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Abstract 
 Limited stockpiles of antiviral medications and lack 
of availability of early strain-specific vaccine will require 
a multi-component strategy of pharmaceutical and non-
pharmaceutical measures to delay or contain a future 
catastrophic avian influenza pandemic. A strategy 
composed of the antiviral stockpile distribution, school 
closures, and social distancing, followed by strain-specific 
vaccine when available is proposed. The EpiSimS agent-
based simulation model with a structured population is 
used to assess the effectiveness of this strategy and to 
explore the sensitivity of its elements, in particular the 
level of school closures and the start time for non-
pharmaceutical interventions, with varying amounts of 
expected fear-based isolation behavior. Results show that 
the level of school closure has the largest effect on 
reducing morbidity and mortality, comparable to US 
seasonal flu when starting early with a high level of 
school closures. Small variations of fear-based isolation 
showed little impact on morbidity and mortality, though a 
large second-order effect is seen on worker absenteeism. 
 
1. INTRODUCTION 
 The H5N1 strain of avian influenza continues to be a 
global public threat, making it a likely source for a future 
pandemic [Holmes 2005, Juckett 2006]. The rapid spread 
of influenza, its short incubation period, limited antiviral 
medication supplies [U. S. Department of Health and 
Human Services 2006], lack of early effective vaccines 
[Fedson 2003], and increased air travel pose a significant 
challenge to the design of useful intervention strategies 
for such an event. Combinations of pharmaceutical 
interventions such as distribution of antiviral medication 
and vaccine coupled with non-pharmaceutical 
interventions (school or workplace closures, household 
quarantine, social distancing, travel restrictions) may 
prove to be the best defense, since their potential to delay 
or contain an influenza pandemic has been shown 
[Ferguson 2005, Germann 2006, Glass 2007]. 
 Our first defense against pandemic flu is the ability to 
see it coming. Ongoing surveillance is required to detect 

and track increases in influenza-like illness (ILI) [U. S. 
Department of Health and Human Services 2005, 2007] 
especially for new strains such as H5N1. The national 
influenza surveillance system will provide the virologic 
and disease surveillance data needed to guide response 
efforts during a pandemic [CDC 2007]. Case counts are 
based on weekly data of reported outpatient visits for ILI, 
hospitalizations, and deaths. These are not exact. These 
are the best estimates available to decision-makers to 
determine when to start intervention control measures. 
 Antivirals could be important in the early stages of a 
pandemic influenza in the absence of a strain-specific 
vaccine [Hayden 2001, Longini 2004, Gani 2005, Monto 
2006]. Currently, the federal government has only 
stockpiled enough antiviral courses for approximately 
6.7% of the population [U. S. Department of Health and 
Human Services 2006]. This is insufficient to provide 
adequate long-term prophylaxis for the entire population, 
or even for high-risk populations. Similarly, strain-
specific vaccine may not be available till the later stages 
of a pandemic. Current production of seasonal influenza 
vaccine in the United States is assumed to be 3-5 million 
doses per week with 3-8 months required for development 
[U. S. Department of Health and Human Services 2005, 
U. S. Government Accountability Office 2004]. This will 
be similar for a pandemic influenza strain-specific 
vaccine, with two doses per person required due to the 
absence of pre-existing immunity [World Health 
Organization 2006]. Non-pharmaceutical interventions 
will be required until adequate supplies of vaccine and 
antivirals are available [World Health Organization 
Writing Group 2006].  
 Interventions targeting children such as school 
closures could prove beneficial since children play a 
major role in the spread of influenza due to their extra-
household contacts with peers in school or daycare, 
increased susceptibility, and increased viral shedding 
[Viboud 2004]. This contributes to the burden on the 
healthcare system, results in increased worker 
absenteeism for parents staying home with sick children, 
and causes secondary illnesses among household 
members [Tsolia 2006, Carrat 2002, Neuzil 2002]. 
Schools were closed during the SARS outbreak, which 
helped control its spread [Pang 2003]. Another example 
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was observed during the 1959 pandemic, in which attack 
rates decreased during summer school closures [World 
Health Organization Writing Group 2006]. Currently, 
school closures continue to show a dramatic decline in 
seasonal influenza morbidity [Heymann 2004]. The CDC 
has recommended closing schools from one to three 
months if the next pandemic is similar to the 1918 
influenza pandemic [CNN 2007a].  
 People will modify their behavior to prevent 
themselves from getting infected or be encouraged 
through the public health system. The news of increasing 
numbers of people becoming ill, or seeing friends and 
family fall ill, are strong motivations to avoid potential 
disease spreading situations causing some people to 
isolate to their homes out of fear as a reaction to an 
epidemic crisis. Social distancing measures become 
useful when one cannot stay home by choice or due to the 
fact that 47% of the nation’s private sector workforce has 
no paid sick leave [CNN 2007b]. These include 
maintaining a minimal three-foot distance from 
colleagues, refraining from handshakes and other familiar 
greetings, frequent hand washing, cough etiquette and 
respiratory hygiene, and use of masks. 
 It is important to assess the impact that non-
pharmaceutical interventions could have on future disease 
spread and how they can be optimized [Del Valle 2005]. 
A number of studies have evaluated the impact of 
behavioral changes such as school closures, social 
distancing, and travel restrictions, under different 
scenarios for pandemic influenza [Ferguson 2005, 
Germann 2006, Colizza 2007], with most assuming that 
these behavioral modifications would remain in effect for 
the duration of the pandemic, though lack of resources 
may limit compliance.  
 This study assesses the impact of a multi-component 
intervention strategy of administration of the 6.7% 
stockpile of antivirals to sick individuals and their 
household members coupled with school closures and 
social distancing, followed by distribution of a strain-
specific vaccine when it becomes available. Sensitivity to 
the level of school closures, start time for the non-
pharmaceutical measures, and amount of expected fear-
based isolation behavior is explored. 
 
2. METHODS 
 The epidemic simulation engine, EpiSimS [Stroud 
2007], was used to model the spread of influenza in six 
counties in southern California, consisting of Los 
Angeles, Orange, Riverside, San Bernardino, San Diego, 
and Ventura counties. EpiSimS is a C++ application that 
runs on high-performance computing clusters. It is a 
stochastic agent-based discrete event model that explicitly 
represents every person in a city, and every place within 
the city where people interact. A city or region is 

represented physically by a set of road segment locations 
and a set of business locations. The synthetic population 
was constructed to statistically match the 2000 population 
demographics of southern California at the census tract 
level, consisting of 18.8 million individuals living in 6.3 
million households, with an additional 938,000 locations 
representing actual schools, businesses, shops, or 
restaurant addresses. Each person as an agent in the 
simulation is assigned a schedule of activities to be 
undertaken throughout the day. There are eight types of 
activities: home, work, shopping, visiting, social 
recreation, passenger server, school, and college; plus a 
ninth activity designated other. Information about the 
time, duration, and location of activities is obtained from 
the National Household Transportation Survey [U. S. 
Department of Transportation 2003]. The integration of 
the population, activities, and geo-referenced locations 
forms the dynamic social network in EpiSimS. 
 The number of people at a location at any time varies 
widely, from zero up to many thousands. Not every pair 
of individuals who happen to be at the same location at 
the same time will be close enough to transmit disease. In 
EpiSimS, each location is partitioned into one or more 
rooms or mixing groups where the various types of 
activities take place. Disease transmission events can only 
occur between individuals that occupy the same room at 
the same time. A school activity at a location will be sub-
divided into classrooms, while work activities will be 
split into workrooms with sizes set according to standard 
industry classification (SIC) codes. All households on a 
city block are represented as a single geo-referenced 
location, which is divided into separate rooms, each 
representing an individual home. 
 The epidemiology of the future influenza virus is not 
known and it will not be known until it emerges, 
therefore, our influenza disease model is based on 
historical data and previous epidemic models. Disease 
progression in EpiSimS is characterized by 14 states 
[Stroud 2007]. A susceptible individual after becoming 
infected progresses through a sequence of disease states, 
beginning with non-infectious incubation followed by a 
pre-symptomatic infectious stage. From there, an 
individual can become symptomatic-infectious, or 
asymptomatic-infectious. The asymptomatic-infectious 
individuals pass through a less-infectious stage and then 
recover. The symptomatic-infectious individuals either 
are not sick enough to curtail their activities or so sick 
that they must stay home (non-circulating). Those that 
continue their activities pass through a less-infectious 
stage and then recover. Those symptomatics that stay 
home split into manifestations with and without severe 
complications such as pneumonia that would require 
hospitalization. Non-circulating symptomatics will either 
die or progress through a convalescent stage on their way 
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to recovery. The duration of each state is a stochastic 
variable, with distributions of sojourn times matched to 
case history distributions (Longini 2004). 
 Scenarios are constructed as a set of parameterized 
specifications of behavior modifications, pharmaceutical 
interventions, and/or non-pharmaceutical interventions 
sequenced by start and stop times, with some overlapping. 
Descriptions of the scenario elements used in the multi-
component strategy follow. 
 In every scenario, people self-isolate to their homes 
while they are incapacitated. A household adult will stay 
home with a sick child and abstain from their non-home 
daily activities until the child has recovered. 
 In EpiSimS, ten-day courses of antivirals are 
delivered to sick individuals for therapeutic treatment and 
as prophylactic treatment to their household members 
starting on the first day. This reduces the probability of 
transmission by a factor of 5 only during treatment. It is 
assumed that 95% of household contacts will accept 
treatment. Those who receive prophylaxis and are 
exposed during treatment have a 20% chance of becoming 
infected. In the scenarios, it is assumed that there are only 
enough antiviral courses available for 6.7% of the 
population based on the U. S. stockpile in the simulations. 
 School closures in EpiSimS are implemented as a 
general closure of selected activity locations. Based on 
the CDC pandemic guidelines [CNN 2007a], closures 
follow a step-like function and are specified in EpiSimS 
with a start and stop time, the activity to close, and the 
location. The location can be specified as a single location 
or a fraction of all locations of the specified activity type 
that will be closed. During the time a closure is in effect, 
anyone whose activity schedule would have taken them to 
one of the closed locations will go home during that time 
instead. They will follow their other scheduled activities 
as usual. At least one household adult will stay home with 
a child who is isolating due to a school closure. Given the 
fraction of schools to be closed, schools are chosen at 
random from the six counties in southern California. In 
the scenarios, 20% and 100% of schools are closed for 5 
months. 
  Fear-based home isolation is used to simulate people 
staying home as a reaction to an epidemic crisis. Some of 
these people may be considered the “worried well.” It is 
assumed that people isolate due to fear at a level that 
follows the pattern of the epidemic. That is, fear-based 
home isolation is modeled by a triangle function, 
specified with start, peak, and end times and 
corresponding fractions of the population that will be 
isolating at those times, along with a minimum and 
maximum contiguous duration per individual. Since it 
may not be feasible for many people to stay home for 
long periods of time (due to lack of resources), it is 
assumed that people who choose to stay home will only 

self-isolate for 7 to 14 days.  In the simulation, when fear-
based home isolation is in effect, at the beginning of each 
simulated day the percentage of the population that should 
be isolating that day is calculated and if required, people 
are added randomly from those not currently isolating. 
When a person goes into fear-based home isolation, a 
contiguous duration of 7-14 days is chosen from a 
uniform distribution. Once people go out of fear-based 
home isolation, others start and they are also eligible to go 
back to fear-based home isolation for another duration. 
This behavior is implemented synchronously in the 3978 
census tracts of southern California. People isolate on an 
individual basis, not on a household basis, so there might 
be households in which some members of the family are 
isolating due to fear and others are going about their daily 
activities. In the scenarios, fear-based isolation continues 
for 5 months with peaks of 5%, 10%, and 15% of the 
population. 
 Social distancing is implemented in the EpiSimS 
model as a reduction in the probability of infection. 
Children age six and under do not participate. It is 
assumed that social distancing reduces both the 
susceptibility and infectiousness of the population by a 
certain percentage during their non-household related 
interactions. These behavioral modifications are specified 
with a start and stop time. In this strategy, 10% social 
distancing with 85% compliance is in effect across all 
non-home activities as part of all multi-component 
scenarios. 
 Based on the typical seasonal influenza vaccine 
production, an estimate of 4 million doses per week was 
used with vaccine becoming available after 5 months. It is 
assumed that a limited number of courses, enough to 
cover 0.67% of the population of southern California per 
week will become available five months after the 
emergence of pandemic influenza. Vaccine is distributed 
to households at random in EpiSimS until supplies run 
out, with 95% of selected household members being 
vaccinated. The vaccine approach used in this study is a 
per person course of two doses of pandemic vaccine taken 
1 month apart providing an immune response of near 80% 
seropositivity after 42 days from the first dose [Lin 2006]. 
Complete immunity is assumed in 80% of the recipients. 
If any of the 20% of vaccinated persons that do not 
develop immunity become infected, they would be only 
one fifth as infectious as their unvaccinated counterparts. 
Every unvaccinated household has an equal chance of 
receiving the next available course.  
 Each simulation scenario yields tabulations of 
epidemic parameters, new infections per activity, and 
worker absenteeism statistics. The epidemic parameters 
include daily counts of new infections, symptomatics, 
mortality, etc. overall and by demographic group (ex. 
preschool, youth, adult, senior). Daily activity counts 
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show the numbers of individuals that became infected 
during activities such as home, work, shopping, visiting, 
social recreation, passenger server, school, college, and 
other. Daily fractions of the working population that are 
absent due to illness, death, or other (ex. staying home 
with children due to illness or school closure or fear) are 
assembled, along with the cumulative days lost. 
 
3.  RESULTS 

The homeland security council suggests that the 
emergence of a new influenza virus could have a clinical 
disease attack rate of 30% in the overall population [U. S. 
Homeland Security Council 2006]. Scientists have 
determined that pandemic flu strains tend to infect 
between 25% and 35% of the population based on 
evidence from the three pandemics that occurred during 
the 20th century. A baseline scenario was constructed 
under the assumption of no specific intervention to 
contain the pandemic and an infection attack rate of 45% 
with a clinical attack rate of 30%. A value for the 
reproductive number ℜ0 of 1.8 was calculated for the 
baseline, which is in agreement with estimated 
reproduction numbers for pandemic influenza [Longini 
2004, Ferguson 2005]. People are assumed to self-isolate 
to their homes while they are incapacitated in all 
scenarios. 
 
3.1. Epidemic 
 Our simulations show that a multi-component 
strategy provides an effective way to reduce the spread of 
the epidemic. A stockpile of antiviral courses for 6.7% of 
the population is available from the beginning of the 
simulation. Non-pharmaceutical interventions of school 
closure, and social distancing, along with fear-based 
isolation behavior are started when different percentages 
of the population are symptomatic lasting for 5 months, 
overlapping vaccine delivery. A 2-dose, 80% effective 
vaccine becomes available at 5 months. A suite of 
scenarios was run varying school closure level, non-
pharmaceutical intervention start, and peak population 
isolating due to fear. A low level of 20% school closures 
was considered, as well as a high level of 100%. For each 
level of school closures, interventions started when 
0.01%, 0.1%, and 1.0% of the population is symptomatic 
(day 30, 53, and 80). For each level of school closures and 
interventions beginning only when 0.1% of the population 
is symptomatic, peak fear isolation was varied between 
5%, 10%, and 15%. 10% social distancing is used in all 
cases. 
 Table 1 shows that in the absence of any intervention, 
the model predicts a 30.6% clinical attack rate and 614 
influenza related deaths per 100,000 persons in the 
population. The results are ordered by clinical attack rate 
(the percentage of the population that was ever 

symptomatic) in Table 1. All tables in this report use the 
same ordering for easy comparison. The level of school 
closure has the largest effect. 20% school closures reduce 
the clinical attack rate by 5-10%. 138-239 more lives are 
saved per 100,000. Interventions starting at 1.00% with a 
100% school closure are similar to the lower level of 
school closure. The rest of the 100% school closure 
results show low morbidity and mortality, less than that 
for US seasonal flu. Starting interventions when 0.01% of 
the population is symptomatic with a low level of school 
closures provides the least improvement since the 5 
months of interventions are let up before the pandemic 
has been contained. Starting interventions when 0.01% of 
the population is symptomatic provides the best results 
with a high level of school closures, but a 0.10% start 
may be more realistic and provides similarly good results 
(note shaded lines in Table 1). 
 
Table 1. Epidemic results for different variations of a multi-component 
intervention strategy. 

% of 
Population 

Symptomatic 
at Start of 

Interventions 

% 
School 
Closure

% Peak 
Fear 

Isolation 

Clinical 
Attack 
Rate % 

 

Mortality 
per 

100,000 
 

Baseline - - 30.6 614 
0.01 20 15 25.5 476 
1.00 20 15 22.7 421 
0.10 20 5 22.1 410 
0.10 20 10 20.6 381 
0.10 20 15 20.4 375 
1.00 100 15 18.6 335 
0.10 100 5 0.6 4 
0.10 100 10 0.5 4 
0.10 100 15 0.3 2 
0.01 100 15 0.1 0.4 

 
 The entire 6.7% stockpile of antiviral medications is 
distributed whether starting interventions when 1.00% of 
the population is symptomatic or with a low level of 
school closures. The 2-dose, 80% effective vaccine is 
distributed to over one fourth of the population in these 
cases. Vaccination of a smaller portion of the population 
indicates a shorter pandemic, either due to being 
uncontained with a low level of school closures or being 
contained quickly with a high level of school closures. 
 In Figure 1A-D the symptomatic percentage of the 
population as a function of time is shown for the baseline 
and multi-component strategy variants with 20% school 
closures and starting interventions when 0.01%, 0.10%, 
and 1.00% of the population is symptomatic (days 30, 53, 
and 80). The 20% school closure, 10% social distancing, 
and 15% fear-based isolation are relaxed after 5 months 
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due to the availability of a strain-specific vaccine. Starting 
interventions at 0.01% is too early since the pandemic is 
only partially contained within 6 months. Starting 
interventions at 1.00% appears to be a little late, but does 
reduce the symptomatic peak to about 5.5% compared to 
about 10% for baseline. Starting at 0.10% provides the 
best containment for this situation, though given the slow 
delivery rate of vaccine courses, a small second wave of 
cases appears. The multi-component strategy with a low 
level of school closures provides a low level of 
containment and is able to delay the spread of a 
pandemic. 
 

Figure 1. Symptomatic percentage of the population as a function of time 
for the baseline and multi-component strategy with 20% school closures 
and varying non-pharmaceutical intervention start time: (A) baseline, (B) 
0.01%, (C) 0.1%, and (D) 1.0%. 

 

Figure 2. Symptomatic percentage of the population as a function of time 
for the baseline and multi-component strategy with 100% school closures 
and varying non-pharmaceutical intervention start time: (A) baseline, (B) 
0.01%, (C) 0.1%, and (D) 1.0%. 

 

 In Figure 2A-D the symptomatic percentage of the 
population as a function of time is shown for the baseline 
and multi-component strategy variants with 100% school 
closures and starting interventions when 0.01%, 0.10%, 
and 1.00% of the population is symptomatic (days 30, 53, 
and 80). The 100% school closure, 10% social distancing, 
and 15% fear-based isolation are relaxed after 5 months 
due to the availability of a strain-specific vaccine. Starting 
interventions at 0.01% and 0.10% allows the pandemic to 
be contained before much vaccine is available. Starting 
interventions at 1.00% contains the epidemic effectively 
until vaccine is available, but given the slow delivery rate 
of vaccine courses, a small second wave of cases appears. 
A multi-component strategy with a high level of school 
closures provides a high level of containment. The sooner 
it is started, the better the results are. 
 Varying the peak percentage of fear-based isolation 
behavior between 5%, 10%, and 15% with a low level of 
school closures and starting interventions when 0.10% of 
the population is symptomatic does not cause a significant 
difference in morbidity and mortality, as seen in Table 1, 
though the symptomatic peak % decreases with more 
fear-based isolation, as seen in Figure 3A-D. There is a 
similar effect with a high level of school closures. 
 

Figure 3. Symptomatic percentage of the population as a function of time 
for the baseline and multi-component strategy with 20% school closures 
and varying the peak percentage of people isolating due to fear: (A) 
baseline, (B) 5%, (C) 10%, and (D) 15%.  
 
3.2. Worker Absenteeism 
Table 2 shows the peak percentage of worker absenteeism 
and cumulative days absent per worker for the multi-
component strategy. Level of school closures is not 
correlated with worker absenteeism, since workers 
staying home with children contribute only a small 
fraction. In the multi-component strategy, more fearful 
people result in more worker absenteeism. High peak 
absenteeism of about 18% results from a 15% peak fear 
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isolation behavior, while around half that for 5% peak 
fear. Low levels of fear contribute to less lost days (note 
shaded lines in Table 2.). 
 
Table 2. Results for peak worker absenteeism and cumulative absent 
days per worker. 

 Worker 
Absenteeism 

% of 
Population 

Symptomatic 
at Start of 

Interventions 

% 
School 
Closure 

% Peak 
Fear 

Isolation 

Peak 
% 
 

Cum 
Days 

 

baseline - - 7.97 2.79 
0.01 20 15 16.81 15.37 
1.00 20 15 17.05 14.68 
0.10 20 5 9.32 7.86 
0.10 20 10 14.07 11.66 
0.10 20 15 18.25 15.32 
1.00 100 15 18.06 17.65 
0.10 100 5 7.91 8.07 
0.10 100 10 12.88 10.79 
0.10 100 15 17.76 15.08 
0.01 100 15 17.71 14.11 

 
4. DISCUSSION 
 A multi-component strategy for pandemic influenza 
composed of distribution of the currently available 
national stockpile of antivirals for therapeutic and 
prophylactic treatment coupled with school closures and 
social distancing along with expected fear-based isolation 
behavior could potentially delay or contain the spread of a 
pandemic until a strain-specific vaccine becomes 
available. An agent-based simulation model with a 
structured population was used to demonstrate this. The 
sensitivity to level of school closures, start time of the 
non-pharmaceutical interventions, and amount of fear 
were assessed in this work. 
 The level of school closures has the largest effect. 
Simulations show that a low level of school closures 
provides limited reductions in morbidity and mortality, 
though still lower than baseline. The entire 6.7% antiviral 
stockpile and enough vaccine for about 25% of the 
population are necessary in this case, due to a lengthened 
pandemic. A high level of school closures when non-
pharmaceutical interventions are started early is required 
to produce significant reductions in morbidity and 
mortality, less than US seasonal flu. Starting later may 
require more than the 5 months of non-pharmaceutical 
interventions to prevent a second wave due to the slow 
rate of vaccine delivery. Less than the antiviral stockpile 
and a small portion of available vaccines are used when 

school closures are at a high level due to a shortening of 
the pandemic.  
 The accuracy of when non-pharmaceutical 
interventions are started is dependent on high-quality 
surveillance. Starting when 0.1% of the population is 
symptomatic, provides the best compromise for low and 
high levels of school closures. Interestingly, with a low 
level of school closures, the pandemic is delayed longer 
when starting earlier, while the opposite effect is seen 
with a high level of school closures.  
 In reality, fear in the population cannot be controlled. 
Small differences in the amount of fear-based isolation 
behavior, peaking at 5-15%, with all other elements kept 
constant, showed little impact on morbidity and mortality, 
though a large second-order effect is seen on worker 
absenteeism. The economy can be adversely affected by 
workers staying home due to fear, resulting in more lost 
worker-days. Adult workers that stay home with children 
who are sick or at home due to school closure additionally 
contribute a small amount to worker absenteeism.  
 This multi-component strategy of pharmaceutical and 
non-pharmaceutical interventions was shown to be 
effective, especially with an early start and a high level of 
school closures. Simulations show that the suggested non-
pharmaceutical interventions are able to contain a 
pandemic until vaccine is available, even with the current 
low vaccine production rate. Advances in vaccine 
development enabling earlier availability and increased 
production rates such as a cell-based approach could 
lessen the time of non-pharmaceutical interventions. 
 The EpiSimS agent-based simulation model is a 
useful tool for understanding the sensitivity of elements in 
an intervention strategy such as proposed in this work, the 
potential results, and implications. 
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