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c The existence of backward bifurcation is presented.
c Bed-net usage has a positive impact in reducing the reproduction number R.
c Malaria could be eliminated if 75% of the population were to use bed-nets.
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Malaria infection continues to be a major problem in many parts of the world including the Americas,

Asia, and Africa. Insecticide-treated bed-nets have shown to reduce malaria cases by 50%; however,

improper handling and human behavior can diminish their effectiveness. We formulate and analyze a

mathematical model that considers the transmission dynamics of malaria infection in mosquito and

human populations and investigate the impact of bed-nets on its control. The effective reproduction

number is derived and existence of backward bifurcation is presented. The backward bifurcation

implies that the reduction of R below unity alone is not enough to eradicate malaria, except when the

initial cases of infection in both populations are small. Our analysis demonstrate that bed-net usage has

a positive impact in reducing the reproduction number R. The results show that if 75% of the

population were to use bed-nets, malaria could be eliminated. We conclude that more data on the

impact of human and mosquito behavior on malaria spread is needed to develop more realistic models

and better predictions.

Published by Elsevier Ltd.
1. Introduction

Malaria is a disease that can be transmitted to people through
the bites of infected mosquitoes. It is one of the leading causes of
morbidity and mortality in some of the poorest tropical and
subtropical regions in the world including the Americas, Asia, and
Africa. Malaria is particularly a major public health problem in
Africa, where 20% of children under the age of 5 die as a result of
infection. The World Health Organization (WHO) estimates that
every year 250 million people become infected and nearly one
million die.
Ltd.

).
Malaria was successfully eliminated from many parts of the
world including Europe, North America, the Caribbean, and parts
of Asia and South-Central America in the early 20th century.
Dichlorodiphenyltrichloroethane (DDT) was one of the main
intervention strategies used to eradicate malaria in these coun-
tries. However, these efforts were abandoned but have gradually
been revived by different organizations including the WHO and
the Bill & Melinda Gates Foundation. There are several new
interventions that are currently being used in the fight against
malaria including insecticide-treated bed-nets (ITNs).

ITNs are mosquito nets treated with insecticides that protect
individuals by diverting mosquitos and killing those who come in
contact with the net. A review of 22 randomized control trials of ITNs
(Lengeler, 2004) found that they can reduce malaria cases by 50%
and deaths in children by one-fifth. Although the cost-effectiveness
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Fig. 1. Flow-chart showing movements of humans and mosquitoes between the

susceptible and infectious compartments and the flow of the malaria disease from

humans to mosquitoes and from mosquitoes to humans. At time, t, the total

human population is NhðtÞ ¼ ShðtÞþ IhðtÞ and the total mosquito population is

NvðtÞ ¼ SvðtÞþ IvðtÞ.
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of ITNs has been demonstrated in numerous studies (Goodman and
Mills, 1999), there are many challenges due to improper handling
and human behavior (e.g., lack of use due to hot weather). Moreover,
insecticide on nets usually lasts between 3 and 5 years due to
frequent washing, type of soap used, and exposure to direct sun-
light, which can deteriorate the effectiveness of the insecticide
sprayed on it.

Mathematical models of the transmission of infectious agents
can be useful tools in understanding disease dynamics and
assessing the effect of different interventions (Hethcote, 2000).
Although several articles have investigated the impact of various
intervention strategies including ITNs (Chitnis et al., 2010; Killeen
and Smith, 2007; Smith et al., 2008; White et al., 2009), none of
them have incorporated human behavior. Killeen and Smith
(2007) used a deterministic model to investigate the impact of
mosquito behavior in response to ITN usage. Smith et al. (2008)
used an individual-based stochastic simulation of malaria to
estimate the impacts of various intervention strategies including
ITNs on the spread of malaria, response activities, and cost. White
et al. (2009) used a simple deterministic model and compared it
to more sophisticated models to evaluate the impact of different
intervention strategies. They concluded that a combined inter-
vention strategy could achieve elimination through a sustained
control strategy. Chitnis et al. (2010) used a system of difference
equations to analyze the impact of ITNs and indoor residual
spraying (IRS) on malaria-control programs. They showed that
people that use only ITNs are better protected than those with
only IRS.

Therefore, understanding the impact of human behavior (Del
Valle et al., 2005) can help us develop optimal intervention
strategies and devise more realistic predictions to control malaria
spread. In this paper, we identify a threshold needed to reduce
malaria cases through the use of ITNs and the impact of human
behavior on ITNs’ effectiveness.
2. Model formulation

We formulate the basic model for the effects of bed-net on the
transmission dynamics of malaria infection consisting of mos-
quito (also referred as vector) and human populations (also
referred as host). The host population is grouped into two
compartments, susceptible and infectious, which are denoted by
Sh, Ih, respectively, with a total population given by Nh ¼ Shþ Ih.
The vector population is similarly grouped into two compart-
ments, susceptible and infectious with sizes Sv, Iv, respectively,
and the total population size is given by Nv ¼ Svþ Iv. All newborn
individuals are assumed to be susceptible and no infected
individuals are assumed to come from outside of the community.

One of the basic forms of protections against the transmission
of malaria is the usage of pesticide-treated bed-nets. According to
reports (Kayedi et al., 2008; Vanlerberghe et al., 2010), the
pesticide treatment on the bed-nets could fade out due to
frequent washing with certain soap and exposure to direct sun-
light. Despite these problems, bed-nets are among the most
important and affordable means of defense against malaria
transmissions. Accordingly, we assume that malaria transmission
reduces as a function of bed-net usage. We denote the contact
rate of mosquitoes and humans by bðbÞ. This rate is assumed to be
the same for the human and mosquito populations. However, the
probability of effective transmission from human to mosquito,
which we denote by p1, is different from the probability of
effective transmission from mosquito to humans, denoted by p2.
Normally, the transmission rate is the product of the contact rate
and the probability of passing infection. Following the general
results obtained as a result of treated bed-net usage in reducing
malaria transmission, we model the average number of bites per
mosquito per unit time (contact rate) by a linearly decreasing
function of treated bed-net usage, b:

bðbÞ ¼ bmax�bðbmax�bminÞ, 0rbr1: ð1Þ

Note that the parameters bmax and bmin are the maximum and the
minimum transmission rates, respectively, and b is the proportion
of bed-net usage that could reduce the mosquito–human contact
rate to a minimum level bmin.

Bed-nets are typically used at night, thus, we assume that even
if the entire host population used bed-nets (b¼1), the transmis-
sion can only be reduced to a minimum value (bmin). Similarly, if
no one uses bed-nets (b¼0), transmission would be at its
maximum level (bmax).

A drastic decline in relative exposure to mosquitoes as a
result of ITN usage is observed in some parts of Africa (Govella
et al., 2010). This leads to a significant reduction of disease
transmission. This reduction could be well described by either
exponentially decreasing or linearly decreasing function of ITN
usage. To simplify the model, we choose the transmission to be a
linearly decreasing function of b.

The model is constructed by making some basic assumptions:
all new arrivals into the human population are susceptible with
recruitment rates as Lh and Lv for human beings and mosquitoes
respectively, the disease is fast progressing so that the exposed
stage is minimal and is not considered, infectious humans could
die from the disease or become susceptible after recovery, the
mosquito population does not recover from infection, insecticide-
treated bed-nets contribute to the mortality rate of mosquitoes.

Following the approaches in Blayneh et al. (2009), Bowman
et al. (2005) and Teboh-Ewungkem et al. (2010) the value of bðbÞ
is the same for each population, so the average number of bites
per human per unit time is bðbÞNv=Nh. Thus, the force of infection
for susceptible humans is given by

lhðbÞ ¼ p1
bðbÞNv

Nh

Iv

Nv
¼

p1bðbÞIv

Nh
,

where p1 is the transmission probability per bite from infectious
mosquitoes to humans. The force of infection for susceptible
vectors is

lvðbÞ ¼
p2bðbÞIh

Nh
,

where p2 is the transmission probability per bite from infectious
humans to mosquitoes.

Due to insecticide treatment of bed-nets, female mosquitoes
questing for blood meal could die when they become in contact
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with a treated bed-net. Therefore, we have modeled the death
rate of the mosquitoes as mvðbÞ ¼ mv1

þmmaxb, 0rbr1, where mv1

is the natural death rate and mmaxb is the death rate due to
pesticide on treated bed-nets, taken as a linear function of b.

Thus, using the formulation provided above, the variables, and
parameters’ descriptions given in Table 1, we arrive at the
following non-linear system of differential equations:

_Sh ¼Lh�lhðbÞShþghIh�mhSh,

_Ih ¼ lhðbÞSh�ðmhþghþdhÞIh,

_Sv ¼Lv�lvðbÞSv�mvðbÞSv,

_Iv ¼ lvðbÞSv�mvðbÞIv: ð2Þ

A schematic diagram of the model is depicted in Fig. 1

2.1. Basic quantitative properties

2.1.1. Positivity and boundedness of solutions

Since the system of equations given in (2) represents human
and mosquito populations, all parameters in the model are non-
negative and it can be shown that the solutions of the system are
non-negative, given non-negative initial values. In order to
analyze this system, we split it into two parts, namely the human
and mosquito populations. Consider the biologically feasible
region consisting of

O¼Oh �Ov �R2
þ �R2

þ ,

with

Oh ¼ ðShðtÞ,IhðtÞÞAR2
þ : 0rNhðtÞr

Lh

mh

� �
,

and

Ov ¼ ðSvðtÞ,IvðtÞÞAR2
þ : 0rNvðtÞr

Lv

mvðbÞ

� �
:

The following steps are followed to establish the positive invar-
iance of O (i.e., solutions in O remain in O for all t40). The rate of
change of the total human and mosquito populations is obtained
by adding the first two equations and the last two equations of
Table 1
Description of the variables and parameters of the system (2).

Variable Description

Sh(t) Susceptible humans

Ih(t) Infectious humans

Sv(t) Susceptible vectors

Iv(t) Infectious vectors

Parameter Description Baseline value

Lh Recruitment rate in humans 103/(70�365)

Lv Recruitment rate in mosquitoes 104/21

mh Natural mortality rate in humans 1/(70�365)

dh Disease induced mortality rate in humans 10�3

b Proportion of treated net usage

gh Recovery rate of infectious human to be

susceptible

1/4

mv1
Natural mortality rate of mosquitoes 1/21

mmaxb Mortality rate of mosquitoes due to treated net

bðbÞ Mosquito–human contact rate

bmax 0.1

bmin 0

p1 Probability of disease transmission from

mosquito

to human

1

p2 Probability of disease transmission from human

to mosquito

1

the system (2) to give

dNhðtÞ

dt
¼Lh�mhNhðtÞ�dhIhðtÞ,

dNvðtÞ

dt
¼Lv�mvðbÞNvðtÞ: ð3Þ

Thus, it follows that

dNhðtÞ

dt
rLh�mhNhðtÞ,

dNvðtÞ

dt
¼Lv�mvNvðtÞ: ð4Þ

A standard comparison theorem Lakshmikantham et al. (1989)
can then be used to show that NhðtÞrNhð0Þe

�mhtþðLh= mhÞ

ð1�e�mhtÞ and NvðtÞ ¼Nvð0Þe�mvðbÞtþðLv=mvðbÞÞð1�e�mvðbÞtÞ. In parti-
cular, NhðtÞrLh=mh and NvðtÞrLv=mvðbÞ, if Nhð0ÞrLh=mh, and
Nvð0ÞrLv=mvðbÞ, respectively. Thus, the region O is positively
invariant. Hence, it is sufficient to consider the dynamics of the
flow generated by (2) in O. In this region, the model is epidemio-
logically and mathematically well-posed (Hethcote, 2000). Thus,
every solution of the basic model (2) with initial conditions in O
remains in O for all t40. Therefore, the o-limit sets of the system
(2) are contained in O. This result is summarized below.

Lemma 1. The region O¼Oh �Ov �R2
þ �R2

þ is positively invar-

iant for the basic model (2) with non-negative initial conditions in R4
þ .

Throughout this paper, we consider the system given by (2)
with initial values in O.
3. Model analysis

In this section, the conditions for the existence of the equilibria
of the system (2) are explored.
3.1. Local stability of the disease-free equilibrium (DFE)

The disease-free equilibrium of the system given by (2) is

S0 ¼
Lh

mh

,0,
Lv

mvðbÞ
,0

� �
: ð5Þ

Using the next generation operator approach as presented in van
den Driessche and Watmough (2002), we calculate the reproduction
number R of the system (2). To do this, we define a vector valued
function ~F for rate of new infection cases in the infected and
recovered groups of both populations, namely in Ih,Iv. ~F ¼ ðbðbÞp1

IvSh=Nh, bðbÞp2IhSv=NhÞ. And another function ~V for the transmission
terms between the disease infected compartments listed above and
the exit terms (by mortality or emigration) ~V ¼ ððmhþghþ

dhÞIh, mvðbÞIvÞ. Next, we evaluate F and V, which are the Jacobian
matrices of ~F and ~V , respectively, evaluated as functions of the vector
ðIh,IvÞ at the disease-free equilibrium S0 given by (5)

F ¼
0 bðbÞp1

bðbÞp2Lvmh

mvðbÞLh
0

0@ 1A, V ¼
L 0

0 mvðbÞ

 !
,

where

L¼ mhþghþdh:

The basic reproduction number R is defined as the spectral radius of

FV�1
¼

0 bðbÞp1
mvðbÞ

bðbÞp2Lvmh

LhmvðbÞL
0

0B@
1CA:
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Fig. 2. Simulations of model (2) for the population level as a function of time for

Ro1 using parameter values: b¼ 0:8, dh ¼ 10�3, bmax ¼ 0:1, bmin ¼ 0, mmax ¼ 1=21,

mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21, mvðbÞ ¼ mv1þmmaxb, Lh ¼ 1=ð70� 365Þ, Lv ¼ 104= 21,

gh ¼ 1=4, and R¼ 0:32.
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Fig. 3. Simulations of model (2) for the population level as a function of time for

R41 using parameter values: b¼ 0:1, dh ¼ 10�3, bmax ¼ 0:1, bmin ¼ 0, mmax ¼ 1=21,

mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21, mvðbÞ ¼mv1þmmaxb, Lh ¼ 1=ð70� 365Þ, Lv ¼ 104= 21,

gh ¼ 1=4, and R¼ 2:37.
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Accordingly, it is given by

R¼ bðbÞ
mvðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2Lvmh

LLh

s
: ð6Þ

This threshold represents the average number of infected mosquitoes
and humans caused by a cross-infection of one human and one
mosquito when the other population consists of only susceptibles.
This is clear when R is rewritten as follows:

R¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbÞp2

mvðbÞðmhþghþdhÞ

bðbÞp1

Lh

Lv

mvðbÞmh

s
: ð7Þ

We now proceed to study the local stability of the disease-free
equilibrium S0. The Jacobian of system (2) at the disease-free
equilibrium is given by

J¼

�mh gh 0 �bðbÞp1

0 �L 0 bðbÞp1

0 �K �mvðbÞ 0

0 K 0 �mvðbÞ

0BBBB@
1CCCCA,

where

K ¼
p2bðbÞmhLv

LhmvðbÞ
:

The eigenvalues of J are l1 ¼�mh, l2 ¼�mvðbÞ and the other
two are solutions of

l2
þðLþmvðbÞÞlþLmvðbÞ�p1bðbÞK ¼ 0:

Since LmvðbÞ�p1bðbÞK ¼ LmvðbÞð1�R2Þ, the quadratic equation has
two negative real roots provided that Ro1. For R41, the
quadratic has one positive solution, which makes S0 unstable.
Thus we have the following result.

Theorem 1. The disease-free equilibrium point S0, which is given by

(5), is locally asymptotically stable (LAS) if Ro1 and it is unstable if

R41.

Fig. 2 shows numerical solutions for the host and vector
populations for the DFE. The parameter regime b¼ 0:8, dh ¼ 10�3,
bmax ¼ 0:1, bmin ¼ 0, mmax ¼ 1=21, mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21,
mv ¼ mv1þmmaxb, Lh ¼ 1=ð70� 365Þ, Lv ¼ 104=21, and gh ¼ 1=4 is
used to generate this figure and the basic reproduction number
based on this parameter regime is R¼ 0:61. Note that although
the initial infected populations (Ih and Iv) were not zero, these
populations die out asymptotically over time since Ro1.
3.2. Existence of backward bifurcation

We have shown from Theorem 1 that the DFE of the model (2)
is LAS if Ro1. However, this equilibrium may not be globally
asymptotically stable in O for Ro1, owing to the possibility of
backward bifurcation. A backward bifurcation is possible when
the stable DFE co-exists with a stable endemic equilibrium for
Ro1 (Agusto and Gumel, 2010; Dushoff et al., 1998; Milner and
Zhao, 2010; Garba et al., 2008). The public health implication of
backward bifurcation is that the classical requirement of having
the reproduction number less than unity, although necessary, is
no longer sufficient for disease control. This implies that effective
disease control is dependent on the initial sizes of the sub-
populations of the model. The possibility of the model (2)
exhibiting backward bifurcation phenomenon is now investigated
below.

The components of any endemic equilibrium S1 ¼ ðS
n

h, Inh, Sn

v, InvÞ

of the system given by (2) satisfy the following equations:

Sn

h ¼
LLh

Lðln

hðbÞþmhÞ�ghl
n

hðbÞ
, Inh ¼

ln

hðbÞLh

Lðln

hðbÞþmhÞ�ghl
n

hðbÞ
,

Sn

v ¼
Lv

ln

vðbÞþmvðbÞ
, Inv ¼

ln

vðbÞLv

mvðbÞðl
n

vðbÞþmvðbÞÞ
: ð8Þ

Fig. 3 shows numerical solutions for the endemic equilibrium
for the parameter set b¼ 0:1,dh ¼ 10�3, bmax ¼ 0:1, bmin ¼ 0,
mmax ¼ 1=21, mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21, mv ¼ mv1þmmaxb,
Lh ¼ 1=ð70� 365Þ, Lv ¼ 104=21, gh ¼ 1=4. This parameter set
yields R¼ 2:83. Note that R41 and that both infected popula-
tions co-exist and relax to their respective non-trivial equilibrium
values as time progresses. This depicts the situation in which the
malaria disease establishes itself in the population.

In terms of the force of infection

ln

hðbÞ ¼
p1bðbÞI

n

v

Nn

h

, ln

vðbÞ ¼
p2bðbÞI

n

h

Nn

h

:
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Since Inh=Nn

h ¼ ln

hðbÞ=ðLþl
n

hðbÞÞ, ln

hðbÞ and ln

vðbÞ are related as
follows:

ln

vðbÞ ¼
p2bðbÞl

n

hðbÞ

Lþln

hðbÞ

and

ln

hðbÞ ¼
p1bðbÞLv

mvðbÞ

Lðln

hðbÞþmhÞ�l
n

hðbÞgh

LhðLþl
n

hðbÞÞ

ln

vðbÞ

ln

vðbÞþmvðbÞ
:

We also have

ln

vðbÞ

ln

vðbÞþmvðbÞ
¼

p2bðbÞl
n

hðbÞ

ln

hðbÞAþmvðbÞL
,

where A¼ p2bðbÞþmvðbÞ.
This leads to

a0½l
n

hðbÞ�
2þb0l

n

hðbÞþc0 ¼ 0, ð9Þ

where

a0 ¼ mvðbÞLhA,

b0 ¼ mvðbÞLhLp2bðbÞþ2m2
vðbÞLhL�p1p2b

2
ðbÞLvðmhþdhÞ,

c0 ¼ ðmvðbÞLÞ
2Lhð1�R2Þ:

It should be noted that the coefficient a0 of the quadratic (9) is
always positive, however, the coefficient c0 is positive or negative
depending on the value of the reproduction number, R. That is, if
R is less than unity, c0 is positive and if it is greater than unity, c0

is negative. Thus, the following results have been established:

Theorem 2. The model (2) has
2500
(i)
 precisely one unique endemic equilibrium if c0o0 or R41,

(ii)
2000

precisely one unique endemic equilibrium if b0o0, and either

c0 ¼ 0 or b2
0�4a0c0 ¼ 0,
1500
(iii)
 precisely two endemic equilibria if c040,b0o0 and b2
0�

4a0c040,
1000
(iv)
 no endemic equilibrium otherwise.
0 0.5 1 1.5
0

500

Fig. 5. Backward bifurcation diagram for the infectious vector population for the

following set of parameter values: dh ¼ 10�3, bmax ¼ 0:1, bmin ¼ 0, mmax ¼ 1=21,

mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21, mvðbÞ ¼mv1þmmaxb, Lh ¼ 1=ð70� 365Þ, Lv ¼ 104= 21,

gh ¼ 1=4.
Case (iii) indicates the possibility of backward bifurcation in
the model (2) when Ro1. To find the backward bifurcation when
Ro1, we set the discriminant b2

0�4a0c0 to zero and solve for the
critical value of R denoted by

Rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�
½mvðbÞLhLp2bðbÞþ2m2

vðbÞLhL�p1p2b
2
ðbÞLvðmhþdhÞ�

2

4Am3
vðbÞL

2L2
h

vuut :

Thus, backward bifurcation will occur for values Rc such that
Ro1. This is illustrated by Figs. 4 and 5 using the following set of
parameter values: bmax ¼ 0:1, bmin ¼ 0, mmax ¼ 1=21, mh ¼ 1=ð70�
365Þ, mv1 ¼ 1=21, mvðbÞ ¼ mv1þmmaxb, Lh ¼ 1000=ð70� 365Þ, Lv ¼

ð104
Þ=15, gh ¼ 1=4, and 0rRr1, dh ¼ 10�3.

The above result is summarized below.

Theorem 3. The model (2) undergoes a backward bifurcation when

Case (iii) of Theorem (2) holds and Rc oRo1.

We would like to remark that condition (iii) of Theorem 2 is
not possible for a mild disease-induced death rate, by this we
mean, 0rdhomh. This case is relevant when the disease induced
death rate is less than death rate in humans due to all cases not
related to malaria. The bottom line is condition (iii) is possible for
(dh : Rc oRo1). In the following section we address the impor-
tance of disease-induced death rate dh on the direction of
bifurcation. The numerical results in Figs. 6 and 7 also agree with
our results, that is, dh ¼ 10�5o1=ð70� 365Þ ¼ mh, whereas in
Figs. 4 and 5, dh ¼ 10�34mh.
3.3. Analysis of the model for a special case

Next, we consider the case when the disease-induced mortal-
ity rate is ignored. It is known that some strains of the malaria
disease are not deadly, for example Plasmodium vivax and
Plasmodium ovale (Pertmann and Troy-Blomber, 2000). In this
case, we can either ignore the disease-induced death rate (dh ¼ 0)
or assume a very small value compared to the natural death rate,
mh. Thus, we consider dh ¼ 0 to study the global stability of the
disease-free equilibrium and dhomh to establish a forward (e.g.,
transcritical) bifurcation at the critical value R¼ 1.
3.3.1. Global stability of DFE for a special case

One of the sufficient conditions for the global asymptotic
stability (GAS) of the disease-free equilibrium (DFE) is a constant
population level (see for example Blayneh et al., 2009; Garba
et al., 2008; Teboh-Ewungkem et al., 2010). This is typically the
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mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21, mvðbÞ ¼ mv1þmmaxb, Lh ¼ 1=ð70� 365Þ, Lv ¼ 104= 21,

gh ¼ 1=4.
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Fig. 7. Forward bifurcation diagram for the infectious vector population for the

following set of parameter values: dh ¼ 10�5, bmax ¼ 0:1, bmin ¼ 0, mmax ¼ 1=21,

mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21, mvðbÞ ¼ mv1þmmaxb, Lh ¼ 1=ð70� 365Þ, Lv ¼ 104= 21,

gh ¼ 1=4.
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case when the disease-induced death rate is either ignored
(dh ¼ 0) or assumed to be mild. In this case the GAS result could
be established using the second generation approach given in
Castillo-Chavez et al. (2002). This approach has been applied
to models of vector-borne disease (Blayneh et al., 2009) and also
to models of HIV/AIDS diseases (Bhunu and Mukandavire, 2009).
Other approaches have considered building a Lyapunov function
(Garba et al., 2008; Teboh-Ewungkem et al., 2010).

We let X ¼ ðSh,SvÞ and Z ¼ ðIh,IvÞ and group the system given
by (2) into

_X ¼ FðX,0Þ,

_Z ¼ GðX,ZÞ, ð10Þ

where FðX,0Þ is the right-hand side of _Sh and _Sv with Ih ¼ 0¼ Iv

and GðX,ZÞ the right-hand side of _Ih and _Iv . Define bGðX,ZÞ ¼
DZGðXn,0ÞZ�GðX,ZÞ, where ðXn,0Þ ¼ ðLh=mh, Lv=mvðbÞ, 0, 0Þ and
DZGðXn,0Þ is the Jacobian of GðX,ZÞ taken in ðIh,IvÞ and evaluated
at ðXn,0Þ, which is an M-matrix (off diagonal elements are
nonnegative). Based on what is given in Castillo-Chavez et al.
(2002), the conditions for global stability of S0 are
(i)
 local stability of S0 (this is the case with our model for
Ro1),
(ii)
 global stability of ðXn,0Þ under the sub system _X ¼ FðX,0Þ,
which is obvious,
(iii)
 bGðX,ZÞZ0 in O. We look at some conditions which lead
to this.
But first, the components of bGðX,ZÞ, are

bG1ðX,ZÞ ¼ p1bðbÞIv 1�
Sh

Nh

� �
and bG2ðX,ZÞ ¼ p2bðbÞIh

Sn

v

Nn

h

1�
SvNn

h

NhSn

v

� �
,

where Nn

h ¼Lh=mh and Sn

v ¼Lv=mvðbÞ. Clearly bG1ðX,ZÞZ0 because,
Nh ¼ Shþ Ih ) ShrNh and also in O, SvrLv=mvðbÞ ¼ Sn

v. However,
to have bG2ðX,ZÞZ0 some conditions are required. For example,
we could let the human population be at equilibrium level.
This ensures that 1�SvNn

h=NhSn

v40. Therefore, by the theorem in
(Castillo-Chavez et al., 2002, p. 246), the disease-free equilibrium
is globally asymptotically stable if we assume that the human
population is at equilibrium. The foregoing discussion could be
summarized in the following theorem.

Theorem 4. Suppose that in system (2) the human population is at

equilibrium. If Ro1, then the disease-free equilibrium is globally

asymptotically stable.

In any case, it should be noted that the condition for the global
stability of the DFE given in Castillo-Chavez et al. (2002) is a
sufficient condition, which means that there is a possibility to
come up with other conditions leading to the GAS of the DFE.

The following lemma establishes results for a less severe case
of malaria disease. The condition on the disease-induced death
rate, dh, could indicate whether the system given by (2) has
endemic equilibrium points for Ro1 or not.

Lemma 2. Consider the quadratic equation (9) and R given by (6).
If Rr1, (9) has no positive root when dhomh.

Proof. The parameter b0 in (9) can be expressed as

b0 ¼LhmvðbÞL p2bðbÞþ2mvðbÞ�
mvðbÞR2ðmhþdhÞ

mh

" #
:

Observe that if dhomh, in other words, if the natural death rate of
humans is assumed to be larger than the disease-induced death
rate, we get

p2bðbÞþ2mvðbÞ�
mvðbÞR2ðmhþdhÞ

mh

Zp2bðbÞþ2mvðbÞ�
2mvðbÞR2mh

mh

¼ p2bðbÞþ2mvðbÞð1�R2Þ40

for Rr1, thus, b040. Clearly, from (9) c0Z0 for Rr1 and
a040. Therefore, the quadratic (9) has no positive root as

ðlhðbÞÞ
n
¼�ðb07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

0�4a0c0Þ

q
=2a0o0 for Rr1. &

The following theorem follows from Lemma 2. It establishes
the fact that there is a forward bifurcating branch of equilibrium
points as R passes through 1. This is illustrated by Figs. 6 and 7.

Theorem 5. The system given by (2) has no endemic equilibrium for

Rr1 as long as dhomh.
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4. Analysis of bed-net usage—b

In this section, we determine the critical value for the usage of
bed-nets, but first, we determine the impact of ITNs in reducing
the disease burden.

Taking the derivative of the reproduction number R with
respect to bed-net usage parameter b yields

dR
db
¼�
½bmaxmmaxþmv1ðbmax�bminÞ�

ðmv1þmmaxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1p2Lvmh

LhðghþdhþmhÞ

s
: ð11Þ

As expected, it can be seen from the above that bed-net usage has
a positive impact in reducing the reproduction number R and
thus the disease burden.

Next, we determine the critical value bc for the use of bed-net.
To determine the critical value bc for the use of bed-net, we
consider two cases. In the first case, we assume that the bifurca-
tion is supercritical (forward) and in the second, we consider a
backward bifurcation. Considering the first case, when Ro1,
there is no endemic equilibrium point. If the contact rate

bðbÞomvðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LLh

Lvmhp1p2

s
¼ bc ,

then Ro1. Furthermore, recalling the model used for the contact
rate bðbÞ ¼ bmax�bðbmax�bminÞ and mvðbÞ ¼ mv1þmv2ðbÞ, with
mv2ðbÞ ¼ mmaxb for mortality rate of mosquitoes, it is possible to
see that the condition

b4
bmax�mv1Q

bmax�bminþmmaxQ
¼ bc , ð12Þ

where Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LLh=Lvmhp1p2

p
, is required for the inequality Ro1

to hold. This highlights a critical value, bc, of treated bed-nets
usage that is required to lower the value of R. However, in
general the reduction of R below unity alone is not enough to
eradicate the diseases, except when initial cases of infection in
each population are small. A good example is the emergence of a
backward bifurcation at the critical value R¼ 1. This phenom-
enon is observed in dengue fever and West Nile viruses, which are
vector-borne diseases (Blayneh et al., 2010; Garba et al., 2008).

When there is a backward bifurcation, there is no endemic
equilibrium forRoRc o1. Following the same approach we express
bc in terms of Rc that is, for b4ðbmax�mv1QRcÞ= ðbmax�bminþ

QRcmmaxÞ ¼ bc , where Q is the same constant as in Eq. (12).
Next, we estimate numerically the threshold required to bring

malaria to extinction through bed-net usage. Fig. 8 shows a sche-
matic relationship between R and bed-net usage parameter b. Note
that as net usage increases, R decreases and as net usage decreases,
R increases. Our analyses on the existence of a backward bifurcation
suggested that R had to be less than 0.4 in order to have extinction,
which corresponds to net usage of 0.8.
5. Discussion and conclusion

One of the standard interventions for malaria-control is
insecticide-treated bed nets (ITNs); however, improper handling
and human behavior such as lack of usage can affect the effective-
ness of nets on malaria transmission. We used a mathematical
model to examine the effects of ITNs and human behavior on the
spread of malaria. Although, bed-net usage is not a perfect mitiga-
tion, we demonstrated that bed-net usage has a positive impact in
reducing the reproduction number and thus, disease burden.

The model considered malaria transmission in mosquito and
human populations. The expression in Eq. (7) for the effective
reproduction number R showed its explicit dependence on
the cross-infection of mosquitoes and humans and bed-nets.
The derivative of R with respect to bed-net usage demonstrated
a positive impact in reducing the reproduction number.

Our analysis revealed the existence of a backward bifurcation
for certain parameter values which implies that the reduction of
R below unity alone is not enough to eradicate malaria. There-
fore, additional mitigation strategies such as indoor residual
spraying and treatment might be necessary to reduce malaria
burden and eradication.

The numerical simulation results for the parameters dh ¼ 10�3,
bmax ¼ 0:1, bmin ¼ 0, mmax ¼ 1=21, mh ¼ 1=ð70� 365Þ, mv1 ¼ 1=21,
mv ¼ mv1þmmaxb, Lh ¼ 1=ð70� 365Þ, Lv ¼ 104=21, gh ¼ 1=4 sug-
gested that R should be less than 0.4 in order to have extinction,
which corresponded to bed-net usage of 75%. Therefore, educa-
tional campaigns must continue encouraging the population to
use bed-nets because they will be playing an important role in
eradication activities for malaria.

We conclude that models must include human behavior in order
to provide realistic estimates of malaria dynamics. Improper handling
and lack of use will affect the effectiveness of bed-net activities.
Therefore, more data on human behavior is needed to validate
models, especially if the model predictions are being used to guide
public health policy. We recognize that the dynamics of bed-net
usage may be more complex and could include the emergence of
insecticide resistance and changes on human immunity; however, as
a first approximation, we used a simple model. Even this simple
model displays rich dynamics, including the occurrence of a back-
ward or subcritical bifurcation, which is essential for disease control.
The effects of nonlinear bed-net usage and other aspects of human
behavior on the dynamics of malaria are currently under study and
these shall constitute the basis for a separate paper.
Acknowledgments

This work was assisted through participation of the authors in
the Workshop on Malaria modeling and Control (June 14–17,
2011), an Investigative Workshop at the National Institute for
Mathematical and Biological Synthesis, an institute sponsored by
the National Science Foundation, the U.S. Department of Home-
land Security, and the U.S. Department of Agriculture through NSF



F.B. Agusto et al. / Journal of Theoretical Biology 320 (2013) 58–65 65
Award #EF-0832858, with additional support from The University
of Tennessee, Knoxville.

One of the author S.D.V. has further support from Los Alamos
National Laboratory under the Department of Energy contract
DE-AC52-06NA25396 and a grant from NIH/NIGMS in the
Models of Infectious Disease Agent Study (MIDAS) program
(U01-GM097658-01).

The authors would like to acknowledge Dr. Suzanne Lenhart
for the useful discussions and helpful comments.

References

Agusto, F.B., Gumel, A.B., 2010. Theoretical assessment of avian influenza vaccine.
DCDS Ser. B 13 (1), 1–25.

Blayneh, K.W., Cao, Y., Kwon, H.-D., 2009. Optimal control of vector-borne
diseases: treatment and prevention. DCDS Ser. B 11 (3), 587–611.

Blayneh, K.W., Gumel, A.B., Lenhart, S., Clayton, T., 2010. Backward bifurcation and
optimal control in transmission dynamics of West Nile virus. Bull. Math. Biol.
72 (4), 1006–1028.

Bowman, C., Gumel, A.B., van den Driessche, P., Wu, J., Zhu, H., 2005.
A mathematical model for assessing control strategies against West Nile virus.
Bull. Math. Biol. 67, 1107–1133.

Bhunu, C.P., Mukandavire, W.G., 2009. Modeling HIV/AIDS and tuberculosis
coinfection. Bull. Math. Biol. 71, 1745–1780.

Castillo-Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., Yakubu, A.-A.,
2002. Mathematical Approaches for Emerging and Reemerging Infectious
Diseases. Springer-Verlag, New York.

Chitnis, N., Schapira, A., Smith, T., Steketee, R., 2010. Comparing the effectiveness
of malaria vector–control interventions through a mathematical model. Am. J.
Trop. Med. Hyg. 83 (2), 230–240.

Del Valle, S., Hethcote, H., Hyman, J.M., Castillo-Chavez, C., 2005. Effects of
behavioral changes in a smallpox attack model. Math. Biosci. 195, 228–251.

Dushoff, J., Huang, W., Castillo-Chavez, C., 1998. Backwards bifurcations and
catastrophe in simple models of fatal diseases. J. Math. Biol. 36, 227–248.

Govella, Nicodem J., Okumu, Fredros O., Killeen, Gerry F., 2010. Insecticide-treated
nets can reduce malaria transmission by mosquitoes which feed outdoors.
Am J. Trop. Med. Hyg. 82 (3), 415–419, http://dx.doi.org/10.4269/ajtmh.2010.
09-0579.
Garba, S.M., Gumel, A.B., Abu Bakar, M.R., 2008. Backward bifurcations in dengue
transmission dynamics. Math. Biosci. 215 (1), 11–25.

Goodman, C.A., Mills, A.J., 1999. The evidence base on the cost-effectiveness

of malaria control measures in Africa. Health Policy Plann. 14 (4), 301–312.
Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42 (4),

599–653.
Kayedi, M.H., Lines, J.D., Haghdoost, A.A., Vatandoost, M.H., Rassi, Y., Khamisabady,

K., 2008. Evaluation of the effects of repeated hand washing, sunlight, smoke
and dirt on the persistence of deltamethrin on insecticide-treated nets. Trans.
R. Soc. Trop. Med. Hyg. 10 (2), 811–816.

Killeen, G.F., Smith, T.A., 2007. Exploring the contributions of bed nets, cattle,
insecticides and excitorepellency to malaria control: a deterministic model of

mosquito host-seeking behaviour and mortality. Trans. R. Soc. Trop. Med. Hyg.
101 (9), 867–880.

Lakshmikantham, V., Leela, S., Martynyuk, A.A., 1989. Stability Analysis of Non-
linear Systems. Marcel Dekker, Inc., New York and Basel.

Lengeler, C., 2004. Insecticide-treated bed nets and curtains for preventing
malaria. Cochrane Database Syst. Rev. Art. No.: CD000363.

Milner, F.A., Zhao, R., 2010. A new mathematical model of syphilis. Math. Model.
Nat. Phenom. 5 (6), 96–108.

Pertmann, P., Troy-Blomber, M., 2000. Malaria blood-stage infection and its
control by the immune system. Folia Biol. 46 (6), 210–218, PMID 11140853.

Smith, L., Maire, N., Ross, A., Penny, M., Chitnis, N., Schapira, A., Studer, A., Genton,
B., Lengeler, C., Tediosi, F., De Savigny, D., Tanner, M., 2008. Towards a
comprehensive simulation model of malaria epidemiology and control. Para-

sitology 135, 1507–1516.
Teboh-Ewungkem, M.I., Podder, C.N., Gumel, A.B., 2010. Mathematical study of the

role of gametocytes and an imperfect vaccine on malaria transmission
dynamics. Bull. Math. Biol. 72, 63–93.

van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease transmis-
sion. Math. Biosci. 180, 29–48.

Vanlerberghe, V., Trongtokit, Y., Cremonini, L., Jirarojwatana, S., Apiwathnasorn, C.,
Van der Stuyft, P., 2010. Residual insecticidal activity of long-lasting

deltamethrin-treated curtains after 1 year of household use for dengue
control. Trop. Med. Int. Health 15 (9), 1067–1071.

White, L.J., Maude, R.J., Pongtavornpinyo, W., Saralamba, S., Aguas, R., Van
Effelterre, T., Day, N.P.J., White, N.J., 2009. The role of simple mathematical
models in malaria elimination strategy design. Malaria J. 8, 212.

http://dx.doi.org/10.4269/ajtmh.2010.09-0579
http://dx.doi.org/10.4269/ajtmh.2010.09-0579
http://dx.doi.org/10.4269/ajtmh.2010.09-0579
http://dx.doi.org/10.4269/ajtmh.2010.09-0579

	The impact of bed-net use on malaria prevalence
	Introduction
	Model formulation
	Basic quantitative properties
	Positivity and boundedness of solutions


	Model analysis
	Local stability of the disease-free equilibrium (DFE)
	Existence of backward bifurcation
	Analysis of the model for a special case
	Global stability of DFE for a special case


	Analysis of bed-net usage--b
	Discussion and conclusion
	Acknowledgments
	References




