that for adults.
All scenarios were analyzed for the same set of transmission parameters where the
population was initially seeded with 100 people infected, all in the incubation stage.
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2.2.2 Baseline Assumptions

The Homeland Security Council released the National Strategy for Pandemic In-
fluenza for the United States, which suggests that the emergence of a new influenza
virus could have a clinical disease attack rate of 30% in the overall population [52].
Based on this attack rate, we constructed a baseline scenario under the assumption
of no specific intervention to contain the pandemic and an infection attack rate of
45% with a clinical attack rate of 30%.

2.2.3 School Closures Assumptions

Protecting children during an influenza pandemic is important since illness rates
are typically highest among school-aged children [41]. Closing schools limits stu-
dents’ contacts and has the potential to block paths of spread between families
and neighborhoods [1]. Several studies have analyzed the impact of school clo-
sures [10, 23, 27]; however, these studies only investigated the impact of sustaining
a school closed during the entire epidemic. School closures in OPPIE are imple-
mented as a general closure of selected activity locations. Based on the Center for
Disease Control and Prevention pandemic guidelines [11], closures in OPPIE follow
a step-like function and are specified with a start and stop time; the activity to close;
and a single location or a fraction of all locations of the specified activity type that
will be closed. During the time a closure is in effect, anyone whose activity sched-
ule would have taken them to one of the closed locations will stay home during that
time instead. Scheduled after-school activities are not affected by a school closure.

2.2.4 Fear-based Home Isolation Assumptions

Fear-based home isolation consists of people staying home as a reaction to an epi-
demic crisis. Some of these people may be considered the “worried well.” The news
of increasing numbers of people becoming ill, or seeing friends and family fall ill, is
strong motivation to avoid potential infectious situations. Surprisingly, none of the
recent studies on pandemic influenza have incorporated the impact of this type of
behavioral change. We assume that people isolate due to fear at a level that follows
the pattern of the epidemic [8, 30]. This is implemented with a specification of start,
peak, and end times with corresponding fractions of the population that will be iso-
lating at those times, along with a minimum and maximum contiguous duration per
individual. We assume that people who choose to stay home will only self-isolate
for 7 to 14 days at a time. People isolate on an individual basis, not on a household
basis, so there might be households in which some members of the family are isolat-
ing due to fear and others are going about their normal activities. Fear-based home
isolation begins when a percentage of the population is symptomatic (ex. 0.1%).
The number of people self-isolating increases linearly until reaching a maximum
near the epidemic peak day. After this day, the stay-home rate begins to drop lin-
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early with time, until no fear-based home isolation is occurring by a selected end
day.

2.2.5 Strain-specific Vaccine Assumptions

Currently, vaccine manufactures need an estimated 5 to 8 months to develop a strain-
specific egg-based vaccine [50]. Based on seasonal influenza vaccine production, we
estimate U.S. production at 4 million doses per week; thus, we assume that a limited
number of vaccines, enough to cover 0.67% of the population per week, will be
available five months after the emergence of pandemic influenza. We further assume
that two doses of pandemic vaccine are required to attain an immune response of
80% seropositivity after 42 days from the first dose [36]. Those who are vaccinated
and become sick are only 20% as infectious as those who become sick without
the vaccine. In all of the scenarios where a strain-specific vaccine is considered,
the strain-specific vaccine is distributed as soon as it becomes available. Vaccine
is distributed to households at random until supplies run out; 95% of the selected
household members are vaccinated, and 5% either refuse treatment or cannot be
found.

3 Results

Here we show how we use both models to analyze the impact that behavioral
changes may have on disease transmission. In particular, we look at the impact of
some generic behavior for the ODE type model and school closures and fear-based
home isolation for the agent-based model.

3.1 Ordinary Differential Equation Results

We recognize that large agent-based simulations may require significant infrastruc-
ture such as high performance computing; therefore, we analyze a simple ODE
model and show how behavioral changes can modify disease dynamics.

We used the model presented in Section 2.1 and analyzed the impact that tem-
porary behavioral changes (e.g., school closures) may have on the spread of an air-
borne infection. We use a population of 10,000 people and start the simulation with
one infected person. We assume that some generic behavior is implemented for
two weeks (14 days) starting on day 25. Furthermore, we assume that the behavior
reduces susceptibility and infectivity by 50%, that is, ηs = 0.5 and ηi = 0.5. In ad-
dition, we assume that θ , a reduction in contact rates due to symptomatic infection
is 0.8. Finally, we assume that β , the probability of infection is 0.4. Figure 2 shows
the epidemic curves as a function of time for Sn, Sb, In, and Ib. Not that as peo-
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ple change their behavior, the disease spread slows down. Since behavioral changes
are only temporary and do not provide a permanent cure to the disease, the virus
eventually infects everyone in the population (due to homogeneous assumptions).
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Fig. 2 Epidemic curves for various groups within the population including Sn, Sb, In, and Ib. Note
that as the changes in behavior are implemented (starting on day 25), the disease transmission
slows down.

3.2 Agent-based Model Results

3.2.1 Baseline Simulation

The baseline scenario was constructed with no specific intervention to contain the
pandemic and an infection attack rate of 45% with a clinical attack rate of 30%.
A key quantity in epidemiology is the basic reproduction number (denoted by R0)
defined as the average number of secondary cases generated by a primary infec-
tious case in a completely susceptible population [2]. Hence, the R0 concept only
applies to the case of newly emergent infectious agents or situations when the dis-
ease in question has not been observed in a given population for a long period of
time, so that the population is essentially entirely susceptible. This concept applies
to most pandemics, particularly to the influenza pandemic of 1918 for which the
mean R0 has been estimated to range from 1.5 to 5.4, depending on the specific
location and pandemic wave considered [15]. For consistency with historical pan-
demics [37, 26], we considered a moderately severe pandemic strain with an R0 of
1.8, which is in agreement with the transmissibility baseline assumed in other mod-
eling studies [37, 23, 26]. OPPIE tracks who infects whom and so the value of R0
was calculated using the average number of secondary infections generated by the
index cases. Our results indicate that for a more severe pandemic strain with a re-
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production number R0 of 3.5, the clinical attack rate increases to 50% and the deaths
per 100,000 population increases from 614 to 1,019.

3.2.2 School Closures & Vaccination

School closures can provide an effective way to reduce the spread of the epidemic.
We assumed that schools close when 0.1% of the population is symptomatic (day
33), and they remain closed for 5, 8, or 11 months. Table 1 shows that in the ab-
sence of any interventions, the model predicts a 30.6% clinical attack rate and 614
influenza related deaths per 100,000 persons in the population. However, our results
show that if schools remain closed for 11 months, the clinical and mortality attack
rate would be reduced by more than 50%.

Table 1 Results for the baseline and various durations of 100% school closures

Baseline 5-month 5-month 8-month 8-month 11-month
1st wave 2nd wave 1st wave 2nd wave

Clinical attack rate % 30.6 14.1 12 14.1 8.5 14.1
Pandemic duration (days) 150a 190b 350a 190b 465a 300a

Mortality per 100,000 614 279 240 282 164 281
Population vaccinated % 0 0 15.7 0 25.5 13.1

a When the number of newly infected cases has reached zero.
b When the number of newly infected people has reached its lowest point before ramping up
again.

In Figure 3, we show the symptomatic percentage of the population as a function
of time for the baseline and for 100% school closures for 5, 8, and 11 months. School
closures might be relaxed after 5 and 8 months, if a strain-specific vaccine becomes
available. In the 5 month school closure scenario, schools reopen on day 183 when
0.0007% (14,238 people) is infected; in the 8 month scenario, schools reopen on day
273 when 0.00003% (721 people) of the population is infected. However, if schools
close for the duration of the pandemic (in this case 11 months), the disease dies
out and no second wave is generated. Unlike previous studies that have shown that
the benefit provided by school closures is maintained after schools reopen [28], our
simulation results show that, given the limited number of vaccine doses, if schools
reopen too early a new infection wave appears, resulting in an increased number of
new cases. Nevertheless, even in the presence of infection waves, the overall clinical
attack rate for these three scenarios of school closures is lower than the baseline. Al-
though school closures prolong the epidemic due to the reduction in the number of
contacts, they benefit society by spreading the number of hospitalizations over two
waves, which is crucial in order to maintain health care services operational. Our
results show that school closures for the duration of the pandemic (up to 11 months)
is the most effective strategy in containing the pandemic and reducing morbidity
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and mortality. Furthermore, the 11 month strategy also reduces the number of vac-
cinations needed to contain the pandemic.
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Fig. 3 Symptomatic percentage of the population as a function of time for the baseline scenario,
and three school closure scenarios. A) shows the simulated epidemic curve for the baseline sce-
nario, B) shows the results for a 5-month closure scenario, c) shows the results for an 8-month
closure scenario, and D) shows the results for the 11-month 100% closure scenario. The arrows
indicate the time when school closures are in effect. Note that as the interventions are relaxed
(schools re-open), new infection waves can appear (panels B and C).

3.2.3 Fear-based Home Isolation & Vaccination

In Table 2, we illustrate the simulation results for various levels of fear-based home
isolation. When the percentage of population self-isolating at home, due to fear, is
15%, the clinical attack rate and death rate decrease, but the percentage of infections
generated at home increases. When the number of people self-isolating is greater
than 50%, the epidemic is partitioned into two infection waves and the number of
infected people increases.

Figure 4 shows a comparison of the effective reproduction number and the epi-
demic dynamics for the baseline and 50% fear-based home isolation. Reffective cap-
tures the effects of public health interventions and depletion of the susceptible popu-
lation as the epidemic progresses. Note that Reffective drops below 1 when the number
of susceptibles declines, but as fear-based home isolation is relaxed and the social
contact networks return to normal, Reffective increases. In general, we observe that
even if a small fraction of the population reduces their interactions for a week or
two, morbidity and mortality can be reduced but the epidemic is prolonged; how-
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ever, temporal compliance of large fractions of people can create susceptible popu-
lations, resulting in waves of infection [8, 30, 44].

Table 2 Results for the baseline and various levels of fear-based home isolation.

Baseline 15% 30% 50% 50% 60% 60%
1st wave 2nd wave 1st wave 2nd wave

Clinical attack rate % 30.6 25.9 20.5 13 9.6 7.6 18.2
Pandemic duration (days) 150a 211a 300a 184b 372a 161b 340a

Mortality per 100,000 614 517 411 251 199 150 364
Population vaccinated % 0 2.8 5.9 0 17.8 0 13.3
Infections generated at home % 58.4 62.2 65.8 65 65 62.9 62.9

a When the number of newly infected cases has reached zero.
b When the number of newly infected people has reached its lowest point before ramping up
again.
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Fig. 4 Symptomatic percentage of the population as a function of time for the baseline scenario,
and three school closure scenarios. A) shows the simulated epidemic curve for the baseline sce-
nario, B) shows the results for a 5-month closure scenario, c) shows the results for an 8-month
closure scenario, and D) shows the results for the 11-month 100% closure scenario. The arrows
indicate the time when school closures are in effect. Note that as the interventions are relaxed
(schools re-open), new infection waves can appear (panels B and C).
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3.2.4 Impact on Social Contact Network

Population mixing information is key to provide good approximation on the path of
the disease and devise effective intervention strategies. Here, we apply tools from
social network epidemiology [42, 46, 38] to study how changes in behavior affect
the contact network and, as a result, disease transmission. The social contact net-
work emerges from the simulation as individuals move through their daily activities
and come into and out of contact in rooms [13]. We extracted the degree distribution
of the social contact structure in the absence of disease during a random day for the
baseline, 100% school closure scenario, and at the peak of the 50% fear-based home
isolation scenario. Figure 5 depicts the population distribution in southern Califor-
nia under the three scenarios for a typical day. On average, each individual has 22.5,
19.9, and 8 contacts per day for the baseline, 100% school closure scenario, and 50%
fear-base home isolation scenario, respectively. We observe that the average number
of contacts per day decreased for the school closure and fear-based home isolation
scenarios when compared to the baseline. Note that the average number of people
contacted per person can provide an estimate of how many people can potentially
acquire infection from one index case. Furthermore, we found that closing schools
would be less effective in breaking the social contact network than fear-based home
isolation. This finding might be due to the fact that school closures imply partial
home isolation, individuals affected by this intervention still perform other sched-
uled activities, except for school related activities. While fear-based home isolation
assumes that people affected by this intervention are completely cut-off from the
rest of the population, resulting in a higher impact to the social contact network.
Our results show that reactive changes in population contact rates in response to a
deadly disease can have a dramatic impact on the overall contact structure.

4 Discussion

We used two types of modeling approaches to show that coordinated or reactive
behavioral modifications can have a significant effect not only in reducing disease
burden but also on the qualitative dynamics of influenza transmission. Although
vaccination would be the best means for controlling influenza, a strain-specific vac-
cine will not be available until 5 to 8 months after the emergence of a new pandemic
influenza and current production capabilities are insufficient to cope with demand.
Antivirals share important features that could make them useful during a pandemic
[37], although most countries do not have enough antivirals stockpiled and current
distribution strategies may not allow for rapid dissemination of drugs. Behavioral
modifications have the potential to slow down the spread of the pandemic in the
absence of pharmaceutical interventions.

We argue that models that use social contact networks and human behavior are
better able to capture the dynamics of infectious-disease transmission than models
that ignore human behavior or use homogeneous mixing. We showed how easy one
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Fig. 5 Symptomatic percentage of the population as a function of time for the baseline scenario,
and three school closure scenarios. A) shows the simulated epidemic curve for the baseline sce-
nario, B) shows the results for a 5-month closure scenario, c) shows the results for an 8-month
closure scenario, and D) shows the results for the 11-month 100% closure scenario. The arrows
indicate the time when school closures are in effect. Note that as the interventions are relaxed
(schools re-open), new infection waves can appear (panels B and C).

can incorporate behavioral changes in traditional ODE epidemiological models and
how simple assumptions can change the dynamics of disease transmission.

The emergent degree distribution of the baseline social network is in agreement
with contact patterns observed in small convenience samples [20, 54]. Although we
cannot compare the emergent contact patterns in the presence of school closures
and fear-based home isolation due to lack of data, our simulation results are useful
in providing estimates of the effects of behavioral changes on disease burden and
gain insights into potential qualitative effects on the transmission dynamics (e.g.,
multiple waves of infection). The simulations suggest that fear-based home isolation
at moderate levels (less than 50%) can have an impact on breaking transmission
paths, however, its impact on the social contact network is highly sensitive to the
duration that this intervention is in effect.

Our simulations show that if 100% of the schools close when 0.1% of the pop-
ulation is ill and they remain closed for the duration of the pandemic, the clinical
attack rate could be reduced by more than 50%, when compared with the baseline.
However, if schools re-open before the pandemic is over, a second wave is likely
to appear and increase morbidity and mortality; thus, the parameters associated to a
school closing policy should depend on the actual pandemic profile. For example,
our results suggest that a temporary school closure policy may not be successful in
the sense that secondary waves of infection could be triggered if the school closure
policy is suspended when the pandemic is still running its course.
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The appearance of a second wave may imply a failed intervention strategy [44],
however, our results suggest that the overall clinical attack rate when a school clo-
sure intervention strategy is implemented is still lower than that obtained from the
baseline scenario. Temporary school closures may have benefits beyond reducing
morbidity and mortality, such as maintaining health care services by spreading the
number of hospitalizations over two waves. However, school closures indirectly
contribute to absenteeism when parents must miss work to care for their children
at home. Therefore, recommendations on school closures must be planned in ad-
vance to reduce the social and economic impact of absenteeism.

Fear-based home isolation can be effective in reducing morbidity and mortality
and slowing transmission. The effectiveness of fear-based home isolation is deter-
mined by the fraction of the population that voluntarily withdraws from their daily
activities for a week or two. We showed that as the number of people isolating at
home increases, the clinical attack rate decreases. However, when the fraction of
people self-isolating is over 50% (e.g. the intervention is too strong [29]) a second
infection wave appears if home isolation is relaxed, leading to a larger clinical at-
tack rate. It may not be feasible in reality for a large fraction of the population to
self-isolate for a week or two, however, even if a small fraction of the population
self-isolates, it can have a dramatic impact on reducing morbidity and mortality.

One of the most striking results of our study is the fact that temporary behavioral
modifications have the potential to generate waves. This result raises an interest-
ing question about the role that behavioral changes played in previous pandemics,
since there were some temporary public health measures during the 1918 pandemic
[14, 8, 30, 9]. There is a potential for multiple infection waves if public health mea-
sures are relaxed before the epidemic is over. Perhaps the most illustrative example
of secondary waves is the 2002-2003 SARS epidemic in Toronto, Canada, where
a secondary wave of infection occurred following a relaxation of infection-control
precautions that were also associated with temporary increases in nosocomial trans-
mission events [44]. The potential role that behavior changes may have played on
the multiple wave pandemic profile observed during the 1918-1919 influenza pan-
demic in many regions of the world should not be discarded [14, 8, 30].

Early detection of index cases and early dissemination of information to the pub-
lic are critical to empowering the population to make rational decisions, such as
self-isolation. Capturing human behavior can have a profound influence in the pre-
dictions of future disease spread and the resources needed to contain an outbreak
[24]. Modeling studies such as the one presented here could prove useful in pro-
viding estimates of the effects of changes in human behavior for future pandemic
guidelines.
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