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ABSTRACT
In recent years, the water distribution expansion planning (WDEP) problem has become increas-
ingly complex as the demands on water distribution systems have evolved to meet modern require-
ments. This paper describes an algorithm that combines the strengths of local search with global
search to flexibly handle these difficult problems. The algorithm decomposes a WDEP problem
into sub problems using a local search procedure called Large Neighborhood Search (LNS). Each
sub problem is solved exhaustively (or partially) using global search techniques such as branch-
and-bound search. The utility of the approach is demonstrated on the problem described in the
Battle of the Water Networks II competition.

INTRODUCTION
The past few decades have seen stress placed on water distribution networks around the world due
to aging infrastructures, water quality concerns, increasing demand for water, diminishing sup-
plies, and a desire to reduce the carbon footprint of water systems. To address this challenge, the
14th Water Distribution Systems Analysis Symposium has issued a Battle of the Water Networks
II competition. In this paper, we describe our approach to solving the problem of expanding and
controlling closed pipe water distribution systems to meet future demand, satisfy multiple objective
functions, and meet robustness criteria. We generalize algorithms developed for the electric power
systems domains of transmission expansion planning (Bent et al. (2012)), integrated resource plan-
ning (Bent et al. (2011)), restoration scheduling (Coffrin et al. (2012)), and vehicle routing (Bent
and Van Hentenryck (2004)).

In this paper we use a decomposition-based approach that separates the problem into distinct sub
problems that are solved iteratively using a procedure referred to as Large Neighborhood Search
(LNS) (Shaw (1998)). Each sub problem is solved within a (potentially truncated) branch-and-
bound search procedure that intuitively is not unlike some of the ideas developed by the simulation
optimization community where each partial solution explored in the branch-and-bound search is
evaluated using a water network simulation package. The key contribution of the algorithm is a
technique for combining global search techniques with local search to find high quality solutions.
The local search iteratively determines the sub problems to consider and the global search procedure
is executed on each sub problem.

Review The WDEP problem is NP-Hard due to the non-linearities present in the head-loss mod-
els of water systems (Rossman (2000)) and the discrete variables (e.g., pipe diameters, etc.) in
water network expansion (Yates et al. (1984); Gupta et al. (1993)). As a result, there is a large
body of solution approaches for solving the WDEP in the literature. These approaches include lin-
ear programming and non-linear programming (Kessler and Shamir (1989); Fujiwara and Khang
(1990); Sherali et al. (2001); Bragalli et al. (2008)) and evolutionary algorithms (EA). The EA algo-
rithms include genetic algorithms (Dandy et al. (1996); Wu and Simpson (2001); Reca and Martinez



(2006); Ewald et al. (2008); Kadu et al. (2008)), simulated annealing (Tospornsampan et al. (2007)),
ant colony optimization (Maier et al. (2003); Zecchin et al. (2005); Tong et al. (2011)), Harmony
Search (Geem (2009)) and particle swarm optimization (Montalvo et al. (2008)). While these ap-
proaches have made significant contributions to the field, it is clear that there are oppurtunities to
expand and enhance this literature to further the state-of-the-art.

The rest of the paper is organized as follows. The next section formally defines the WDEP problem.
The second section describes the algorithm used to find solutions to the WDEP problem. The third
section describes to the solution the problem provided by the Battle of the Water Networks II. The
fourth section discusses the results. The final section concludes the paper.

PROBLEM DEFINITION
The model of a water distribution network described in this paper follows the definitions provided
in the EPANET software package (Rossman (2000)). The minimal set of features of a water distri-
bution network that are required to fully define our approach are discussed in this section.

Nodes The problem is described in terms of a set of nodes, N , that represent geographically
located points in a water network e.g., reservoirs (RESERVOIRS), tanks (TANKS), and junctions
(JUNCTIONS), such that N = RESERVOIRS ∪ TANKS ∪ JUNCTIONS. For each junction i ∈
JUNCTIONS, the function di,τ is used to define the demand for water at time τ. For each reservoir
r ∈ RESERVOIRS, the function hr,τ is used to define the hydraulic head at time τ. For each tank
t ∈ TANKS, e+ and e− define the maximum and minimum water storage elevation respectively. The
decision variable vt is used to define the volume of the tank. vt has discrete domain [vt

0,vt
1, . . . ,vt

n].

Edges The problem is also described in terms of a set of edges, E . For an edge i, j ∈ E between
nodes i and j, the decision variable pd

i, j is used to denote the number of pipes with diameter d,

where pd−
i, j ≤ pd

i, j ≤ pd+

i, j . The set of possible diameters is denoted by D. The decision variable uπ
i, j

is used to denote the number of pumps of type π between i and j, where uπ−
i, j ≤ uπ

i, j ≤ uπ+

i, j . The set
of possible pump types are defined by I. The decision variable vd

i, j is used to denote the number of

valves with diameter d between i and j, where vd−
i, j ≤ vd

i, j ≤ vd+

i, j . The Boolean decision variable gi, j
is used to denote the existence of a backup diesel generator for components (pumps) on edge i, j.

Controls Finally, the problem is also defined by control statements that determine the status of
edges. The decision variables k+i, j and k−i, j denote the times when components (pumps and valves)
on edge i, j are activated and deactivated respectively. The coupled decision variable κ

+
i, j and κ

−
i, j

denotes the node attribute and value that causes edge i, j to be activated and deactivated respectively
(for example, tank water levels).

Solution A solution, σ, is defined as a set of variable assignments to the variables of the WDEP
problem, i.e.1.⋃
τ∈T

[vt ← χvt ] ∪
⋃

i, j∈E
[pd

i, j← χpd
i, j
] ∪

⋃
i, j∈E

[uπ
i, j← χuπ

i, j
] ∪

⋃
i, j∈E

[vd
i, j← χvd

i, j
] ∪

⋃
i, j∈E

[k+i, j← χk+i, j
] ∪

⋃
i, j∈E

[k−i, j← χk−i, j
] ∪

⋃
i, j∈E

[κ+
i, j← χ

κ
+
i, j
] ∪

⋃
i, j∈E

[κ−i, j← χ
κ
−
i, j
] ∪

⋃
i, j∈E

[gi, j← χgi, j ] (1)

1The notation [a← b] is used to denote the assignment of a value, b, to a variable a



where χ is drawn from the respective domains of each variable. By convention, unassigned vari-
ables are assumed to be the “no change” assignment, i.e. the assignment in the initial network
model. For convenience, we use the notation y to denote a generic variable drawn from equation
(1).

Simulation Our algorithm has at its disposal a simulator2, S , for determining the flow of water in
σ. Spi,τ(σ) is used to denote the pressure at node i at time τ as calculated by S . Similarly, Set,τ(σ) is
used to denote the water elevation at tank t at time τ, Sζi, j,τ(σ) is used to denote the cost of energy
used by edge (pump) i, j, Sηi, j,τ(σ) is used to denote the carbon usage of edge (pump) i, j, Sνi, j,τ(σ)
is used to denote the velocity of flow through edge i, j at time τ, and Sωi,τ(σ) is used to denote the
age of water at node i at time τ. The notations are shortened to pi,τ,ei,τ,ζi, j,τ,ηi, j,τ,νi, j,τ and ωi,τ
when S(σ) is understood from context.

A solution σ is feasible when the following constraints are satisfied:

pi,τ ≥ p−i ∀i∈N ∀τ∈T (2)

et,τ + et,τ+∆ > 2e− ∀t∈TANKS∀τ∈T (3)
et,T ≥ lt ∀t∈TANKS (4)

∑
d∈D

pd
i, j ≥ pd−

i, j ∀i, j∈E (5)

Constraint (2) states that the pressure of a node i, must be larger than some threshold p−i for all
times in a time period T . Constraint (3) states that a tank cannot be at its minimal level for ∆ time
(30 minutes in this case). Constraint (4) states that a tank must have at least a specified level (lt) of
water in the last time period T . Constraint (5) states that there must be a minimal number of pipes
between two nodes i and j. This ensures that existing pipe locations cannot be decommissioned.

In addition, there is a robustness criterion where a sequence of problems is created with the follow-
ing control statements to model power outages.

k−i, j = τ ∀d∈D∀i, j∈E : ¬gi, j ∧ uπ
i, j > 0 (6)

k+i, j = τ+δ ∀d∈D∀i, j∈E : ¬gi, j ∧ uπ
i, j > 0 (7)

The control statements (equations 6 and 7) turn off pumps that do not have backup generators
between times τ and τ+ δ (δ = 2 hours in this case). Constraint (2) must be satisfied for these
problems. Problems are created for each possible τ.

As the initial network models often contain constraint violations, the physical constraints (equations
2-4) are relaxed and added to the objective function. The pressure violation of σ is calculated as
the sum of pressures the fall below thresholds, i.e.

µ(σ) = ∑
i∈N

∑
τ∈T

max(0, p−i − pi,τ). (8)
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The tank minimum elevation violation of σ is calculated as the sum of the number of times a tank
is at its minimal level for ∆ time, i.e.

ρ(σ) = ∑
t∈TANKS

∑
τ∈T

1−
⌈

et,τ + et,τ+∆−2e−

2e+

⌉
. (9)

The final tank elevation violation of σ is calculated as the sum of elevations that do not meet
minimal elevation requirements at the end of the simulation, i.e.

ψ(σ) = ∑
t∈TANKS

max(0, lt− et,T ). (10)

The cost of σ is calculated as the sum of construction and operating costs, i.e.

ζ(σ) = ∑
i, j∈E

∑
d∈D

ζ(pd
i, j)+ ∑

i, j∈E
∑

d∈D
ζ(vd

i, j)+ ∑
i, j∈E

∑
π∈I

ζ(uπ
i, j)+ ∑

t∈TANKS
ζ(vt)+ ∑

i, j∈E
∑
τ∈T

ζi, j,τ, (11)

where ζ() is a function that computes the cost of building the specified components. The carbon
output of σ is calculated as the sum of carbon output from construction and operations, i.e.

η(σ) = ∑
i, j∈E

∑
d∈D

η(pd
i, j)+ ∑

i, j∈E
∑
τ∈T

ηi, j,τ, (12)

where η() is a function that calculates the carbon output when the specified components are con-
structed. The water age of σ is calculated according to the formula provided in (Salomons et al.
(2012)), i.e.

ω(σ) =
∑i∈N ∑τ∈T wi,τdi,τ(i,τ)ωi,τ

∑i∈N ∑τ∈T di,τ(i,τ)
, (13)

where wi,τ = 1 if ωi,τ is greater than some threshold W 3, and 0 otherwise. The objective function,
f (σ), is a lexicographic multi-objective function4 of the form

min f (σ) = 〈µ(σ),ρ(σ),ψ(σ),ζ(σ),η(σ),ω(σ)〉 . (14)

A lexicographic ordering of the objectives is a natural model in this case as constraint satisfaction
clearly has primacy over cost, water age, and carbon. Cost and carbon tend be correlated, where
decreasing cost decreases carbon output, and vice versa. Water age is slightly more problematic,
however, as we observed that reducing water age tends to require significant increases in cost. As
the competition expects equal weighting for each of the objectives, this suggested cost reduction
dominates water age. More generally, the last three objectives should be treated as purely multi-
objective, however in this competition a lexicographic ordering appears to be reasonable.

METHODOLOGY
The core of our algorithm relies on a Discrepancy Bounded Local Search (DBLS) developed for
expansion planning of power grids (Bent et al. (2012)). DBLS builds on simulation optimization
ideas by encapsulating the simulation of infrastructure networks into a “black box” that is queried
by DBLS for information about how a solution operates (i.e., S(σ)). The intuition behind DBLS is

32 days in this case
4Lexicographic objective functions define objective functions in order of primacy. The first objective is used to

compare two solutions. In the case of ties, the second objective is used, and so forth.



to generalize constructive heuristics that make good decisions on how to build solutions, but make a
few bad decisions from time to time. DBLS embeds the heuristic in a branch and bound search tree
as the branching heuristic and explores those solutions that are within δ violations (discrepancies)
of the heuristic, where δ is a user-specified parameter. The formal algorithm of DBLS is presented
in Figure 1.

DBLS(σ,ϒ,δ)
1 if δ = 0
2 then return σ;
3 σ∗← σ;
4 y← CHOOSEVARIABLE(ϒ,σ);
5 〈χ1,χ2, . . . ,χk〉 ← ORDERDOMAIN(y);
6 σ← σ\ [y← σ(y)];
7 for i← 1 . . .k
8 do σi← σ∪ [y← χi];
9 if f (σi)≤ f (σ∗) and S(σi)

10 then σ∗← σi;
11 DBLS(σi,ϒ\ y,δ− i);
12 return σ∗;

Figure 1: Discrepancy-Bounded Local Search

DBLS takes as arguments a solution σ, (often the current state of the network); a set of variables,
ϒ, drawn from ⋃

τ∈T

vt ∪
⋃

i, j∈E ,d∈D

pd
i, j ∪

⋃
i, j∈E ,π∈I

uπ
i, j ∪

⋃
i, j∈E ,d∈D

vd
i, j ∪

⋃
i, j∈E

k+i, j ∪

⋃
i, j∈E

k−i, j ∪
⋃

i, j∈E
κ
+
i, j ∪

⋃
i, j∈E

κ
−
i, j ∪

⋃
i, j∈E

gi, j; (15)

and a discrepancy parameter, δ. The first two lines of Figure 1 check if the number of discrepancies
has dropped to 0. Line 3 initializes the best solution discovered with the current solution. Line 4
chooses a variable y to explore. More formally the function CHOOSEVARIABLE is defined by:

y = arg min
y∈Varset

f (σ∪ [σ(y)← ORDERDOMAIN(y)1]) (16)

Line 5 executes the heuristic for ordering the domain of y. The domain is ordered by the following
function

〈χ1,χ2, . . . ,χn〉 : f (σ∪ [σ(y)← χi])≤ f (σ∪ [σ(y)← χi+1]) (17)

Line 6 unassigns the current variable assignment of y (if any) and lines 7–11 iterate over the ordered
domain of the variable. δ is decremented by violations in the ordering heuristic. Line 9 implicitly
updates attributes associated with the new σ by executing S . Line 12 returns the best solution
discovered. From a search tree perspective, Figure 2 provides an illustration of DBLS’s search on
a binary tree for δ = 0,1,2 and 3. As is seen in the figure, the running time of DBLS is exponential
in δ and |ϒ| (the number of solutions considered is ∑i=1...δ

(|ϒ|×k
i

)
, where k is the maximum size of

a variable’s domain) (Korf (1996)).



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Figure 2: An example of the DBLS algorithm on a simplified binary search tree from (Bent et al.
(2012)). On the left is the portion of the search tree explored when δ = 0, i.e., only expansion
decisions suggested by the constructive heuristic are considered. The subsequent pictures show the
portions of the search tree explored when δ = 1,2 and 3.

DBLS(σ,ϒ,δ,α)
1 if δ = 0 or α = 0
2 then return σ;
3 σ∗← σ;
4 y← CHOOSEVARIABLE(ϒ,σ);
5 〈χ1,χ2, . . . ,χk〉 ← ORDERDOMAIN(y);
6 σ← σ\ [y← σ(y)];
7 for i← 1 . . .k
8 do σi← σ∪ [y← χi];
9 if f (σi)≤ f (σ∗) and S(σi)

10 then σ∗← σi;
11 if f (σi)≤ f (σ)
12 then α← 0;
13 else α← α−1;
14 DBLS(σi,ϒ\ y,δ− i,α);
15 return σ∗;

Figure 3: Discrepancy-Bounded Local Search with α

As in (Bent et al. (2012)) DBLS includes a key generalization that improves its performance based
on the observation that f (σ) is non-monotonic. In other words, adding components can cause
µ(σ),ρ(σ) and ψ(σ) to rise or fall (sometimes referred to as Braess’s paradox (Bienstock and
Verma (2010))). To control this behavior, a parameter, α, is used to limit the number of times in a
row that f (σ) may worsen. The modified algorithm is presented in Figure 3.

Large Neighborhood Search The computational requirements of DBLS can be significant, in
particular the execution of ORDERDOMAIN and CHOOSEVARIABLE requires S to be executed
O(|χ||ϒ|) times at each node in the search tree.5 Thus, it was computationally beneficial to it-
eratively decompose the problem into smaller subproblems, and solve each subproblem via DBLS
using a technique called Large Neighborhood Search (LNS) (Shaw (1998)). The overall algorithm
is described in Figure 4. In this algorithm, line 3 selects a subset of the variables to consider
based on the current solution σ, the set of variables ϒ, and the size of the subset i. Once the set

5We reduce the computational requirements by executing the ordering once at the beginning of the search, trading
computational efficiency for heuristic accuracy.



of variables is selected, the neighborhood of σ, consisting of assignments of the variables in ϒ̂,
is explored using DBLS. This is repeated for subsets of up to size maxSize with maxIterations
(lines 1-2) decompositions created for each size. In this paper we considered four implementations
of SELECTVARIABLES and choose an implementation at random when executing line 3. The first
implementation selects a subset of variables at random:

SELECTVARIABLES-R(σ,n,ϒ)
1 ϒ̂← /0;
2 for i← 1 . . .n
3 do y← RANDOM(ϒ);
4 ϒ̂← ϒ̂∪ y;
5 ϒ← ϒ\ y;
6 return ϒ̂;

where lines 2-5 iteratively add a randomly selected variable until n are selected. The second imple-
mentation selects a class of variables at random (for example, all pump variables), and selects from
that class at random, i.e.

SELECTVARIABLES-RT(σ,n,ϒ)
1 ϒ̂← RANDOM(ϒ);
2 return SELECTVARIABLES-R(σ,n, ϒ̂);

where line 1 selects a random type of variable and line 2 selects a subset of those variables ran-
domly. The third implementation selects a graphically connected set of variables at random. The
intent of this implementation is to exploit graphical structure and discover connected regions of the
network that require augmentation, i.e.

SELECTVARIABLES-C(σ,n,ϒ)
1 ϒ̂← /0;
2 Γ← RANDOM(N ∪E);
3 while |ϒ̂|< n
4 do γ← RANDOM(Γ);
5 y← RANDOM(γ,ϒ);
6 Γ← Γ∪GRAPHNEIGHBOR(N ∪E ,γ);
7 if y 6= /0

8 then ϒ̂← ϒ̂∪ y;
9 ϒ← ϒ\ y;

10 else Γ← Γ\ γ;
11 return ϒ̂;

where line 2 selects a random component in the network to initialize the search. Lines 3-10 iter-
atively adds variables that are graphically connected to the selected component. Line 4 selects a
component γ from Γ. Line 5 selects a random variable associated with γ. Line 6 adds the com-
ponents connected to γ. These include edges connected to a node and vice versa, as well as com-
ponents connected through control statements. If there is a variable associated with γ, it is added
to ϒ̂ (line 8) and removed from future consideration (line 9). Otherwise, γ is removed from future
consideration (line 10).

The final implementation selects a random set of pipe variables, weighted towards those pipes



LNS(σ,ϒ,δ,α)
1 for i← 1 . . .maxSize
2 do for j← 1 . . .maxIterations
3 do ϒ̂← SELECTVARIABLES(σ, i,ϒ);
4 σ← DBLS(σ, ϒ̂,δ,α);
5 return σ;

Figure 4: Large Neighborhood Search

with high velocity flows. High velocities in pipes cause increased pressure drops due to increased
friction. Thus, high velocities are an indicator for areas with large pressure drops, providing a
heuristic for targeted pipe augmentation, i.e.

SELECTVARIABLES-V(σ,n,ϒ)
1 ϒ̂← /0;
2 ϒ← ORDERPIPEVARIABLES(σ,ϒ);
3 for i← 1 . . .n
4 do y← ϒbRANDOM([0,1])β×|ϒ|c;
5 ϒ̂← ϒ̂∪ y;
6 ϒ← ϒ\ y;
7 return ϒ̂;

where line 2 orders the pipe variables according to the velocity of flow in the pipes, i.e.

〈pd
i, j(1), pd

i, j(2), . . . pd
i, j(n)〉 : ∑

τ∈T
νi, j,τ(k)≥ ∑

τ∈T
νi, j,τ(k+1) (18)

Line 4 selects a random pipe variable, weighted towards those pipes with high velocity. The user
parameter β controls the degree of bias in the weight; as β→∞, the selection becomes more biased.

As mentioned early, our approach uses all four approaches by choosing one uniformly at random,
i.e.

SELECTVARIABLES(σ,n,ϒ)
1 return RANDOM(SELECTVARIABLES-R(σ,nϒ) ∪
2 SELECTVARIABLES-RT(σ,nϒ) ∪ SELECTVARIABLES-C(σ,nϒ) ∪
3 SELECTVARIABLES-V(σ,nϒ));

Finally, including the robustness calculation during the search was computationally burdensome.
Instead, once the best candidate solution was discovered, we enumerated the possible generator
options and selected the minimal set that achieved the necessary robustness requirements. This
was a reasonable approach as the cost of backup generators compared to the rest of the costs in the
network (operations, tanks, etc.) was considerably less expensive.

SOLUTION
In order to evaluate our approach, we used the problem defined by the Battle of Water Networks II
(Salomons et al. (2012)). For brevity, the details of the problem are omitted in this paper. However,
it is important to note that we modified the model file in a couple of ways in order to reconcile the



model file with the documentation of Salomons et al. (2012)). These modifications include:

1. The provided model file set the pump efficiency of existing pumps as 70%, however the doc-
umentation indicated existing pumps had an efficiency of 65%. The model file was changed
so that the efficiency of existing pumps is 65% and new pumps have an efficiency of 75%.

2. A pattern for the energy costs was not included in the model file. The pattern in (Salomons
et al. (2012)) was added.

3. The documentation of (Salomons et al. (2012)) indicated that the initial end water level of
tanks is equivalent to half the volume of the tanks. The initial water levels in the model file
were not consistent with this requirement and the model file was adjusted accordingly.

4. It is our understanding that the new pipes numbered 3-14 are place holders for pipes that
must be built whereas pipes 1 and 2 do not have to be included. All pipes in these areas were
incorporated into the construction cost and carbon calculations, even if their diameter is the
diameter provided in the initial model file.

The initial model contained numerous constraint violations: 92 nodes violate pressure constraints,
305 times a tank is at its minimum level for two or more consecutive time steps, and 6 tanks are
not half full at the end of the simulation. As a result, we explored two approaches for obtaining a
solution. In the first approach, we adopted a ”hot start” where a subject matter expert spent an eight
hour day adjusting the model manually to eliminate as many constraint violations as possible. In the
hot start model only 11 nodes exhibit violations of the pressure constraints and all tank constraints
are satisfied. This model was then the input to LNS. In the second approach we adopted a ”cold
start” where LNS started with the model initially provided by the competition. In both cases the
algorithm was allowed to run 24 hours on a Intel Xeon 2.67 Ghz processor Windows 7 machine with
12 GB of RAM and the best result of each approach is presented here. Tables 1-5 provide the hot
start results and Tables 6-10 the cold start results. In all cases the pipe expansions replaced existing
pipes (as allowed on the competition web site). In both cases, the following algorithm parameters
were used: maxRemove = 30, maxIterations = 10, δ = 5, and α = 3. The hot start solution is the
solution submitted to the Battle of the Water Networks II competition as it is substantially better
than the cold start solution.

DISCUSSION OF RESULTS
There are a number of interesting features of the solutions described in this paper. First, the hot
start solution resulted in replacement of 3 existing pipes in the network. These pipes were replaced
with pipes of smaller diameter. Similarly, the cold start solution resulted in the replacement of 5
existing pipes with smaller diameter pipes. Pipe replacement was allowed in the FAQ discussion-
and no rules were posted that disallowed replacing pipes with smaller diameters, thus we allowed
diameter reduction. In all cases, the reduced pipe diameters were upstream of pumps. The smaller
pipe diameters mimic the behavior of a valve-reducing flow through a constriction. While this
creates a larger head drop over the length of the pipe, pressures upstream of the reduced pipes are
slightly higher as a result of the decreased flow capacity. Although the change in pressure upstream
was small, it was enough to eliminate pressure violations during peak demands. This type of a
result provides an indication to the utility that considering the addition of valves will improve the
performance of the system with less cost.

Second, it was noted that the cost of adding tanks and operating pumps more frequently (primary
mechanisms for allowing the system to ride through power outages other than backup generation)
was considerably more than the cost of back up generation. This observation, combined with



Pipe ID Pipe Diameter Pipe Length Pipe Cost/m Pipe Cost GHG/m GHG
mm m $/m/year $/year kgCO2-e/m/year kgCO2-e/year

1 152 328.74 10.10 3320.27 9.71 3192.06
3 102 113.05 8.31 939.45 5.90 667.00
4 102 310.40 8.31 2579.42 5.90 1831.36
5 102 231.10 8.31 1920.44 5.90 1363.49
6 102 218.93 8.31 1819.31 5.90 1291.69
7 102 259.37 8.31 2155.36 5.90 1530.28
8 102 470.52 8.31 3910.02 5.90 2776.07
9 102 244.52 8.31 2031.96 5.90 1442.67
10 102 393.42 8.31 3269.32 5.90 2321.18
11 102 314.33 8.31 2612.08 5.90 1854.55
12 102 240.65 8.31 1999.80 5.90 1419.84
13 102 293.73 8.31 2440.89 5.90 1733.01
14 102 221.76 8.31 1842.82 5.90 1308.38

P398 152 6.75 12.10 81.68 9.71 65.54
P468 203 31.29 14.49 453.39 13.94 436.18
P96 203 53.72 14.49 778.40 13.94 748.85
P787 203 127.08 14.49 1841.39 13.94 1771.50
P992 254 69.15 15.55 1075.29 18.43 1274.43
P287 305 45.12 18.28 824.79 23.16 1044.98

Table 1: Hot Start Solution: Pipes Replaced

Tank ID Volume Cost
mm3 $

No tanks added

Pump ID Pump Curve Cost
$/year

PU2 8b 4554

Valve ID Diameter Cost
mm $/year

No valves added

Table 2: Hot Start Solution: Tanks, Pumps, and Valves Added to the Network

Diesel Generator ID Max Power Pump ID Max Pump Power Diesel Generator Cost
kw $year

1 200

PU1
PU2
PU3
16

45.24
45.24
45.24
54.28

11630

3 100
PU6
PU7

49.76
49.76

10560

4 50 PU9 31.67 9450

5 50
PU10
PU11

22.62
22.62

9450

Table 3: Hot Start Solution: Diesel Generators Added to the Network



Pump/Valve ID Tank Activation Height Deactivation Height
PU1 T1 0 6.5
PU2 T1 0 6.5
PU3 T1 0 6.5
PU16 T1 0 6.5
PU4 T3 0 4.0
PU5 T3 4.0 5.4
PU6 T4 2.82 4.7
PU7 T4 3.0 4.5
PU8 T5 0.0 0.9
PU9 T5 3.6 4.5
PU10 T7 3.0 4.0
PU11 T7 4.0 5.0

V2 T2 3.5 5.5

Table 4: Hot Start Solution: Control Designs

Cost Water Age Carbon
Operations 305184 25536 2510897

Construction 81540 - 28073
Total 386725 25536 2538970

Table 5: Hot Start Solution: Objective Function Summary

the computational requirements of computing the robustness of a network relative to its ability to
absorb power failures, led us to treat the robustness criteria as a post-processing full enumeration
step. In the hot start model, it was noted that 2 pumps were assigned new controls that did not allow
them to operate (so did not require back up), and 1 pump could be shut off for two hours without
detrimental pressure drops.

Third, for a number of pumping stations, the pumps essentially continuously operate in order to
maintain pressure in portions of the system. This led to a solution were pump operations represent
a significant fraction of the cost portion of the objective function and a substantial portion of the
carbon output of the solution. We view this observation as the best opportunity for improving the
quality of our solutions in future work, where a few additional components added to the system
may allow us to decrease the amount of time some pumps run.

Fourth, the hot start solution did not result in any tank upgrades. Generally speaking, the algo-
rithm found that tank upgrades resulted in substantial system performance degradation, including
increased water age, increase in pump operation time to satisfy tank level constraints, and pressure
drops during tank filling periods. Additionally, tank upgrades were more expensive than back up
generation. Thus, the addition of tanks did not appear to bring much benefit.

Finally, while the algorithm found feasible solutions for both the cold start and hot start initial-
izations in the specified time period, the hot start solution is considerably better after 24 hours of
computation. The solution to the cold start model was still improving after 24 hours, but at a very
slow rate. This provides some evidence of the value of starting from a near feasible solution to get
high quality solutions quicker.



Pipe ID Pipe Diameter Pipe Length Pipe Cost/m Pipe Cost GHG/m GHG
mm m $/m/year $/year kgCO2-e/m/year kgCO2-e/year

1 102 328.74 8.31 2731.83 5.9 1939.57
3 102 113.05 8.31 939.45 5.9 667.00
4 102 310.4 8.31 2579.42 5.9 1831.36
5 102 231.1 8.31 1920.44 5.9 1363.49
6 102 218.93 8.31 1819.31 5.9 1291.69
7 102 259.37 8.31 2155.36 5.9 1530.28
8 102 470.52 8.31 3910.02 5.9 2776.07
9 102 244.52 8.31 2031.96 5.9 1442.67
10 254 393.42 12.96 5098.72 18.43 7250.73
11 102 314.33 8.31 2612.08 5.9 1854.55
12 102 240.65 8.31 1999.80 5.9 1419.84
13 102 293.73 8.31 2440.90 5.9 1733.01
14 102 221.76 8.31 1842.83 5.9 1308.38

P1027 254 82.32 15.55 1280.08 18.43 1517.16
P103 203 35.98 14.49 521.35 13.94 501.56
P134 254 68.79 15.55 1069.68 18.43 1267.80
P144 102 130.79 9.97 1303.98 5.9 771.66
P154 102 170.64 9.97 1701.28 5.9 1006.78
P20 610 579.67 42.8 24809.88 54.99 31876.05
P270 102 88.36 9.97 880.95 5.9 521.32
P282 152 131.93 12.1 1596.35 9.71 1281.04
P398 102 6.75 9.97 67.30 5.9 39.83
P424 254 27.8 15.55 432.29 18.43 512.35
P468 203 31.29 14.49 453.39 13.94 436.18
P752 305 70.36 18.28 1286.18 23.16 1629.54
P787 152 127.08 12.1 1537.67 9.71 1233.95
P815 203 50.52 14.49 732.03 13.94 704.25
P99 406 452.37 23.26 10522.13 33.09 14968.92
P996 406 10.22 23.26 237.72 33.09 338.18

Table 6: Cold Start Solution: Pipes Replaced

Tank ID Volume Cost
mm3 $

T3 1000 30640
T1 5000 122420
T5 500 14020
T2 5000 122420

Pump ID Pump Curve Cost
$/year

PU1 (1) 8a 3225
PU1 (2) 8a 3225
PU2 (1) 8a 3225
PU3 (1) 8a 3225
PU4 (1) 8a 3225
PU5 (1) 8a 3225

Valve ID Diameter Cost
mm $/year

No valves added

Table 7: Cold Start Solution: Tanks, Pumps, and Valves Added to the Network



Diesel Generator ID Max Power Pump ID Max Pump Power Diesel Generator Cost
kw $year

1 200

PU1
PU2
PU3

PU1 (1)
PU2 (1)
PU1 (2)

45.24
45.24
45.24
22.62
22.62
22.62

11630

3 100
PU6
PU7

49.76
49.76

10560

4 50 PU9 31.67 9450

5 50
PU10
PU11

22.62
22.62

9450

Table 8: Cold Start Solution: Diesel Generators Added to the Network

Pump/Valve ID Tank Activation Height Deactivation Height
PU1 T1 3.9 5.2

PU1 (1) T1 3.9 5.2
PU1 (2) T1 3.9 5.2

PU2 T1 0 6.5
PU2 (1) T1 0 6.5

PU3 T1 3.9 5.2
PU3 (1) T1 3.9 5.2

PU4 T3 2.7 4.0
PU4 (1) T3 2.7 4.0

PU5 T3 0 4.0
PU5 (1) T3 0 4.0

PU6 T4 3.75 4.7
PU7 T4 3.0 4.5
PU8 T5 0.0 0.9
PU9 T5 3.6 4.5
PU10 T7 2.5 4.8
PU11 T7 4.0 5.0

V2 T2 3.5 5.5

Table 9: Cold Start Solution: Control Designs

Cost Water Age Carbon
Operations 329301 24789 2710126

Construction 430454 - 85015
Total 759756 24789 2795141

Table 10: Cold Start Solution: Objective Function Summary



CONCLUSION
Water distribution systems are increasingly being subjected to new requirements and stress. As a
result, new algorithms are needed to expand existing networks and modify their operational points.
This paper describes a basic algorithm framework (LNS) for decomposing the WDEP problems
into subproblems, where each sub problem is solved exhaustively (or partially) using global search
techniques such as branch-and-bound. The algorithm successfully found solutions to the prob-
lem that meet all design requirements (constraints), while at the same time minimizing economic
costs, carbon emissions, and water age. The algorithm was tested on the model provided by the
competition and a hot start solution based on subject matter expertise.

There are a number of important future directions for LNS on the WDEP. First, an in depth study
of different decomposition algorithms is needed. In this paper four different implementations were
considered, however, the relative performance of each implementation was not considered. More
importantly, perhaps, other types of decompositions may yield better results than what was achieved
here (for example decomposition targeting existing expansions—in particular operations—which
makes up the bulk of the carbon emissions and costs, or constraint violations). These need to be
explored. Second, the robustness criteria was treated separately from the main search algorithm
as a post processing enumeration algorithm. Better results might be achieved if the robustness
criteria are included in the main search procedure. However, new techniques are needed to address
the computational requirements for assessing the robustness criteria. Third, it will be interesting
to embed existing global search techniques such as (Kessler and Shamir (1989); Fujiwara and
Khang (1990); Sherali et al. (2001); Bragalli et al. (2008)) as opposed to our DBLS to determine
if these approaches improve performance. Finally, fast approximations of CHOOSEVARIABLE and
ORDERDOMAIN need to be developed to improve computational efficiency.
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