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Abstract

This paper presents a deterministic and efficient algorithm for online facility location. The
algorithm is based on a simple hierarchical partitioning and is extremely simple to implement.
It also applies to a variety of models, i.e., models where the facilities can be placed anywhere
in the region, or only at customer sites, or only at fixed locations. The paper shows that the
algorithm is O(log n)-competitive under these various models, where n is the total number of
customers. It also shows that the algorithm is O(1)-competitive with high probability and for
any arrival order when customers are uniformly distributed or when they follow a distribution
satisfying a smoothness property. Experimental results for a variety of scenarios indicate that
the algorithm behaves extremely well in practice.

1 Introduction

Online facility location problems arise in a variety of telecommunication, networking, and mobile
computing applications. They consist of choosing when and where to open facilities in order to min-
imize the associated cost of opening a facility and the (transportation) cost of servicing customers.
The offline version of the problem is a well-known and well-studied combinatorial optimization prob-
lem for which effective mathematical programming, local search, and approximation algorithms are
known. The online version, however, has received much less attention. Meyerson [16] presented the
first randomized online algorithm for facility location and proves that it was O(log n)-competitive
in the worst-case and O(1)-competitive when customers arrive in random order.1 An algorithm is
considered α−competitive if for all instances the cost incurred by the algorithm is at most α times
the cost incurred by an optimal offline algorithm [23]. For the purposes of this problem, n reflects
the total number of customers. Very recently, Fotakis [7] presented the first deterministic online
algorithm which achieves the optimal competitive ratio of O( log n

log log n). Unfortunately, the resulting
algorithm is hard to implement and very demanding computationally.

This paper presents a simple and deterministic competitive algorithm for online facility location.
The algorithm, whose key idea is a hierarchical partition of the region of interest, is O(log n)-
competitive and runs in O(n log n) time in the worst case. The algorithm, developed independently
of [7], is very simple to implement, and applies to a variety of models. Despite its simplicity, the
algorithm behaves very well in practice under a variety of models and distributions. More precisely,
the main contributions of this paper are as follows:

1We use log n to denote the base-2 logarithm of n in this paper.
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• The paper presents a simple and deterministic O(log n)-competitive algorithm for online fa-
cility location. The algorithm applies to a variety of models (the region model, Meyerson’s
model, and the fixed location model). It is extremely simple to implement and is much
more efficient, in terms of time complexity, than the other deterministic algorithm developed
independently in [7]. It is also the first competitive algorithm for the fixed location model.

• The paper presents the first probabilistic analysis of an online facility location algorithm. The
analysis shows that our algorithm is O(1)-competitive for any arrival order when customers
are uniformly distributed. It also shows that our algorithm remains O(1)-competitive for any
arrival order as long as the distribution satisfies a smoothness property.

• The paper presents the first experimental results comparing the various algorithms under a
variety of hypotheses. They show that our algorithm compares well, and almost always out-
performs, other competitive algorithms. It can also bring some significant benefits compared
to Meyerson’s randomized algorithm.

The rest of this paper is organized as follows. Section 2 specifies the problem and describes related
work. Section 3 presents the novel competitive algorithm for the region model and proves the
O(log n)-competitive ratio. Sections 4 and 5 generalize the result to Meyerson’s model and to
the fixed location model. Section 6 shows that the quality of the online algorithm is independent
(asymptotically) of the arrival order of the customer. Section 7 describes the probabilistic analysis
of the algorithm. Section 8 reports the experimental results and Section 9 concludes the paper and
describes future work.

2 Problem Description and Prior Work

This section describes the online facility problems and gives an overview of prior work.

Problem Description This paper considers a class of online facility location problems, whose
corresponding offline problem is essentially uncapacitated facility location. More precisely, given
a set of facility and customer locations, the objective is to minimize the fixed costs of opening
facilities and travel costs to serve customers by choosing which facility to open. The fixed cost of
opening a facility is f , while the travel cost from a facility � to customer c is given by the metric
distance between � and c and denoted by t�,c. Hence the objective function can be specified as

f |Open| +
∑

c∈Customers

min
�∈Open

t�,c

where Open is the set of open facilities, Customers is the set of customers, and n = |Customers|.
In the online problem, the customer locations are not known a priori but are revealed over

time. The goal is thus to decide dynamically when and where to open facilities. Once a facility is
opened, it cannot be closed. Several online models are studied in this paper. In the region model,
the facilities can be placed anywhere in a region. In Meyerson’s model, the facilities can only be
placed at existing customer locations. In the fixed location model, the facility locations are given

2



a priori and the objective is to decide whether, when, and where to open a given facility. For the
purposes of the competitive analysis evaluation, customers are assumed to arrive one at a time and
have a unique identifier.

Related Work Most of the work on facility location is concerned with the offline case, where
the locations of all the customers are known in advance. See, for instance, [4, 9, 10, 14, 21, 22]
for a variety of approximation algorithms. See also references [5, 6, 8, 13, 18] for some interesting
mathematical programming and local search algorithms.

The online uncapacitated facility location problem was first studied by Meyerson in [16]. Mey-
erson presents a randomized algorithm with an O(log n) expected competitive ratio for the model
where the facilities are placed at customer sites. The algorithm is simple and elegant; when a new
customer arrives, a facility is opened at the new customer site with probability proportional to the
distance between the location of the new customer and the closest opened facility. In addition,
Meyerson shows that, whenever the location of the incoming points is adversarial but the arrival
order is random, the expected competitive ratio of the algorithm is constant. Fotakis [7] continued
the study of the problem and showed that no randomized algorithm can achieve a competitive
ratio better than Ω

(
log n

log log n

)
against an oblivious adversary, even if the metric space is a line

segment. Indeed, the Meyerson algorithm was shown to be Θ
(

log n
log log n

)
competitive [7]. He also

presented a deterministic algorithm for any metric space that achieves the optimal competitive
ratio of O

(
log n

log log n

)
. At the conceptual level, the algorithm can be thought of as a derandomized

version of Meyerson’s algorithm. Fotakis’ results, which are very elegant technically, represent a
fundamental theoretical advance. However, from a practical standpoint, his algorithm appears very
difficult to implement efficiently and to apply in practice. For each arriving customer, the algorithm
first finds the nearest facility, say at a distance d, in a manner similar to the Meyerson algorithm.
It then defines a cluster of “unsatisfied” customers that are within a radius d/x (for some x ≥ 10)
of the new customer. The “potential” of the cluster is defined by the travel cost of the customers
to their nearest facility. If the potential is greater than the cost of opening a facility, then a new
facility is opened within this cluster and the cluster is removed from the set of possible unsatisfied
customers. The location of the new facility is chosen very carefully. If the distance d is greater
than the cost f of opening a facility, the facility is created at the location of the new customer.
Otherwise, the algorithm opens a new facility in the smallest-radius subcluster that includes more
than half of the potential accumulated by the entire cluster.

The time complexity for Meyerson’s algorithm is at least Ω(log n) when the n-th customer
arrives, even for a Euclidean space, since the algorithm must find the location of the nearest
facility. The time complexity of Fotakis’ algorithm is not addressed in [7]; however, a crude analysis
indicates that it may take up to O(n2 + log d) time to process the n-th customer, where d is the
maximum distance. It may be possible to improve this bound by using advanced data structures
to perform some of the queries. For the Euclidean space, see, for instance, [1] and, for a general
metric space, refer to the survey in [3]. (A nice discussion also appears in [12]). Nevertheless, all
these data structures—especially their dynamic versions—are quite sophisticated and complicated,
and it seems unlikely that his algorithm could approach the simplicity, practical efficiency, and
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Figure 1: Partitioning a Square

time-complexity bound of the algorithm presented here. This is a significant drawback of Fotakis’
algorithm because of the online nature of the problem.

Finally, the work of Mettu and Plaxton [15] on the online median problem is also related to
online facility location. Here the location of the customers is known in advance and the number of
facilities increases in an online fashion.

3 The Region Model

We present the algorithm for the region model which assumes that the facilities can be located
anywhere in a given region at a cost f . To ease the presentation, we first specify and analyze the
algorithm for the case where the region is a square with diagonal of length f . We then show how
to generalize it to arbitrary regions.

3.1 The Online Algorithm

The key idea behind the online algorithm is to partition the initial square into smaller and smaller
squares as customers arrive. More precisely, its basic operation, depicted in Figure 1, consists of
partitioning a square into four squares of the same size, called quadrants. Once a quadrant q is
created and not (yet) partitioned, the online algorithm keeps track of the customers arriving in
q. These customers are called support customers of quadrant q in the rest of this paper and the
travel cost of these support customers (to a facility to be specified) is called the support cost of q.
Once the support cost of quadrant q exceeds a threshold, the algorithm opens a facility in q and
partitions q. In the following, we use support(q) to denote the support customers of q and cost(q) to
denote its support cost. We also use facility(q) to denote the facility associated with a quadrant q
when q is partitioned. A quadrant q is open if it has an associated facility (and thus is partitioned);
it is recruiting otherwise.

It is also important to introduce a few additional concepts before presenting the algorithm. If
a quadrant q is partitioned into squares qi (1 ≤ i ≤ 4), quadrant q is said to be the parent of
qi (1 ≤ i ≤ 4). All quadrants have a parent, except the root square. The ancestors of a quadrant
q are its parent p and the ancestors of p. A corner ancestor of quadrant q is an ancestor whose
center lies on a corner of q. It can be shown that the partitioning into quadrants guarantees that
a quadrant q has at most two corner ancestors, one of which being of course its parent. Moreover,
if two exist, they must lie on diagonally opposite corners of q. The local facilities of a quadrant are
simply the facilities associated with its corner ancestors and we use local(q) to denote them. Local
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A(Square r)
1 init(r);
2 for each arriving customer c
3 do serveCustomer(c);

init(Square q)
1 parent(q) ← {};
2 Quadrants ← {};
3 partition(q);

partition(Square q)
1 facility(q) ← selectLocation(q);
2 quadrants(q) ← 4 Quadrants of q ;
3 for r ∈ quadrants(q)
4 do cost(r) ← 0;
5 support(r) ← {};
6 parent(r) ← {q};
7 Quadrants ← Quadrants∪ quadrants(q) \ {q};

serveCustomer(Customer c)
1 addToQuadrant(c);
2 assignClosestFacility(c);

addToQuadrant(Customer c)
1 q ← findQuadrant(Quadrants, c);
2 support(q) ← support(q)∪ {c};
3 tc ← min(� in local(q)) t�,c;
4 cost(q) ← cost(q) + tc;
5 if cost(q) > af
6 then partition(q);

Figure 2: Algorithm A

facilities and corner ancestors are important concepts for some of the competitive ratios presented
later in the paper.

We are now ready to present algorithm A which is depicted in Figure 2. Algorithm A first ini-
tializes the root quadrant by partitioning it (procedure partition) and then serves the customers
as they come (procedure serveCustomer). Procedure partition partitions a square q by select-
ing a facility location (procedure selectLocation) and by constructing its four subquadrants.
partition also replaces q by the four new quadrants in the set Quadrants, which contains all the
recruiting quadrants. For each incoming customer c, procedure serveCustomer inserts c in a
recruiting quadrant (procedure addToQuadrant) and assigns c to its closest facility (procedure
assignClosestFacility). To add a customer c to a recruiting quadrant, procedure addToQuad-

rant first locates the recruiting quadrant q containing c (procedure findQuadrant in line 1) and
adds c to the support of q (line 2). It computes the distance from c to the closest local facility
of q (line 3), and updates the support cost accordingly (line 4). If the support cost exceeds the
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threshold af (line 5), where a is a parameter of the implementation2, the quadrant q is partitioned
and becomes open (line 5). In the region model, procedure selectLocation simply chooses the
center of the quadrant to locate the facility. (This implementation is reconsidered in other models).

Observe that the cost of a quadrant q is the cost of its associated facility (if any) and the support
cost of its support customers cost(q), i.e. ≤ (a + 2)f . Since all the facilities and all the customers
are associated with quadrants, the cost of the solution is the sum of the costs of all quadrants.

It is important to emphasize that the support cost of a customer, i.e., the travel cost to its
closest local facility, is greater or equal to the actual travel cost to its closest location. The use of
the support cost in thresholding simplifies the analysis and makes it possible to prove robustness
results with respect to the customer ordering. Note also that most (but not all) results in this
paper hold when line 3 in procedure addToQuadrant is replaced by tc ← tparent(q),c.

3.2 Worst-Case Competitive Analysis

This section analyzes the worst case performance of the algorithm assuming that the maximum
length (i.e., the diagonal) of the square is f , where f is the cost of opening a facility. This assumption
is relaxed in Section 3.3. The first lemma bounds the maximum depth of a partition produced by
Algorithm A. It does not depend on the location of the facilities inside the quadrants.

Lemma 1. The maximum partition depth produced by Algorithm A when serving n customers
is O(log n).

Proof. Observe that there must be at least a2i customers in the support of a quadrant at depth i
in order to partition it, since the maximum distance in a quadrant at depth i is not greater than
f
2i . Hence, the maximum depth for n customers is log n − log a, which is O(log n).

The second lemma is central to the rest of the paper and will be adapted to other models subse-
quently. Informally speaking, it specifies that every quadrant created by algorithm A is close to a
facility in an optimal solution, the distance depending on the size of the quadrant.

Lemma 2. Let q be an open quadrant with sides of length μ produced by algorithm A. In an optimal
solution, there must exist at least one facility within distance αμ of q, where α =

√
2(a+2)
2a .

Proof. The proof is by contradiction. Assume that there exists no facility within distance αμ of an
open quadrant q in an optimal solution O. Let s = |support(q)|. Clearly

af <
∑

c ∈ support(q)

travel-cost(c) ≤
∑

c ∈ support(q)

√
2μ = s

√
2μ

where travel-cost(c) is the travel cost incurred by c, and
√

2μ is the maximum value for travel-cost(c)
because of the existence of the parent facility (see Figure 3). It follows that f <

√
2

a sμ. If a new

2Parameterizing a is useful for improving the quality of empirical results on various types of problems. For the
purposes of the competitive analysis results, a is an arbitrary constant
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Figure 3: Visualization of Optimal Facility Placement
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Figure 4: Illustrating Corollary 1. There must exist an optimal facility in the square whose sides
have length (2�α� + 1)μ.

facility is placed in the center of q and the support customers of q are re-routed to the new facility,
the total cost is at most

f +
√

2
2

sμ <

(√
2

a
+

√
2

2

)
sμ =

√
2(a + 2)

2a
= αsμ

If there is no facility within α of q, then the total travel cost of customers in support(q) is > αsμ,
yielding the contradiction that there exists no facilities within α of q in the optimal solution.

The first corollary, which is illustrated graphically in Figure 4, is a direct consequence of Lemma
2. The second corollary is used in Section 7.

Corollary 1. Let q be an open quadrant with sides of length μ produced by algorithm A. An optimal
solution must have at least one facility in a square of size (2�α�+ 1)μ by (2�α�+ 1)μ whose center
is q, where α =

√
2(a+2)
2a .
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Figure 5: Visualization of a Worst Case Instance for the Lower Bound.

Corollary 2. Let q be a square region with sides of length μ that contains more than fa√
2μ

customers.
An optimal solution must have at least one facility in a square of size (2�α� + 1)μ by (2�α� + 1)μ
whose center is q, where α =

√
2(a+2)
2a .

As mentioned, the lemma and corollaries will be adapted slightly for the other models by changing
the value of α to take account higher travel costs in the other model but the proof will remain
similar. We are now in position to present the proof of the competitive ratio.

Theorem 1. Algorithm A is O(log n)-competitive for a square whose diagonal has length f .

Proof. Let � be an optimal facility and consider a depth d. Consider all quadrants at depth d which
have some customers allocated to �. By Corollary 1, there are at most (2�α� + 1)2 such quadrants.
Moreover, the cost of a quadrant is at most af + f (travel cost—we pay af in order to open the
quadrant and we may exceed that by at most f) plus f (facility cost) if it is open, and at most af
otherwise. Hence the total cost of the quadrants at depth d is thus at most (2�α� + 1)2 · (a + 2)f .
By Lemma 1, there are O(log n) such depths d and the total cost of all quadrants with customers
allocated to � in the optimal solution is thus O(f ·log n). The result follows since the above reasoning
can be applied to all facilities in the optimal solution. Recruiting quadrants that lie beyond α of
an optimal facility are ignored in this analysis, as the travel cost of customers in such quadrants in
Algorithm A is less than the travel cost in the optimal solution (i.e., in Algorithm A they pay at
most

√
2μ and in the optimal at least αμ).

The above competitive ratio is tight, asymptotically, as shown by the instance depicted in Figure 5.
In this instance, all customers are placed in the corner of the region. The optimal solution opens
a facility in the corner and the total cost of the optimal solution will be f . Algorithm A produces
log n quadrants. The result follows, since the cost of each such quadrant is at most O(f) (as
discussed in the proof of Theorem 1).
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Figure 6: Visualization of Optimal Facility Placement

3.3 Arbitrary Regions

Algorithm A naturally generalizes to arbitrary regions. The result holds if the region can be enclosed
by the square whose diagonal is of length f , since no assumptions on the customer locations
were used.3 Consider now the case where the region is enclosed by a square whose diagonal is
greater than f . The key idea behind the generalized algorithm A′ is to cover this square by non-
overlapping squares whose diagonals are of length f . No facilities are created in these squares
initially. When a customer arrives in one of these squares, algorithm A is applied to that particular
square. More precisely, when the first customer in such a square s arrives, the data structures for
s are initialized using procedure init and serveCustomer. Only procedure serveCustomer is
called for subsequent customers in s. Observe that Lemma 1 and 2 still hold for all the created
quadrants. In addition, Lemma 2 can also be adapted to apply to the squares used in the partition
covering the initial region and the result follows.

Theorem 2. Algorithm A′ is O(log n)-competitive for online facility location with no restriction
on the locations of the facilities.

Note that it is not necessary for the region to be known ahead of time. When the first customer
arrives, a square with maximum length f can be placed around the customer. If subsequent
customers fall outside that square, then squares of maximum length f can be created around the
initial square until the customers are covered. In the rest of the paper, we assume for simplicity
that the region is a square whose diagonal has length f .

4 Meyerson’s Model

We now show that algorithm A naturally generalizes to Meyerson’s model where facilities are only
opened at customer locations. The only modification in the algorithm is in procedure selectLo-

cation(q) which now places a facility at the support customer of q which is closest to its center
(instead of at the center of q).4

3The result also holds when the facilities must be placed inside the initial region, as will become clear when other
models will be presented.

4The facility can be placed anywhere in the quadrant, a property used in the experimental results.
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Figure 7: Opening Facilities in the Fixed Location Model.

Under this model, Lemma 1 still holds, since its proof only relies on the sizes of the quadrant.
Lemma 2 also holds under the new model by making α =

√
2(a+2)

a , since the maximum distance
of a support customer to the facility of q increases to

√
2μ (as opposed to

√
2μ/2 that we had in

Lemma 2), since the facility of q can be anywhere in the quadrant (See Figure 6). As a consequence,
algorithm A is also O(log n)-competitive under this model.

Theorem 3. Algorithm A is O(log n)-competitive for online facility location when facilities must
be located at customer sites.

5 The Fixed Facility Location Model

We now consider the fixed facility location model, where facilities can only be located at a fixed
set of locations. Once again, we assume that the region is a square whose diagonal is of size f for
simplicity. Clearly, the Ω(log n) lower bound still applies, since the fixed locations can be precisely
located at the center of the quadrant as in Figure 5. We now prove that algorithm A can be
naturally adapted to remain O(log n)-competitive under this model.

The main change in the algorithm is to restrict further when a facility can be opened for a
quadrant. More precisely, a facility can be opened for a quadrant q with sides of length μ when
the cost of its support customers exceeds af and when there exists a facility (inside or outside the
quadrant) within distance 2

√
2μ of q. Note that this facility may be opened already, implying that

the same facility may be associated with several quadrants. This amounts to replacing line 5 of
procedure addToQuadrant by

if cost(q) > af ∧ existsFacility(q)

where existsFacility(q) returns true if there exists a facility location within distance 2
√

2μ of q.
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Procedure selectLocation(q) is also updated slightly in order to choose the location closest to
q within distance 2

√
2μ.

We now show that the modified algorithm is O(log n)-competitive. The key idea behind the
proof is to separate the quadrants in two sets: the traditional quadrants which are open or have
a cost lower than af and the isolated quadrants which have a cost greater than af but no facility
within distance 2

√
2μ. The traditional quadrants can be analyzed in a way similar to earlier proofs.

Moreover, the travel costs of the isolated quadrants is shown to be within a constant factor of their
travel costs in the optimal solution. Figure 7 depicts the intuition behind the proof visually.

Theorem 4. Algorithm A is O(log n)-competitive for online facility location with fixed locations
for facilities.

Proof. Let σ be the solution produced by algorithm A. Consider first an isolated quadrant q with
sides of length μ in σ. Its parent p has sides of length 2μ and has a facility at distance 4

√
2μ, since

it has been partitioned. Consequently, each customer in the support of q has a travel cost of at
most 6

√
2μ. Moreover, since there are no facilities within distance 2

√
2μ of q, each such support

customer must pay a cost of at least 2
√

2μ in the optimal solution. Hence the travel cost of the
support customers of q in σ is at most 3 times their travel cost in the optimal solution.

Consider now a traditional quadrant q with sides of length μ in σ. Its facility is within distance
2
√

2μ which means that each support customer has a travel cost of at most 3
√

2μ. We can thus
prove a result similar to Lemma 2 by choosing α = 3

√
2(a+2)
a . Moreover, the maximum distance

to a facility for a quadrant q at depth i is 4 f
2i . Hence the maximum partition depth is O(log n)

when serving n customers, providing the counterpart to Lemma 1. The rest of the proof for the
traditional quadrants can then proceed as in Theorem 1 and the result follows.

6 Robustness of the Algorithm

We now show that algorithm A is robust with respect to the order in which customers arrive. More
precisely, we show that the cost of algorithm A for any customer ordering is only a constant factor
worse than the cost for the best customer ordering. This result indicates that algorithm A depends
essentially on the customer locations, not their arrival order. It makes it possible to analyze the
performance of algorithm A by assuming that the customers arrive in random order. This property
is used in Section 7 where the performance of the algorithm is analyzed under a uniform distribution
of the customers. We show the result for the basic region model.

Theorem 5 (Worst Case Ordering). Let c1, . . . , cn be n customer locations and let Σ be the set
of sequences of these n locations. Let

σ∗ = arg min
σ∈Σ

cost(σ)

where cost(σ) is the cost of the solution produced by Algorithm A on the sequence σ. Then, there
exists a constant κ ≥ 1 such that

∀σ ∈ Σ : cost(σ) ≤ κ · cost(σ∗).
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Proof. Let q be a quadrant which is not partitioned in the best-case sequence σ∗ and which is
partitioned in the worst-case sequence σ. Since the same customers belong to q in both sequences,
this happens when some of the customers are in the support of the ancestors of q in σ∗, but not in
σ. Observe that the travel cost of any such unaccounted customer in sequence σ is not greater than
its travel cost in sequence σ∗, since its local facilities include its closest ancestor. Clearly, the set
of unaccounted customers is not greater than the set of all customers whose travel cost is bounded
by 2afw, where w is the number of facilities for sequence σ∗. As a consequence, since sequence σ
requires at least af in travel cost to open a facility, the unaccounted customers can only open 2w
facilities.

We finally have to consider all the recruiting quadrants that did not open in the solution of
σ. For each such quadrant, we can associate its cost with its parent. For every quadrant (of
the total of 2w that we have), the total additional travel cost cannot be more than 4af (af per
subquadrant). Hence the cost of the solution of σ remains proportional to w, thus establishing the
constant ratio.

A simple bound on κ is calculated as follows. In σ∗ the open quadrants have cost at least (a + 1)f ,
thus the total cost of the solution is (a + 1)fw. In σ, there are at most 2w open quadrants each of
which induces cost at most (a + 2)f , while the possible unopened recruiting quadrants induce an
additional cost of 8afw. Therefore we get a bound of κ ≤ 10a+4

a+1 .
Note that this result can be generalized to the fixed location model provided that the choice

of the facility location for a quadrant be deterministic (e.g., ties are broken deterministically in
procedure selectLocation). Such a choice guarantees that the travel cost of the unaccounted
customers is not greater in the worst-case sequence than in the best sequence. The result does not
generalize to Meyerson’s model where facility location choices critically depend on the customer
order.

7 Probabilistic Analysis

The previous sections showed that the competitive ratio of the algorithm A is Θ(log n) but, in
practice, algorithm A should behave much better. It is thus interesting to analyze algorithm A,
not under an adversarial model, but under various distributions of the customers. This section
follows this approach and analyzes algorithm A for a uniform distribution of the customers, as
well as for distributions which have smooth neighborhoods. In both cases, we show that algorithm
A produces a solution whose cost is within a constant of the optimal offline solution with high
probability (whp).5 We start by proving the result for the uniform distribution. The result is then
generalized to distributions with smooth neighborhoods.

7.1 Uniform Distribution of Customers

The intuition behind the proof for the uniform distribution is the following. First recall that the
partitioning threshold guarantees that the travel cost is proportional to the cost of the facilities, so

5Recall that an event E holds whp. if there is a constant c > 0 such that Pr(E) > 1 − 1
nc .
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that the proof can focus on the number of open facilities or, equivalently, on the number of open
quadrants. We define depth d = (log n)/3, and by using the analysis of Section 3.2 we compute
a high-probability lower bound for the optimal algorithm; that follows from the fact that in any
square of dimensions 2d × 2d there is a big number of customers to necessitate the opening of a
facility in the area nearby the square. Finally, we show that whp. algorithm A does not open
any quadrant at depth d + 1, and so we get a constant approximation ratio. A main result that
we use in the proof is Theorem 5, which makes it possible to assume that the customers arrive in
random order. In other words, the proof assumes that the location of a new customer is uniformly
distributed in the whole region and independent of all previous and subsequent customer locations.

For the sake of completeness we present a version of the Chernoff bound [20], that we use
throughout the proof and the next section.

Theorem 6 (Chernoff Bound). Assume that the Xi are mutually independent 0 − 1 random
variables such that Pr(Xi = 1) = p, and let Y =

∑n
i=1 Xi and μ = E[Y ] = np. Then, for any

ε > 0,
Pr(Y ≥ (1 + ε)μ) ≤ e−

1
3
με2 ,

and for any ε ∈ (0, 1),
Pr(Y ≤ (1 − ε)μ) ≤ e−

1
2
με2 .

We are now ready to prove the result.

Theorem 7. Consider a square region and assume that the customers are uniformly distributed in
the region and mutually independent. Then the cost of the solution produced by algorithm A is only
a constant times higher than that of the optimal offline algorithm, with probability at least 1− 1/n.

Proof. For simplicity, we assume that the region is a square with sides of length 1 (f =
√

2) and
that the parameter a = 1/

√
2 so that the threshold is 1. Define d = (log n)/3. We first show that

whp. the optimal solution opens at least 1
9n2/3 facilities.

Consider a quadrant in depth d, which has dimensions 2−d × 2−d = n−1/3 × n−1/3. The
probability that a given customer falls in the quadrant equals n−2/3, so, in expectation, the quadrant
receives n · n−2/3 = n1/3 customers. By the Chernoff bound, we get that the probability that it
accepts fewer than 2

3n1/3 customers is bounded by

e−
1
2( 1

3)
2
n

1
3

< n−3,

for sufficiently large n. Since the total number of quadrants at depth d is 4d < n, we conclude that
with probability at least 1 − n−2 every quadrant accepts at least 2

3n1/3 customers.
By applying Corollary 2 we get that in any square of dimensions 3 · 2−d × 3 · 2−d there exists an

open facility in the optimal solution. There exist 1
9n2/3 disjoint squares of dimensions 3·2−d×3·2−d,

hence, the optimal solution opens at least 1
9n2/3 facilities with probability at least 1 − n−2.

The second step is to show that algorithm A does not open too many quadrants. We now show
that, at level d + 1, no quadrants are partitioned whp. Consider a quadrant q at level d + 1. The
maximum distance (the diagonal) within q is 2

1
2
−d−1 = n−1/2/

√
2 and, hence, at least

√
2 · n1/3

13



customers are needed to open q. Therefore, the probability to open quadrant q is bounded by
the probability that at least

√
2 · n1/3 customers fall in q. Recall also that the probability that

a customer falls in the quadrant equals its area which is 2−2(d+1) = n−2/3/4. So the expected
number of customers that fall in the quadrant is n · n−2/3/4 = n1/3/4. (Not all of those customers
contribute into partitioning q, since some of them have already been accounted for the partitioning
of the quadrants down to q. Therefore we get an upper bound for the probability that we are
interested in.) By applying the Chernoff bound with ε = 4

√
2 − 1, we get that the probability

that q becomes partitioned is bounded by

Pr
(
≥

√
2 · n 1

3 customers fall in q
)
≤ Pr

(
n1/3

4
(1 + ε) customers fall in q

)

≤ e−
1
3

n1/3

4
ε2

≤ 1
n3

for sufficiently large n. At level d + 1 there are 4d+1 < n quadrants, therefore the probability
that some quadrant becomes partitioned is bounded by n−2. In other words, there is no quadrant
partitioned at level d + 1, with probability at least 1 − n−2.

We have therefore proven that with probability at least 1 − 2n−2 > 1 − 1/n, in the optimal
solution there are at least 1

9n2/3 open facilities, while algorithm A opens at most
∑d

i=0 4i = 4
3n2/3

facilities. This completes the proof.

7.2 Smooth Neighborhoods

We consider now a large class of distributions for which Algorithm A is O(1)-competitive whp.
These distributions satisfy the smooth neighborhood property which we now define.

Definition 1 (Distribution with Smooth Neighborhoods). Let I = [0, 1]2 be the unit square
and ν be a probability distribution on I. Then, ν has a smooth neighborhood if there exists a
constant K such that

ν(Q1) ≤ K · ν(Q2).

for any neighboring quadrant Q1 and Q2, i.e., any quadrant Q1 and Q2 in I satisfying |Q1| = |Q2|
and d(Q1, Q2) = 0 where

d(Q1, Q2) = min{|x1 − x2| : x1 ∈ Q1, x2 ∈ Q2}.

Distributions with smooth neighborhoods have the following useful property.

Lemma 3. Consider a quadrant q with four subquadrants qi, i = 1, 2, 3, 4. For any distribution ν
with smooth neighborhoods, we have

ν(qi) ≥ p · ν(q),

where p = (3K + 1)−1.

14



Proof. Since d(q1, qi) = 0 (i = 2, 3, 4), it follows that

ν(q1) ≤ K · ν(qi).

Hence

ν(q1)
ν(q)

=
ν(q1)

ν(q1) + ν(q2) + ν(q3) + ν(q4)

≥ ν(q1)
ν(q1) + K · ν(q1) + K · ν(q1) + K · ν(q1)

=
1

3K + 1
= p

.

The proof is similar for the other three subquadrants.

The following definitions are used in the probabilistic analysis. A bush is a quadrant that has more
than M descendants, where

M =
√

2
(

2
p

+
24

p2
+

27

p3
+

210

p4

)
,

and p is defined as in Lemma 3. The (i)-ancestor of q is q if i = 0, the parent of q if i = 1, and the
(i−1)-ancestor of the parent of q otherwise (i > 1). A disjoint bush is a bush q whose (i)-ancestors
(i = 1, . . . , 3) are not disjoint bushes. Figure 8 illustrates these ideas.

We are now ready to prove that Algorithm A is O(1)-competitive with high probability. The
intuition behind the proof is as follows.

1. All quadrants up to level d− = 2 log lnn are partitioned whp. (Lemma 4).

2. If a quadrant q at a level i > d− has more than M descendants, then q is fully partitioned 4
levels down whp (Lemma 5).

3. Every disjoint bush q has a facility in each of its subquadrants in the optimal offline solution
(Lemma 6).

4. Only disjoint bushes must be considered to show the O(1)-competitive ratio.

Lemma 4. Consider the region I and a distribution ν with smooth neighborhoods. Algorithm A
partitions all quadrants up to level d− = 2 log ln n with probability at least 1 − n−κ1 for sufficiently
large n.

Proof. We show that, whenever all the quadrants up to level (i− 1) are partitioned, the i-th set of
n/2 log ln n customers partitions all the quadrants of the i-th level whp. (if they have not already
been partitioned). Consider Figure 9 which depicts a quadrant at the i-th level. The quadrant will
be partitioned if 2i+1 customers fall on the gray area. By Lemma 3, the probability that a customer

15



Disjoint Bush

Bush

Figure 8: An example of the definitions of a bush and a disjoint bush. A node corresponds to a
quadrant and its children to its subquadrants. For clarity every node has up to 2 children (instead
of 4) and we have M = 30.
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Parent Facility

Another Local Facility

2−i

≥ 2−(i+1)

≥ 2−(i+1)

Figure 9: A partition at the i-th level

falls on the gray area is at least 2pi+1. The expected number of the n/(2 log ln n) customers falling
on the gray is at least

n

2 log ln n
2pi+1 =

n

log ln n
· 1
(3K + 1)i+1

.

By applying a Chernoff bound, the probability that fewer than 2i+i customers fall on the gray area
is bounded by

e
− 1

2
n

log ln n
pi+1ε2

where

ε = 1 − (2 log ln n)(3K + 1)i+12i

n
= 1 − O

(
(ln n)2+2 log(3K+1) ln ln n

n

)
,

when i ≤ d− = 2 log ln n. It follows that, for a sufficiently large n, ε ≥ 1/2 and the probability that
fewer than 2i+1 customers fall on the gray area is no more than

e−
1
8

n
log ln n

pi+1

<
1

nκ1+2
,

for any constant κ1, for sufficiently large n. The total number of quadrants at level i is 4i < n
and hence all the quadrants of level i are partitioned with probability at least 1 − 1

nκ1+1 . By
performing this analysis until level d−, it follows that all the quadrants up to d− are partitioned
with probability at least 1 − 1

nκ1 .

Lemma 5. Consider any quadrant q at level i > d− and let

M =
√

2
(

2
p

+
24

p2
+

27

p3
+

210

p4

)
.

If q has at least M descendants, then q is fully subpartitioned 4 levels down with probability at least
1 − nκ2, for some constant κ2.
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Another Local Facility

≥ 2−(i+2)

≥ 2−(i+2)

Figure 10: A partition at the (i + 1)-th level

Proof. Assume that, during the execution, quadrant q has at least M descendants, which means
that there are at least M facilities in q. Since the maximum distance from any point to some facility
inside q is at most 2

1
2
−i, this means that at least

M

2
1
2
−i

= M · 2i− 1
2

customers fell in q. The proof shows that, with so many customers, the probability that q has not
been fully partitioned 4 levels down is at most n−κ2. It proceeds level by level, starting from level i.

Consider again Figure 9. Quadrant q is surely partitioned if at least 2i+1 customers fall on the
gray area. By Lemma 3, the probability that a customer falls in the gray area, conditioned on
falling on q, is at least 2p. Let c1 = 2/p and consider the first c12i of the ≥ M2i− 1

2 customers that
have fallen on q. The expected number of these customers falling in the gray area is at least

c1 · 2i · 2p = 2i+1c1 · p.

Applying a Chernoff bound (ε = 1 − 1/(c1p) ≥ 1/2), the probability that fewer than 2i+1 of those
customers fall in the gray area is bounded by

e−
1
2
2i+1c1pε2 ≤ e−2i−2c1p

< e−22 log ln n−2c1p

= e−(ln n)2 1
4
c1p

≤ 1
nc

,

for any constant c and for a sufficiently large n.
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We now condition on quadrant q having been partitioned and we consider level i+1. Quadrant q
has 4 subquadrants and we first focus attention on one of them. This quadrant is partitioned if the
pertinent gray area receives at least 2i+2 customers (Figure 10). By applying Lemma 3 twice, the
probability that a customer falls on the gray area, conditioning that it fell on q, is at least 2p2. Let
c2 = 4/p2 and consider the next c22i of the ≥ M2i− 1

2 customers which fell in q (after the c12i that
we just accounted for). The expected number of those customers falling in the gray area is at least

c2 · 2i · 2p2 = 2i+1c2 · p2.

By applying a Chernoff bound (ε = 1 − 2/(c2p
2) ≥ 1/2), the probability that fewer than 2i+2 of

those customers fall in the gray area is bounded by

e−
1
2
2i+1c2p2ε2 ≤ e−2i−2c2p2

< e−22 log ln n−2c2p2

= e−(ln n)2 1
4
c2p2

≤ 1
nc

,

again for any constant c. Since q has 4 subquadrants, it follows that all the 4 subquadrants are
partitioned with probability at least 1 − 4n−c with the first 4c22i of the ≥ M2i− 1

2 customers that
fell in q.

A similar result holds for the next 16 subsubquadrants with c3 = 8/p3 and for the subsequent
64 subquadrants with c4 = 16/p4. Since

M · 2i− 1
2 = 2i(c1 + 4c2 + 16c3 + 64c4),

it follows that, if at least M2i− 1
2 customers fall in q, then, for a sufficiently large n, all the 4 levels

from i downwards are fully partitioned with probability at least 1 − n−κ2 for any constant κ2.

Lemma 6. Every disjoint bush has a facility in each of its quadrants in the optimal, offline solution.

Proof. Consider Figure 11. Since the black quadrant is open, by Lemma 2 (a = 1/
√

2 so α < 3),
the optimal solution must have a facility in the gray box.

We are now ready to prove the main result on distributions with smooth neighborhoods.

Theorem 8. Consider the region I and assume that the customers are mutually independent and
obey a distribution ν with smooth neighborhoods. Then, for sufficiently large n, the cost of the
solution produced by algorithm A is only a constant times higher than that of the optimal offline
algorithm with probability at least 1 − 1/n.

Proof. Consider the solution of algorithm A and the induced partition. As shown earlier, it suffices
to bound the number of facilities and we may assume that the customers arrive in random order.
By Lemma 4, all quadrants up to level d− = 2 log ln n are partitioned whp. By Lemma 5, if a
quadrant q at a level i > d− has more than M descendants, then q is fully partitioned 4 levels down
whp. By Lemma 6, every disjoint bush q has a facility in each of its subquadrants in the optimal
offline solution. It remains to show that
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Figure 11: A quadrant of a disjoint bush

1. the cost of the solution is only a constant higher than the cost of the disjoint bushes.

2. the number of disjoint bushes is proportional to the number of facilities in the optimal offline
solution.

Since every bush has at least M descendants, every quadrant that is not a bush has at most
M − 1 descendants (none of which are bushes). Hence the number of nonbushes is at most 4M
times higher than the number of bushes. Therefore the cost of the solution is proportional to the
number of bushes. Notice though that the number of disjoint bushes is at most

∑3
i=0 4i = 85 times

higher than the number of bushes (a descendent of a disjoint bush that is 4 levels lower, has to be
a disjoint bush). This proves point (1) above.

Consider now the tree where every node is a disjoint bush and the parent of a disjoint bush q
is the closest (i)-ancestor of q which is a disjoint bush. The total number of nodes in the disjoint-
bush tree is proportional to the number of leaves and nodes with a single child. By Lemma 6, the
optimal solution has at least 4 facilities for every leaf. Similarly, for every node with a single child,
it also follows from Lemma 6 that there are at least three facilities in the optimal solution not in
the subquadrant of the child, proving point (2) above and concluding the proof.

The final result of this section identifies a large class of distributions with smooth neighborhoods.

Lemma 7. Consider a distribution ν on I = [0, 1]2 with probability density function ϕ. If ϕ is
continuous on I and uniformly bounded from 0, then ν has smooth neighborhoods.

Proof. Since ϕ is uniformly bounded from 0, there exists some ε > 0 such that ∀x ∈ I : ϕ(x) > ε.
Also, since ϕ is continuous on the set I and I is compact, we have that ϕ is bounded on I, i.e.,
there exists a constant M such that ϕ(x) < M for all x ∈ I.
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We now prove that ν satisfies the smooth neighborhoods property for K = M/ε. More precisely,
we show that

ν(Q1) ≤ M

ε
· ν(Q2)

for two neighboring squares Q1 and Q2 (of equal area). Rewrite this relation in terms of the
probability density function ∫

Q1

ϕ(x)dx ≤ M

ε
·
∫

Q2

ϕ(x)dx.

By applying the mean-value theorem (for integrals on R
2), there exist x1 ∈ Q1 and x2 ∈ Q2 such

that
|Q1| · ϕ(x1) =

∫
Q1

ϕ(x)dx

and
|Q2| · ϕ(x2) =

∫
Q2

ϕ(x)dx,

Since |Q1| = |Q2|, the smooth neighborhood property becomes

ϕ(x1) ≤ M

ε
· ϕ(x2)

and it holds since ϕ(x1) < M and ϕ(x2) > ε.

8 Empirical Results

This section describes empirical results on a variety of online facility location problems. To the best
of the authors’ knowledge, this is the first empirical evaluation of algorithms for this problem. In
Tables 1, 2, 3, 4, 5, and 6, the acronym M refers to Meyerson’s algorithm of [16] and F to Fotakis’
algorithm [7]. The remaining acronyms refer to various ways of choosing facility locations for the
partitioning algorithm: C refers to choosing the center point, LC the last customer, and P the
average position of customers in the quadrant. All the tables are divided in two parts. The top
part of the tables shows results for the region model, while the bottom part depicts the results for
Meyerson’s model.

For each distribution, we give the results when the points come uniformly at random, as well
as when the points come in sorted order by their x coordinates. Each column section labels the
number of customers generated and summarizes the reported results as an average of 10 problems.
The C columns are the total cost and W refers to number of open facilities. Boldface indicates the
best results in Meyerson’s model. The best result in the region model is boldfaced when it is better
than the best result in Meyerson’s model. All algorithms were tested on a variety of parameters
and the best parameter over all customer sizes for each problem was chosen. It is important to note
that it is possible to do substantially better in some cases using different thresholds on a specific
customer size. For the partitioning algorithms, the subscript is the thresholding parameter. In
F the superscript refers to the x value. For values of x ≥ 10, F has a qualitative performance
guarantee but performs quite inefficiently. In particular, Fotakis’ algorithm is about 500 times
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Random

1000 5000 10000 100000
C W C W C W C W

C3.2 73.9 277.0 199.0 511.5 312.7 559.7 1465.5 1846.7
P2.7 46.6 258.0 191.2 1022.2 266.1 1130.9 1258.9 4626.1

M1.9 52.9 243.5 173.1 692.2 282.1 1105.5 1393.8 5075.3
F10

0.2 66.3 613.7 165.8 1214.4 242.6 1476.9 1195.9 4633.0
C1 69.6 642.8 172.4 1192.9 287.4 1800.0 315.5 6137.6

P1.6 69.6 642.7 158.7 1037.5 254.6 1381.4 1384.5 5728.1
LC1.1 69.6 642.8 167.0 1146.4 274.8 1728.4 1301.9 6176.6

Sorted

1000 5000 10000 100000
C W C W C W C W

C3.6 62.2 135.4 183.2 379.8 278.8 407.1 1297.8 1607.2
P3.3 51.0 254.1 200.5 980.7 296.5 1148.4 1457.1 4939.8

M2 54.0 228.5 171.5 631.5 279.8 1022.2 1354.6 4714.0
F10

0.2 68.0 632.0 183.4 1377.7 273.4 1724.9 1263.2 5184.6
C1.7 70.2 646.2 173.5 1049.7 296.8 1491.0 400.1 5043.8
P1.7 70.2 646.2 173.5 1049.7 298.9 1491.4 1510.2 5310.6
LC1.8 52.0 294.8 166.8 683.5 272.2 1109.2 1298.0 4925.3

Table 1: Uniform Distribution, Facility Cost = .1

slower than the partitioning algorithm to execute all the benchmarks used in this section. The
algorithm by Meyerson does not involve any parameters, however, it is easy to add a parameter
that is similar to the ones described here In the original algorithm, as presented in [16], a new
facility is opened at a customer with probability d/f where d is the distance to the nearest facility.
It is easy to see that this can be modified to d/af . If a is constant, then the same competitive
ratio results hold, albeit with a different constant for the O(1) result that concerns random order
of the points (similarly, the subscript of F also refers to a thresholding parameter for indicating
how much potential is needed to open a new facility). All the problem instances described below
exist in the two dimensional unit square.

Uniform Distributions Tables 1 and 2 assess how well the algorithms perform when the cus-
tomers are distributed in the space uniformly for facility costs of .1 and 1. It is interesting to
see here that Meyerson’s models perform better than the regions models until high numbers of
customers are reached. This may be due, in part, to savings (travel cost of 0) gained by placing a
facility with the most recent arriving customer. Overall, F and LC perform the best here, with F
having a slight edge as the number of customers increases. However, F is considerably slower.

Gaussian Distribution Tables 3 and 4 show the results of the algorithms when the points are
drawn from a Gaussian distribution located at the center of the unit square with a parameter of
.25 for both the x and y directions with facility costs of .1 and 1. What is clear from these results
is that the F method performs the best on the random ordered points and sorted points when
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Random

1000 5000 10000 100000
C W C W C W C W

C2.4 135.3 24.0 410.4 88.0 628.2 88.5 2968.5 373.6
P2.1 141.9 69.9 495.9 280.8 626.1 279.6 2806.6 1140.7

M1.9 143.4 52.1 425.8 154.1 675.8 243.9 3141.3 1090.7
F10

0.2 122.9 50.3 363.1 106.7 585.8 155.0 2905.3 566.8
C2.8 132.8 24.3 413.3 87.9 635.0 88.7 3000.8 355.8
P2.8 134.0 24.3 413.0 88.0 638.0 89.4 3019.0 367.0

LC1.0 146.6 82.0 443.6 226.0 677.8 330.1 3065.0 1370.5

Sorted

1000 5000 10000 100000
C W C W C W C W

C2.5 127.0 24.0 381.1 88.0 573.6 91.0 2673.7 429.3
P2.6 154.3 69.7 514.4 268.1 708.2 295.1 3225.8 1195.5

M1.9 141.3 52.3 412.0 143.5 650.5 234.1 3033.7 1054.7
F10

0.2 130.4 56.2 380.1 121.9 604.7 177.4 2897.1 631.7
C1.7 149.8 52.7 425.0 123.5 685.1 238.0 3115.1 1093.7
P1.6 157.4 57.5 469.4 154.4 729.0 253.5 3388.6 1203.5

LC1.6 139.4 58.0 418.1 150.0 41.2 262.6 2916.0 1165.0

Table 2: Uniform Distribution, Facility Cost = 1

the facility cost is .1. However, its performance degrades more than the other methods when the
points are sorted, indicating it is less able to adapt to problems with more structured sequences
(other methods, in fact, improve their performance). The second best method is LC which has only
slightly worse performance but is much faster to compute.

New England Population Distributions Table 5 uses the 2000 United States census [24] to
determine the populations of towns in New England. By letting Pne be the total population of
New England and Pt the population of a town t in New England, a customer is generated by
first choosing a town t with probability Pt

Pne
and then drawing from a Gaussian distribution with

parameter .1 in the x and y direction. Figure 12 gives a picture of how the towns are distributed
in the space. In this case, the facility cost is 10. With a higher facility cost, much fewer facilities
are placed and it is critical that they be placed correctly. Once again F performs slightly better
then the partitioning algorithms on fewer customers, but LC surpasses F when the points come in
sorted order and P when the points are in random order.

Rhode Island Population Distribution Finally, a model similar to the New England popu-
lation distribution is used for the cities of Rhode Island. The Gaussian parameter remains .1, but
the facility cost is changed to 100. The results are shown in Table 6. Figure 13 shows the cities
mapped onto a 2 dimensional plane. The results here are more muddled, though it appears that
F generally performs the best, at a high computational cost, whereas LC is the best partitioning
algorithm.
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Random

1000 5000 10000 100000
C W C W C W C W

C1.8 56.0 257.3 158.3 571.1 246.6 807.2 1114.5 3007.0
P3.5 40.6 228.0 136.9 604.2 225.5 933.1 1132.4 4407.3

M1.9 42.2 185.0 138.7 558.8 228.2 879.2 1120.4 4070.6
F10

0.2 47.3 405.6 133.7 920.0 206.3 1234.0 961.6 3565.3
C1.7 48.4 406.1 138.7 894.1 216.6 1191.7 1044.2 3750.1
P1.7 48.4 405.6 138.6 894.1 217.0 1194.5 1047.4 3780.0
LC1.7 48.4 406.8 137.8 902.8 216.5 1232.7 1050.0 4181.6

Sorted

1000 5000 10000 100000
C W C W C W C W

C1.8 54.7 262.1 148.1 574.6 226.7 805.2 1001.9 2989.5
P3.5 44.9 238.3 151.6 648.0 252.7 1045.0 1268.7 5089.5

M2 42.7 176.3 138.0 517.6 223.7 819.0 1090.4 3802.4
F10

0.2 49.7 427.8 144.7 1004.7 225.3 1374.2 1020.0 4003.0
C1.5 50.7 414.6 151.7 947.2 240.5 1304.7 1140.5 4453.0
P1.7 50.7 412.3 154.3 930.5 248.9 1280.0 1232.7 4380.6
LC1.8 42.1 240.9 134.1 583.7 218.6 888.3 1073.2 3865.5

Table 3: Gaussian Distribution, Facility Cost = .1

Random

1000 5000 10000 100000
C W C W C W C W

C2.4 113.9 27.8 326.2 66.2 531.8 109.4 2511.5 520.1
P4.6 104.4 34.2 335.6 114.7 527.5 164.5 2515.3 794.7

M1.9 110.9 41.7 334.6 118.7 535.5 190.0 2533.3 878.5
F10

0.2 97.1 37.1 295.2 84.0 475.4 120.4 2353.5 448.3
C1.4 103.9 46.7 314.5 117.7 505.4 181.6 2382.1 783.2
P1.7 110.3 39.5 322.9 100.2 515.0 156.5 2404.9 682.1
LC2.1 104.5 49.2 321.9 133.8 513.2 205.02 455.6 916.0

Sorted

1000 5000 10000 100000
C W C W C W C W

C1.5 101.0 34.1 291.3 92.7 467.7 153.3 2144.7 687.2
P3.6 121.3 46.8 373.6 146.6 602.3 242.3 2834.3 1110.7

M2.1 109.5 36.3 327.5 107.2 521.4 167.5 2428.0 795.6
F10

0.2 102.9 41.0 304.0 95.0 487.1 137.5 2342.1 500.3
C1.5 113.4 41.3 333.3 121.7 533.8 191.4 2485.5 867.2
P1.4 120.2 49.3 366.2 139.3 582.2 216.4 2732.1 966.7

LC1.8 106.4 37.7 318.1 114.2 508.7 175.6 2388.6 809.7

Table 4: Gaussian Distribution, Facility Cost = 1
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Random

1000 5000 10000 100000
C W C W C W C W

C1.4 205.7 8.0 612.7 22.3 924.1 29.5 4274.2 130.4
P4.6 189.2 7.2 573.0 19.8 929.9 30.1 4540.8 156.0

M2.1 206.5 7.2 593.4 19.3 964.1 31.6 4586.7 146.6
F10

0.2 185.9 4.2 577.0 10.1 921.1 14.8 4539.4 63.3
C1.7 191.1 8.0 579.7 21.0 902.3 29.6 4277.5 126.0
P1.7 189.0 8.0 577.4 20.8 865.3 26.3 4178.5 116.7
LC2 195.1 7.7 584.5 20.6 919.2 29.3 4404.6 129.5

Sorted

1000 5000 10000 100000
C W C W C W C W

C1.7 209.9 8 591.3 19.8 890.0 27.6 3875.0 108.5
P4.8 237.7 9.9 621 18.6 1082.3 37.8 5153.0 176.9

M2.1 201.3 7.4 592.6 20.1 944.7 31.1 4375.4 146.5
F10

0.2 194.3 4.7 573.1 10.6 930 15.3 4471.7 66.2
C1.5 206.4 8.5 602.4 23.5 934.8 33.5 4415.9 155.3
P2 215.3 7.2 653.2 20.8 1024.5 28.1 4883.4 133.5

LC2 195.0 7.4 574.5 21.8 906.7 29.0 4269.2 132.5

Table 5: New England Population Distribution, Facility Cost = 10
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Figure 12: New England Town Locations
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Figure 13: Rhode Island Town Locations

Random

1000 5000 10000 100000
C W C W C W C W

C1.3 762.9 5.0 1772.7 8.5 2475.5 10.0 10616.3 35.3
P5 564.5 4.0 1435.2 6.7 2080.4 7.5 10678.0 36.0

M1.9 405.2 1.6 1517.9 5.9 2373.9 8.8 10874.3 40.6
F10

0.2 372.6 1.3 1384.4 4.7 2051.0 5.9 8906.7 15.6
C1.3 571.7 4 1465.4 7.9 2088.3 9.1 10654.9 41.7
P1.4 571.2 4.0 1406.8 7.2 2118.1 9.1 9745.4 33.6
LC2 574.1 4.0 1285.9 5.7 2175.9 8.5 10137.4 33.3

Sorted

1000 5000 10000 100000
C W C W C W C W

C1.6 772.1 5.0 1671.3 7.0 2581.1 10.0 10337.3 33.5
P5 686.7 4.0 1813.6 7.4 2708.8 7.2 12384.6 39.8

M1.9 699.2 3.5 1666.9 7.0 2516.8 9.6 10761.6 38.3
F10

0.2 613.9 2.2 1448.6 5.0 2283.6 7.4 9922.5 19.1
C1.3 737.1 5.0 1687.7 8.0 2520.0 11.1 11090 46.7
P1.2 744.1 5.0 1800.2 9.0 2718.3 12.0 11933.8 50.3

LC1.7 729.4 4.7 1672.9 8.3 2384.8 10.0 10403.8 39.3

Table 6: Rhode Island Population Distribution, Facility Cost = 100
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Summary Overall the experimental results are very favorable to the partitioning algorithm.
The partitioning algorithm LC is generally the best partitioning version (although C is also very
robust) and it is only slightly outperformed as far as quality is concerned by F. Algorithm F
however is much more demanding computationally and much more complicated to implement. The
deterministic partitioning algorithm almost always outperforms Meyerson’s randomized algorithm
and the benefits can be quite significant sometimes.

9 Conclusion and Future Work

This paper reconsidered online facility location and presented a simple and deterministic competi-
tive algorithm for this problem. The algorithm, whose key idea is a hierarchical partitioning based
on thresholding, is very simple to implement and runs in O(n log n), where n is the number of
customers. The paper showed that the algorithm is O(log n)-competitive for a variety of models,
including the region model, Meyerson’s model where facilities must co-exist with existing customers,
and the fixed location model. The paper also presented the first probabilistic analysis of online
facility location, showing that the partitioning algorithm is O(1)-competitive for any arrival order
whenever the customers are uniformly distributed in the region. Experimental results have shown
that the algorithm behaves very well in practice under a variety of hypotheses. It is only slightly
outperformed by Fotakis’ algorithm that is much more demanding computationally. The experi-
mental results also show that our algorithm can bring significant benefits compared to Meyerson’s
algorithm.

There are still various open issues for future research. First, it is important to extend the
partitioning idea to other, and perhaps all, metric spaces. It would also be interesting to generalize
the online facility location algorithm presented here to account for non-uniform facility costs. This
would probably requiring changing the sizes of the partitioning dynamically. It is also important to
develop a model for online facility location that allows for capacitated facilities and the closing and
re-opening of facilities as featured in a variety of networking and mobile computing applications.
The partitioning scheme described here would naturally extend to such models. On the practical
side, it may be interesting to evaluate empirically adaptive versions of the algorithms where thresh-
olds are refined on the fly. Indeed, early experimental results indicate it is better to have higher
thresholds for smaller numbers of customers. On the theoretical side, there are many issues left
open with the probabilistic analysis. These include identifying which distributions have smooth
neighborhoods, and generalizing the proof to weaker properties, since we believe that the algorithm
would behave well in many other contexts.
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