
A Comparison of TCP Automatic Tuning Techniques for Distributed Computing

Eric Weigle and Wu-chun Feng

Research and Development in Advanced Network Technology
Computer and Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545

{ehw,feng }@lanl.gov

Abstract

Rather than painful, manual, static, per-connection op-
timization of TCP buffer sizes simply to achieve acceptable
performance for distributed applications [8, 10], many re-
searchers have proposed techniques to perform this tuning
automatically [4, 7, 9, 11, 12, 14]. This paper first discusses
the relative merits of the various approaches in theory, and
then provides substantial experimental data concerning two
competing implementations – the buffer autotuning already
present in Linux 2.4.x and “Dynamic Right-Sizing.” This
paper reveals heretofore unknown aspects of the problem
and current solutions, provides insight into the proper ap-
proach for different circumstances, and points toward ways
to further improve performance.

Keywords: dynamic right-sizing, autotuning, high-
performance networking, TCP, flow control, wide-area net-
work.

1. Introduction

TCP, for good or ill, is the only protocol widely avail-
able for reliable end-to-end congestion-controlled network
communication, and thus it is the one used for almost all
distributed computing.

Unfortunately, TCP was not designed with high-
performance computing in mind – its original design deci-
sions focused on long-term fairness first, with performance
a distant second. Thus users must often perform tortuous
manual optimizations simply to achieve acceptable behav-
ior. The most important and often most difficult task is de-
termining and setting appropriate buffer sizes. Because of
this, at least six ways of automatically setting these sizes
have been proposed.

In this paper, we compare and contrast these tuning
methods. First we explain each method, followed by an in-
depth discussion of their features. Next we discuss the ex-
periments to fully characterize two particularly interesting
methods (Linux 2.4 autotuning and Dynamic Right-Sizing).
We conclude with results and possible improvements.

1.1. TCP Tuning and Distributed Computing

Computational grids such as the Information Power
Grid [5], Particle Physics Data Grid [1], and Earth System
Grid [3] all depend on TCP. This implies several things.

First, bandwidth is often the bottleneck. Performance for
distributed codes is crippled by using TCP over a WAN. An
appropriately selected buffer tuning technique is one solu-
tion to this problem.

Second, bandwidth and time are money. An OC-3 at
155Mbps can cost upwards of $50,000 a month and higher
speeds cost even more. If an application can only utilize a
few megabits per second, that money is being wasted. Time
spent by people waiting for data, time spent hand-tuning
network parameters, time with under-utilized compute re-
sources – also wasted money. Automatically tuned TCP
buffers more effectively utilize network resources and save
that money, but an application designer must still choose
from the many approaches.

Third, tuning is a pain. Ideally, network and protocol
designers produce work so complete that those doing dis-
tributed or grid computing are not unduly pestered with the
“grungy” details. In the real world, application develop-
ers must still make decisions in order to attain peak per-
formance. The results in this paper show the importance
of paying attention to the network and show one way to
achieve maximal performance with minimal effort.

2. Buffer Tuning Techniques

TCP buffer-tuning techniques balance memory demand
with the reality of limited resources – maximal TCP buffer
space is useless if applications have no memory. Each tech-
nique discussed below uses different information and makes
different trade-offs. All techniques are most useful for large
data transfers (at least several times thebandwidth×delay
product of the network). Short, small transmissions are
dominated by latency, and window size is practically irrele-
vant.

2.1. Current Tuning Techniques

1. Manual tuning [8,10]

2. PSC’s Automatic TCP Buffer Tuning [9]

3. Dynamic Right-Sizing (DRS) [4,14]

4. Linux 2.4 Auto-tuning [12]

5. Enable tuning [11]

6. NLANR’s Auto-tuned FTP (in ncFTP) [7]

7. LANL’s DRS FTP (in wuFTP)

Manual tuning is the baseline by which we measure au-
totuning methods. To perform manual tuning, a human uses
tools such asping andpathchar orpipechar to deter-
mine network latency and bandwidth. The results are mul-
tiplied to get thebandwidth × delay product, and buffers
are generally set to twice that value.

PSC’s tuning is a mostly sender-based approach. Here
the sender uses TCP packet header information and times-
tamps to estimate thebandwidth×delay product of the net-
work, which it uses to resize its send window. The receiver
simply advertises the maximal possible window. PSC’s pa-
per [9] presents results for a NetBSD 1.2 implementation,
showing improvement over stock by factors of 10-20 for
small numbers of connections.

DRS is a mostly receiver-based buffer tuning approach
where the receiver tries to estimate thebandwidth× delay
product of the network and the congestion-control state of
the sender, again using TCP packet header information and
timestamps. The receiver then advertises a window large
enough that the sender is not flow-window limited.

Linux autotuning refers to a memory management
technique used in the stable Linux kernel, version 2.4.
This technique does not attempt any estimates of the
bandwidth × delay product of a connection. Instead, it
simply increases and decreases buffer sizes depending on
available system memory and available socket buffer space.
By increasing buffer sizes when they are full of data, TCP

connections can increase their window size – performance
improvements are an intentional side-effect.

Enable uses a daemon to perform the same tasks as a
human performing manual tuning. It gathers information
about every pair of hosts between which connections are
to be tuned and saves it in a database. Hosts then look up
this information when opening a connection and use it to
set their buffer sizes. Enable [11] reports performance im-
provements over untuned connections by a factor of 10-20
and above 2.4 autotuning by a factor of 2-3.

Auto-ncFTP also mimics the same sequence of events
as a human manually tuning a connection. Here, it is per-
formed once just before starting a data connection in FTP
so the client can set buffer sizes appropriately.

DRS FTP uses a new command added to the FTP control
language to gain network information, which is used to tune
buffers during the life of a connection. Tests of this method
show performance improvements over stock FTP by a factor
of 6 with 100ms delay, with optimally tuned buffers giving
an improvement by a factor of 8.

2.2. Comparison of Tuning Techniques

Tuning Level Changes Band Visibility
PSC Kernel Dynamic In Transparent

Linux 2.4 Kernel Dynamic In Transparent
DRS Kernel Dynamic In Transparent

Enable User Static Out Visible
NLANR FTP User Static Out Opaque

DRS FTP User Dynamic Both Opaque
Manual Both Static Out Visible

Table 1. Comparison of Tuning Techniques

User-level versus Kernel-levelrefers to whether the
buffer tuning is accomplished as an application-level solu-
tion or as a change to the kernel (Linux, *BSD, etc.).

Manual tuning tediously requires both types of changes.
An “ideal” solution would require only one type of change
– kernel-level for situations where many TCP-based pro-
grams require high performance, user-level where only a
single TCP-based program (such as FTP) requires high per-
formance.

Kernel-level implementations will always be more effi-
cient, as more network and high-resolution timing informa-
tion is available, but they are complicated and non-portable.
Whether this is worth the 20-100% performance improve-
ment is open to debate.

Static versus Dynamicrefers to whether the buffer tun-
ing is set to a constant at the start of a connection, or if it
can change with network “weather” during the lifetime of a
connection.

2

Generally a dynamic solution is preferable – it adapts
itself to changes in network state, which some work has
shown to have multi-fractal congestion characteristics [6,
13]. Static buffer sizes are always too large or small
given “live” networks. Yet, static connections often have
smoother application-level performance than dynamic con-
nections, which is desirable.

Unfortunately, both static and dynamic solutions have
problems. Dynamic changes in buffer sizes imply changes
in the advertised window, which if improperly implemented
can break TCP semantics (data legally sent for a given win-
dow is in-flight when the window is reduced, thus causing
the data to be dropped at the end host). Current dynamic
tuning methods monotonically increase window sizes to
avoid this – possibly wasting memory.

In-Band versus Out-of-Band refers to whether
bandwidth × delay information is obtained from the
connection itself or is gathered separately from the data
transmission to be tuned. An ideal solution would be
in-band to minimize user inconvenience and ensure the
correct time-dependent and path-dependent information is
being gathered.

DRS FTP is “both” because data is gathered over the
control channel; usually this channel uses the same path
as the data channel, but in some “third-party” cases the
two channels are between different hosts entirely. In the
first case data collection is “in-band”, while in the second
not only is it out of band, it measures characteristics of
the wrong connection! Auto-ncFTP suffers from the same
“third-party” problem.

Transparent versus Visiblerefers to user inconvenience
– how easily can a user tell if they are using a tuning
method, how many changes are required, etc. An ideal so-
lution would be transparent after the initial install and con-
figuration required by all techniques.

The kernel approaches are transparent; other than im-
proved performance they are essentially invisible to aver-
age users. The FTP programs are “opaque” because they
can generate detectable out-of-band data, and require some
start-up time to effectively tune buffer sizes. Enable is com-
pletely visible. It requires a daemon and database sepa-
rate from any network program to be tuned, generates fre-
quent detectable network benchmarking traffic, and requires
changes to each network program that wishes to utilize its
functionality.

3. Experiments

These experiments shift our focus to the methods of di-
rect interest: manual tuning, Linux 2.4 autotuning, and
Dynamic Right-Sizing under Linux. The remaining ap-
proaches are not discussed further because such analysis is
available in the referenced papers.

3.1. Varied Experimental Parameters

Our experiments consider the following parameters:
Tuning (None, 2.4-auto, DRS): We compare a Linux

2.2.20 kernel which has no autotuning, a 2.4.17 kernel
which has Linux autotuning, and a 2.4.17 kernel which also
has Dynamic Right-Sizing. We will refer to these three as
2.2.20-None, 2.4.17-Auto, and 2.4.17-DRS.

Buffer Sizes (32KB to 32MB): Initial buffer size con-
figuration is required even for autotuning implementations.
There are three cases:

1. No user or kernel tuning; buffer sizes at defaults. Gives
baseline for comparison with tuned results.

2. Kernel-only tuning; configure maximal buffer sizes
only. Gives results for kernel autotuning implemen-
tations.

3. User and kernel tuning; usesetsockopt() to con-
figure buffer sizes manually. Gives results for manu-
ally tuned connections.

Network Delay (≈0.5ms, 25ms, 50ms, 100ms): We
vary the delay from 0.5ms to 100ms to show the perfor-
mance differences between LAN and WAN environments.
We use TICKET [15] to perform WAN emulation. This
emulator can route at line rate (up to 1Gbps in our case) in-
troducing a delay between 200 microseconds and 200 mil-
liseconds.

Parallel Streams (1, 2, 4, 8): We use up to 8 paral-
lel streams to test the effectiveness of this commonly-used
technique with autotuning techniques. This also shows how
well a given tuning technique scales with increasing num-
bers of flows. When measuring performance, we time from
the start of the first process to the finish of the last process.

3.2. Constant Experimental Parameters

Topology: Figure 1 shows the generic topology we use
in our tests. We have some number of network source (S)
processes sending data to another set of destination (D) pro-
cesses through a pair of bottleneck routers (R) connected
via some WAN cloud. The “WAN cloud” may be a direct
long-haul connection or through some arbitrarily complex
network. (In the simplest case, both routers and the “WAN
cloud” could be a single very high-bandwidth LAN switch).

S2

S1

S3

Sn

D1

D3

D2

D5

R1 R2WAN

Figure 1. Generic Topology

3

Our experiments place all processes (parallel streams)
on a single host. The results of more complicated one-
to-many or many-to-one experiments (common in scatter-
gather computation, or for web servers) can be inferred by
observing memory and CPU utilization on the hosts. This
information shows the scalability of the sender and receiver
tuning and whether one end’s behavior characterizes the
performance of the connection. This distinction is critical
for one-to-many relationships, as the “one” machine must
split its resources among many flows while each of the
“many” machines can dedicate more resources to the one
flow.

Unidirectional Transfers: Although TCP is inherently
a full duplex protocol, the majority of traffic generally flows
in one direction. TCP protocol dynamics do not signifi-
cantly differ between one flow with bidirectional traffic and
two unidirectional flows sending in opposite directions [16].

Loss: Our WAN emulator is configured to emulate no
loss (although loss may still occur due to sender/receiver
buffer over-runs). All experiments are intended to be the
best-case scenario. The artificial inclusion of loss adds
nothing to the discussion, as congestion control for TCP
Reno/SACK under Linux is a constant for all experiments.

Data Transfer: Rather than using some of the available
benchmarking programs we chose to write a simple TCP
based program to mimic message-passing traffic. This pro-
gram tries to send large (1MB) messages between hosts as
fast as possible. A total of 128 messages are sent, a number
chosen because:

1. 128MB transfers are large enough to allow the conges-
tion window to fully open.

2. 128MB transfers are small enough to occur commonly
in practice1.

3. Longer transfers do not help differentiate among tun-
ing techniques (tested, but results omitted).

4. It is evenly divisible among all numbers of parallel
streams.

Hardware: Tests are run between two machines with
dual 933MHz Pentium III processors, an Alteon Tigon
II Gigabit Ethernet card on a 64bit/66MHz PCI bus, and
512MB of memory.

4. Results and Analysis

We present data in order of increasing delay. With con-
stant bandwidth (Gigabit Ethernet), this will show how well
each approach scales as pipes get “fatter.”

1“In the long run we are all dead.” -John Maynard Keynes

4.1. First Case,≈0.5ms Delay

With delays on the order of half a millisecond, we ex-
pect that even very high bandwidth links can be saturated
with small windows – the default 64KB buffers should be
sufficient.

Figure 2 shows the performance using neither user nor
kernel tuning. With a completely default configuration, the
Linux 2.4 stack with autotuning outperforms the Linux 2.2
stack without autotuning by 100Mbps or more (as well as
showing more stable behavior). Similarly, 2.4.17-DRS out-
performs 2.4.17-Auto by a smaller margin of 30-50Mbps.
This is due to more appropriate use of TCP’s advertised
window field and faster growth to the best buffer size possi-
ble.

Unexpectedly for such a low-delay case, all kernels ben-
efit from the use of parallel streams, with improvements
in performance from 55-70%. When a single data flow is
striped among multiple TCP streams, it effectively obtains
a super-exponential slow-start phase and additive increase
by N (the number of TCP streams). In this case, that behav-
ior improves performance.

Note that limitations in the firmware of our Gigabit Eth-
ernet NICs limit performance to 800Mbps or below, so we
simply consider 800Mbps ideal.2

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 2. No Tuning, 0.5ms

Figure 3 shows the performance with kernel tuning only;
that is, increasing the maximum amount of memory that the
kernel can allocate to a connection.

As expected, results for 2.2.20-None (which does no au-
totuning) mirror the results from the prior test.

2.4.17-Auto connections perform 30-50Mbps better than
in the untuned case, showing that the default 64KB buffers
were insufficient.

2Custom firmware solutions can improve throughput, but such results
are neither portable nor relevant to this study.

4

2.4.17-DRS connections also perform better with one or
two processes, but as the number of processes increases,
DRS actually performs worse! DRS is more aggressive in
allocating buffer space; with such low delay, it overallocates
memory, and performance suffers (see Figure 5’s discussion
below).

Furthermore, performance is measured at the termina-
tion of the entire transfer (when the final parallel process
completes). Large numbers of parallel streams can lead to
the starvation of one or more processes due to TCP conges-
tion control, so the parallelized transfer suffers. Yet this can
be a good thing – parallel flows can induce chaotic network
behavior and be unfair in some cases; by penalizing users
of heavily parallel flows, DRS could induce more network
fairness while still providing good performance.

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 3. Kernel-Only Tuning, 0.5ms

Figure 4 shows the results for hand-tuned connections.
DRS obeys the user when buffers are set bysetsock-
opt() , so 2.4.17-Auto and 2.4.17-DRS use the same
buffer sizes and perform essentially the same. The perfor-
mance difference between 2.2.20 and 2.4.17 is due to stack
improvements in Linux 2.4.

The “ideal” buffer sizes in the prior graph (Figure 4) are
larger than one might expect; Figure 5 shows the perfor-
mance of 2.4.17-Auto with buffer sizes per process between
8KB and 64MB. We achieve peak performance with sizes
on the order of 1MB – much larger than the calculated ideal
of 64KB, thebandwidth×delay of the network. The differ-
ence is due to the interaction and feedback between several
factors, the most important of which are TCP congestion
control and process scheduling.

To keep the pipe full, one must buffer enough data to
avoid transmission “bubbles.” However, with multi-fractal
burstiness caused by TCP congestion control [6, 13], occa-
sionally the network is so overloaded that very large buffers
are needed to accommodate it. Also, these buffers them-
selves can increase the effective delay (and therefore in-
creasing the buffering required) in a feedback loop only ter-

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 4. User/Kernel Tuning with Ideal Sizes,
0.5ms

minated by a lull later in the traffic stream. This buffering
can occur either in the network routers or in the end hosts.

Because of process scheduling, it is incorrect to divide
the predicted “ideal” buffer size (thebandwidth × delay)
by the number of processes to determine the buffer size per
process when using parallel streams. Because only one pro-
cess can run on a given CPU at a given time, the kernel must
buffer packets for the remaining processes until they can get
a time slice. Thus, as the number of processes grows, the ef-
fective delay experienced by those processes increases, and
the amount of required buffering also grows. Beyond a cer-
tain point, this feedback is great enough that the addition of
additional parallelism is actually detrimental. This is what
we see with DRS in Figure 5.

400

450

500

550

600

650

700

750

800

850

900

10000 100000 1e+06 1e+07

B
an

dw
id

th
 A

cq
ui

re
d

Buffer size

1 process
2 process
4 process
8 process

Figure 5. Effect of Buffer Size on Perfor-
mance, 0.5ms

5

4.2. Second Case,≈25ms Delay

This case increases delay to values more in line with
a network of moderate size, giving abandwidth × delay
product of over 3MB. Figure 6 shows how the default con-
figuration is insufficient for high performance, giving less
than 20Mbps for a single process with all kernels. As
the number of processes increases, our effective flow win-
dow increases, and we achieve a linear speed-up. In this
case, simple autotuning outperforms DRS, as the memory-
management technique is more effective with small win-
dows (it was designed for heavily loaded web servers).

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 6. No Tuning, 25ms
Figure 7 shows results with Kernel-Only Tuning. The

performance of DRS improves dramatically while the per-
formance of simple autotuning and untuned connections is
constant. As we increase the number of processes we again
see the performance of DRS fall.

This graph actually reveals a bug in the Linux 2.4 ker-
nel series that our DRS patch fixes; the window scaling ad-
vertised in SYN packets is based on initial (default) buffer
size, not the maximal buffer size up to which Linux can
tune. Thus with untuned default buffers, no window scal-
ing is advertised – even if the kernel is allowed to allocate
multi-megabyte buffers, the size of those buffers cannot be
represented in TCP packet headers.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 7. Kernel-Only Tuning, 25ms

With both user and kernel tuning, maximal performance
increases for all kernels. However, as shown in Figure 8,
performance does fall for DRS in the two and four pro-
cess case – here we see that second-guessing the kernel can
cause problems, and larger buffer sizes are not always de-
sirable.

The other feature of note is that 2.4.17-DRS performance
is not identical to 2.4.17-Auto – the only difference in this
case is that DRS uses a slightly different algorithm to adver-
tise its receiver window, and this pays off with a 150Mbps
performance improvement.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 8. User/Kernel Tuning with Ideal Sizes,
25ms

4.3. Third and Fourth Cases, 50-100ms Delay

The patterns observed in results for the 50ms and 100ms
cases do not significantly differ (other than adjustments in
scale) from those in the 25ms case – the factors dominat-
ing behavior are the same. That is, at low delays (below
20ms), one can find very interesting behavior as TCP inter-
acts with the operating system, NIC, and so forth. At higher
delays (25ms and above), the time scales are large enough
that TCP slow-start, additive increase, and multiplicative
decrease behaviors are most important; interactions with the
operating system and so forth become insignificant.

In fact, the completely untuned cases differ so little that
the following three equations (generated experimentally)
suffice to calculate the bandwidth in Mbps with error uni-
formly below 20%, given only the number of processes and
the delay in milliseconds.

• 2.2.20-None:(processes× 214)/delay

• 2.4.17-Auto:(processes× 467)/delay

• 2.4.17-DRS:(processes× 355)/delay

6

As in Figure 7, the kernel-only tuning case in Figure 9
shows 2.4.17-DRS significantly outperforming 2.4.17-Auto
(by a factor of 5 to 15). DRS at 50ms delay with 8 processes
achieves 310Mbps (graph omitted), and at 100ms with 8
process achieves 180Mbps. The performance of 2.2.20-
None and 2.4.17-Auto, which do not change with kernel-
only tuning, are still limited to the above equations.

0

50

100

150

200

250

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 9. Kernel-Only Tuning, 100ms

Similar to Figure 8, the hand-tuned case in Figure 10
shows 2.4.17-DRS and 2.4.17-Auto performing identically
with 2.2.20-None performing slightly worse. Interestingly,
at this high delay, the performance difference between DRS
and autotuning is insignificant – the factors dominating per-
formance are not buffer sizes but rather standard TCP slow-
start, additive increase, and multiplicative decrease behav-
iors, and the 128MB transfer size is insufficient to differen-
tiate the flows.

With latencies this high, very large (multi-gigabyte, min-
imum) transfer sizes would be required to more fully utilize
the network. It would also help to use a modified version of
TCP such as Vegas [2] or one of the plethora of other ver-
sions, because a multiplicative decrease can take a ridicu-
lous amount of time to recover on high-delay links.

0

50

100

150

200

250

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

Figure 10. User/Kernel Tuning with Ideal
Sizes, 100ms

5. Guidelines on Selecting an Auto-Tuned TCP

This section gives a few practical guidelines for a
prospective user of an automatically tuned TCP.

1. You have kernel-modification privileges to the ma-
chine. So, you may use a kernel-level solution which
will generally provide the best performance. Currently,
only NetBSD and Linux implementations exist, so for
other operating systems you must either wait or use a
user-level solution.

• If you want to use NetBSD, you must use PSC’s
tuning.

• Linux 2.4 autotuning is appropriate for
large numbers of small connections, such
as web/media servers, or machines where users
are willing to tune parallel streams.

• DRS is appropriate for smaller numbers of large
connections, such as FTP or bulk data transfers,
or machines where users are not willing to tune
parallel streams.

2. You do not have kernel-modification privileges to the
machine or are unwilling to make changes, forcing a
user-level solution. All user-level solutions perform
comparably, so the choice between them is based on
features.

• If all you need is FTP, LANL’s DRS FTP or
NLANR’s Auto-tuned FTP will be the easiest
plug-in solutions. Obviously, we are biased in
favor of LANL’s implementation, which dynam-
ically adjusts the window, over NLANR’s imple-
mentation, which does not.

• If you require multiple applications, then the En-
able [11] service may fit your needs. This will,
however, require source-code level changes to
each program you wish to use.

In all cases, initial tuning should be performed to

• Ensure TCP window scaling, timestamps, SACK op-
tions are enabled.

• Set the maximum memory available to allocate per
connection or for user-level tuning.

• Set ranges for Linux 2.4 autotuning.

• (Optional) Flush caches in between runs so inappropri-
ately set slow-start thresholds are not re-used.

7

6. Conclusion

We have presented a detailed discussion on the various
techniques for automatic TCP buffer tuning, showing the
benefits and problems with each approach. We have pre-
sented experimental evidence showing the superiority of
Dynamic Right-Sizing over simple autotuning as found in
Linux 2.4. We have also uncovered several unexpected as-
pects of the problem (such as the calculated “ideal” buffers
performing more poorly than somewhat larger buffers). Fi-
nally, the discussion has provided insight into which solu-
tions are appropriate for which circumstances, and why.

References

[1] ANL, CalTech, LBL, SLAC, JF, U. Wisconsin, BNL,
FNL, and SDSC. The Particle Physics Data Grid.
http://www.cacr.caltech.edu/ppdg/.

[2] L. Brakmo and L. Peterson. TCP Vegas: End to End Con-
gestion Avoidance on a Global Internet.IEEE Journal on
Selected Areas in Communication, 13(8):1465–1480, Octo-
ber 1995.

[3] W. Feng, I. Foster, S. Hammond, B. Hibbard, C. Kesselman,
A. Shoshani, B. Tierney, and D. Williams. Prototyping an
Earth System Grid. http://www.scd.ucar.edu/css/esg/.

[4] M. Fisk and W. Feng. Dynamic Adjustment of TCP
Window Sizes. Technical Report Los Alamos Unclas-
sified Report (LA-UR) 00-3221, Los Alamos National
Laboratory, July 2000. See http://www.lanl.gov/radi-
ant/website/pubs/hptcp/tcpwindow.pdf.

[5] W. E. Johnston, D. Gannon, and B. Nitzberg. Grids as
Production Computing Environments: The Engineering As-
pects of NASA’s Information Power Grid. InProceedings
of 8th IEEE International Symposium on High-Performance
Distributed Computing, August 1999.

[6] W. Leland, M. Taqqu, W. Willinger, , and D. Wilson. On
the Self-Similar Nature of Ethernet Traffic (Extended Ver-
sion). IEEE/ACM Transactions on Networking, 2(1):1–15,
February 1994.

[7] G. Navlakha and J. Ferguson. Automatic
TCP Window Tuning and Applications.
http://dast.nlanr.net/Projects/Autobuf/autotcp.html, April
2001.

[8] Pittsburgh Supercomputing Center. Enabling
High-Performance Data Transfers on Hosts.
http://www.psc.edu/networking/perftune.html.

[9] J. Semke, J. Mahdavi, , and M. Mathis. Automatic TCP
Buffer Tuning.ACM SIGCOMM 1998, 28(4), October 1998.

[10] B. Tierney. TCP Tuning Guide for Distributed Applica-
tions on Wide-Area Networks. InUSENIX & SAGE Login,
http://www-didc.lbl.gov/tcp-wan.html, February 2001.

[11] B. L. Tierney, D. Gunter, J. Lee, and M. Stoufer. Enabling
Network-Aware Applications. InProceedings of IEEE Inter-
national Symposium on High Performance Distrubted Com-
puting, August 2001.

[12] L. Torvalds and The Free Software Community. The Linux
Kernel, September 1991. http://www.kernel.org/.

[13] A. Veres and M. Boda. The Chaotic Nature of TCP Conges-
tion Control. InProceedings of IEEE Infocom 2000, March
2000.

[14] E. Weigle and W. Feng. Dynamic Right-Sizing: A Simu-
lation Study. InProceedings of IEEE International Con-
ference on Computer Communications and Networks, 2001.
http://public.lanl.gov/ehw/papers/ICCCN-2001-DRS.ps.

[15] E. Weigle and W. Feng. TICKETing High-Speed Traffic
with Commodity Hardware and Software. InProceedings
of the Third Annual Passive and Active Measurement Work-
shop (PAM2002), March 2002.

[16] L. Zhang, S. Shenker, and D. D. Clark. Observations on
the Dynamics of a Congestion Control Algorithm: The Ef-
fects of Two-Way Traffic. InProceedings of ACM SigComm
1991, September 1991.

8

