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ABSTRACT

The incremental slitting or crack compliance method determines a residual stress profile from strain
measurements taken as a slit is incrementally extended into the material. To date, the inverse calculation of
residual stress from strain data conveniently adopts a two-dimensional (2-D), plane strain approximation
for the calibration coefficients. This study provides the first characterization of the errors caused by the
2-D approximation, which is a concern since inverse analyses tend to magnify such errors. 3-D finite
element calculations are used to study the effect of the out-of-plane dimension through a large scale
parametric study over the sample width, Poisson’s ratio and strain gage width. Energy and strain response
to point loads at every slit depth is calculated giving pointwise measures of the out-of-plane constraint
level (the scale between plane strain and plane stress). It is shown that the pointwise level of constraint
varies with slit depth, a factor that makes the effective constraint a function of the residual stress to
be measured. Using a series expansion inverse solution, the 3-D simulated data of a representative set of
residual stress profiles are reduced with 2-D calibration coefficients to yield the error in stress. The sample
width below which it is better to use plane stress compliances than plane strain is shown to be about 0.7
times the sample thickness; however, even using the better approximation, the rms stress errors sometimes
still exceed 3% with peak errors exceeding 6% for Poisson’s ratio 0.3, and errors increase sharply for
larger Poisson’s ratios. The error is significant, yet, error magnification from the inverse analysis in this
case is mild compared to, e.g., plasticity based errors. Finally, a scalar correction (effective constraint)
over the plane-strain coefficients is derived to minimize the root-mean-square (rms) stress error. Using
the posed scalar correction, the error can be further cut in half for all widths and Poisson’s ratios.
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Nomenclature
L, B, t sample length, width, thickness
w slit width
lz, ly gage width and length
x coordinate along slit extension
a slit depth
Pi stress series ith member
P stress series matrix
Ci compliance series ith member
C compliance matrix
Ai stress series coefficient i
U total elastic energy per unit width
KI stress intensity factor
G strain response to point/line load
E Young’s modulus
ν Poisson’s ratio
δ point/line load at the slit face
Γ effective level of constraint
γ pointwise level of constraint
2ε,2σ subscript for plane strain, plane stress
3 subscript indicating three-dimensional analysis
In Penrose pseudo-inverse operator
R strain to stress reduction operator

1 Introduction

The slitting method (a.k.a. the crack compliance method) for measuring residual stress has found

widespread application in the engineering community [1]. In this method, a narrow slit is incrementally

extended into the sample and strain at strategic location(s) is measured at each step. This strain is due to

the relaxation of residual stresses on the cut surface, and the original stresses can then be computed from

the measured strain data - the inverse problem. The high strain signal inherent in the method as well as

the well-conditioned nature of the inverse problem lead to its greatest benefit: measurement of through-

thickness stress profiles with excellent spatial resolution and precision. The capability to resolve very

low magnitude (around 10 MPa) residual stress profiles is indicative of the method’s sensitivity [2].

In parallel to the method being applied to a broad range of materials and at various length scales [3–

7], a series of studies have also targeted the method itself and its error sources. These studies were

primarily motivated by the need to quantify systematic errors as part of writing an international standard

for the slitting method. The studies have been designed to isolate each error source in turn after some

preliminary studies showed that each error source could be reasonably decoupled from the others so

long as the studies were consistent in the geometry studied.
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As far as error sources, there is the problem of how the inherent uncertainty in the measured strains

translates to the calculated stresses through the inverse problem [8]. Secondly, systematic errors are

introduced into the computed stresses from any discrepancies between the exact experimental details

and how these are modeled to solve the inverse problem. The model-experiment discrepancy can be

geometrical such as differences in the domain size, slit width, and the length of the strain gage (the

latter’s effect on the slitting measurement is studied by Lee and Hill [9]). Furthermore, the validity level

of typical simplifying assumptions of the model is in question. Major assumptions of this kind are:

(i) The material remains linear elastic during material removal. (ii) The finite width of the slit can be

ignored (assuming a perfect crack). (iii) The model domain can be considered to be two-dimensional

(2-D) with the plane-strain (pl-ε) assumption.

Prime [10] recently studied the assumption that the stresses relax elastically and laid out the limiting

magnitude and profile of residual stresses that would cause errors from plasticity. That study investigated

a perfectly plastic material under plane stress (pl-σ) and pl-ε assumptions as well as a limited number of

intermediate three-dimensional (3-D) cases since plastic behavior strongly depends on the out-of-plane

constraint level.

This work, in turn, studies assumption (iii) of approximating a 3-D experiment with a 2-D model.

For material with a Poisson’s ratio near 0.3, the difference between pl-σ and pl-ε would only be about

10% in the forward problem: strain for a given stress. However, determining stresses from strains

through the inverse problem might well amplify such errors.

The study entails technical difficulty because of need for 3-D calculations over wide ranges of mul-

tiple independent variables. The difficulty might explain why such work has been lacking in literature.

Because of the wide usage of 2-D approximations, the basic issue investigated here is what effective

out-of-plane constraint level (between pl-σ and pl-ε) should be used in standard models based on 2-D

calculations. Although, this is a rather obvious parameter to seek, related method literature is scarce

and does not address the question directly. Cheng and Finnie [11] described a simple method to obtain

effective stress intensity factors (SIF) in a 3-D problem inspired from the formulation of the slitting

method. In the most relevant work, Nervi and Szabo [12] laid out a 3-D analysis methodology but only

gave results specific to one application. Fratini and Pasta [13] also used a 3-D analysis specific to one

application.

In likeness to all aforementioned slitting method investigations as well as the overwhelming majority

of experimental studies that utilize the method, the rectangular bar sample geometry is considered.

Here, three-dimensional model domains are examined in an extensive and systematic parametric study
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over the sample width (the primary variable), Poisson’s ratio and strain gage width. Scripting and

database utilization are employed to process and manage the finite element analysis (FEA).

2 Methods

2.1 Method basics and the parameter space

Fig. 1 shows the slitting terminology and the sample geometry. To save space, the figure also depicts

the considered (a) 2-D and (b) 3-D FEA domains. The full sample of length L, width B, and thickness t

Fig. 1. The (a) 2-D and (b) 3-D finite element domains of the slitting sample depicted as shaded regions in the top sketches of the entire

sample. O is the origin of the chosen x-y-z coordinate system; SG stands for strain gage; δ is a point/line load in (a)/(b).

is depicted in the sketches on the top in which shaded regions correspond to the FEA domains. In this

study, all dimension/coordinate values are to be understood to be normalized by t. Hence, thickness

itself gets fixed at 1; x-coordinate ranges from 0 to 1 (from the origin, O, at the top of the sample to its

bottom); and, e.g., B = 2 corresponds to a sample width that is twice the thickness. The slit depth and

width are denoted by a and w, respectively. The slitting plane is symmetrically located in the sample

leaving half the sample length on each side. A single strain gage (gage length ly and width lz) is located

at the center of the bottom face to measure the y-component of normal strain as the cut depth a is

incrementally extended. Strain data, denoted by εi, is recorded at n depths (typically, n∼ 40):

εy(ai) = εi , i = 1, ...,n . (1)
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The entire set of strain data and measurement depths are represented by {ε} and {a}, respectively. The

shown strain gage placement is optimal for determining through-the-thickness stress profiles [1], {σy},

through an inverse solution, which is represented here by the operator R. From here on, the subscript y

is dropped for simplicity, since no stress/strain component other than the normal y-component will be

considered. Then,

{σ}= R({ε},p) (2)

where p stands for “parameters”.

Given the large number of parameters in the three-dimensional slitting problem, constraining the

parameter space—fixing certain variables at their typical values—is necessary to keep the study man-

ageable. Here the parameters with the least effect on 3D constraint are fixed to values consistent with

previous work so that the results of this study can be used in conjunction with those studies. Accord-

ingly, since Lee and Hill [9] provide a parametric study over ly in the two-dimensional framework, ly

will be fixed to the central value ly = 0.07 about which they offer corrections. Similarly, consistent

with [9], sample length here is fixeda to its typical value L = 4.

The parameter set of this 3-D investigation, defined as p3 = {L,B,w, ly, lz,ν}, is listed in the first

column of Table I). The part of this set that applies to the 2-D problem is p2 = {L,w, ly}. All parameters

are assigned a ”norm” value in the second column of Table I. The third column shows the parameters

that will be varied in the study and their ranges. The primary variable is the width of the sample which

will be allowed to vary in the interval [0.2,2]. In addition, the effect of varying the Poisson’s ratio ν

and lz are considered. The study only considers a perfect crack slit, w = 0, for several reasons. First,

the slit width has some effect on the measured strains and on constraint at the crack tip, but negligible

effect on the issue this study is trying to isolate: the 3D/pl-σ/pl-ε effects on strains measured at the back

face strain gage [14]. Furthermore, studying the perfect crack retains consistency with previous method

work [9, 10] and allows the utilization of energy-based fracture mechanics concepts that the slitting

method formulation historically utilized [1].

aAccommodating this precise L is often possible since the sample is usually cut out from larger plates. This operation
is also related to how L = 4 is picked; it is a length sufficiently large for σy(x) in the original plate to be predominantly
preserved in the experimental sample.
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parameter norm value considered values

length (L) 4 fixed

width (B) 1 0.2, 0.3,..., 2

Slit width (w) 0 fixed

Gage length (ly) 0.07 fixed

Gage width (lz) 0 0,0.04,..., 0.2

Poisson’s ratio (ν) 0.3 0.2, 0.25,..., 0.4

Table I. Parameters (p3) of the study (column 1), their norm values (column 2), and considered values/ranges of the parametric study

(column 3).

In Table I, Young’s modulus is not listed as a parameter since it trivially scales with the solution

{σ}= R({ε},E, ...) = E ·R({ε}, ...) (3)

in this linear elasticity problem with only traction boundary conditions. Only in 2-D, a trivial normal-

ization like this is possible for Poisson’s ratio as well :

{σ}= E ′• ·R({ε},p2) where E ′2ε =
E

1−ν2 , E ′2σ = E (4)

where • can stand for 2ε and 2σ, indicating pl-ε and pl-σ assumptions, respectivelyb. Hence, p2 excludes

ν that remains a parameter in the 3-D case.

2.2 The Green’s function formulation

The gage response of the 2-D and 3-D domains are investigated with a Green’s function formulation,

which gives the greatest flexibility for applying the results to different inverse solutions and for physi-

cally interpreting the results. In Fig. 1(a), the point load δ applied at coordinate x when the slit depth is

a will be denoted δ2ε(x,a) for pl-ε and δ2σ(x,a) for pl-σ. For the 3-D domain [Fig. 1(b)], the point load

is replaced with a uniform line load at constant x, denoted δ3(x,a) that has a unit resultant. The strain

response to δ at the strain gage is denoted with G. The G notation will correspond to the introduced δ

bEq. 4 applies rigorously for linear elastic fracture mechanics conditions.
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notation to signify the specific problem:

δ2ε(x,a)⇒ G2ε(x,a,p2)

δ3(x,a)⇒ G3(x,a,p3) (5)

where the parameter dependence of the strain responses is specifically indicated.

Given the residual stress profile σ(x), 0 ≤ x ≤ 1 (tensile positive), the cropped domains in Fig. 1

on the right of each FEA domain show equal-valued traction profiles applied on the slit surface of

stress-free domains. From Bueckner’s principle, this surface traction produces the same deformation

that is due to the relaxation of residual stress, with the implied superposition valid only with linear

elasticity [1, 10, 15].

Utilizing the illustration in Fig. 1(b), an inherent assumption of the incremental slitting method is

brought up at this point: σ(x) is assumed constant along the transverse (z) direction, which justifies the

use of line loads, δ3(x,a), in constructing the strain response of an arbitrary σ(x).

Using the flexibility of the Green’s function approach, the strain response at the strain gage to an

arbitrary stress profile, σ(x) is given by

ε•(a,p•) =
∫ a

0
σ(x)G•(x,a,p•)dx , (•) = 2ε,2σ,3 (6)

as a function of slit depth and parameters. The • has been introduced as a placeholder for 2ε, 2σ, or 3.

For p•, both 2ε and 2σ as subscript will mean p2.

2.3 The inverse problem

In accordance with [9, 10] and the majority of the incremental slitting method literature, the stress-

series based inverse solution method will be investigated here (for other approaches, see e.g., [16]). In

this method, residual stress is assumed to be a linear combination of a function series, P j,

σ(x) =
m

∑
j=1

A jP j(x) (7)
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where m is the fit order and A j are the scalar weights. Due to their orthonormality and automatic

satisfaction of equilibrium [1, 10], the series is chosen as Legendre polynomials starting from order 2.

Thus, P j = Leg j+1. The first four stress functions are shown in Fig. 2(a). The maximum order that will

be considered here is m = 11. Higher fit orders are rarely useful due to the deteriorating condition of the

inversion with increasing fit order. The strain that would be observed at the strain gage if the residual

stress, σ(x), was equal to P j(x) is called the compliance C j. Using Eq. 6,

C j
•(a,p•) =

∫ a

0
P j(x)G•(x,a,p•)dx , (•) = 2ε,2σ,3 . (8)

Recalling Eq. 1 (n data points at discrete depths), measured strain is given by

εi ≈
m

∑
j=1

A jC j
•(ai,p•) , i = 1, ...,n (9)

in direct correspondence to Eq. 7 because of linear superposition. Here, ‘≈’ implies that experimental

data is not, in general, reproduced exactly by the least squares fit. In the following matrix equations,

vectors in curly brackets ({}) indicate column vectors. With n >m, the least-squares best approximation

for the m coefficients {A} is in the Moore-Penrose pseudoinverse form:

{A}=
(
CT
•C•

)−1 CT
• {ε}= In• · {ε} , (•) = 2ε,2σ,3 (10)

where C• is the n×m compliance matrix whose row i-column j member is C j
•(ai,p•). Let us also define

P as the corresponding stress series matrix with components P j(ai). The second equality in Eq. 10 serves

to shorthand the pseudoinverse with In•. So, the inverse solution for stress (at x = ai points) is found by

inserting Eq. 10 in Eq. 7:

{σ•}= P · In• · {ε}= R• · {ε} , (•) = 2ε,2σ,3 (11)

where the second equation defines the inverse solution operator (originally introduced in Eq. 2) as the

linear operator R•. The parameter dependencies, which are not specified in the above equations to avoid
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overcrowding the expressions, are given by

{σ•}= {σ•(p•,m)} ; R• = R•(p•,m) ; In• = In•(p•,m) (12)

where fit order m is signified as the additional parameter that comes from the inverse solution procedure.

The result {σ•} has substantial dependence on m, whose optimal selection is a complex problem [8].

Since computational data is generated in this study, there will be no measurement errors in the

considered {ε}. However, the inverse solution (Eq. 11) will have some dependence on the specific data

depths ({a}). To limit complexity, the data depths will be fixed to a finely-spaced, uniform-interval

set a = 0.02,0.04, · · · ,0.92. Here, 0.92 is chosen to represent the typical maximum experimental data

depth.

Fig. 2. (a) The first four elements of the stress series (Legendre polynomials 2 to 5), (b) the considered residual stress profiles detailed in

Table II.

2.4 The error formulation

In order to compare stress profiles calculated with different approximations, error measured must be

defined. Given two equal-length vectors {v} and {w}, the error vector, err(v,w), is defined here as

err(v,w) =
{v}−{w}

max(|{w}|)
(13)
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preserving the form in [10] where stress profiles are normalized by the peak stress magnitude because

average stress tend towards zero because of equilibrium. Two scalar error measures are considered in

this work. One is the root mean square given by

erms(v,w) =

√
1
n
[err(v,w) · err(v,w)] (14)

where n is the size of the vector. The other is simply the maximum error

emax(v,w) = max(|err(v,w)|) (15)

The slitting method concern lies in, given experimental data {ε}, how the inverse solution (2-D or 3-

D) affects the calculated stresses. The appropriate error measure is presented in Eq. 16. First, ε3 is

computed given the actual residual stress profile, σ(x). Then, ε3 is reduced with both 2-D and 3-D

compliances to obtain σ2ε and σ3. The error measure is given by err(σ2ε,σ3) where for a meaningful

comparison, fit order m and the intersecting elements of p3 and p2 are kept the same (e.g., gage length

is kept the same in both cases.)

σ
Eq. 6 •=3−−−−−−→ ε3

Eq. 11 •=3−−−−−−→ σ3
Eq. 11 •=2ε−−−−−−−→ σ2ε

 ⇒ err(σ2ε,σ3) (16)

The initial σ→ ε3 step is inserted (rather than starting from random {ε} test cases) so that realistic,

equilibrium-satisfying residual stress profiles are used to generate the test cases. These profiles, named

S1, ...,S4 are shown in Fig. 2(b) and their typical engineering causes are listed in Table II. Following the

top line of Eq. 16, notice σ3 = σ if σ is an exact linear combination of P j (to be strict, for m ≥ m∗, m∗

the order of the linear combination). If this is not the case, σ3 will not match σ by a model error and

fit order selection becomes an issue. To focus the study on the error between 2-D and 3-D reduction,

S1, ...,S4 are thus taken to satisfy Eq. 7 exactly with coefficients provided in Table II.
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Name Cause Order (m∗) Nonzero Ai

S1 rolling 11 A1=-0.685 , A2=-0.056 , A3=1.392 ,
A4=0.104 , A5=0.223 , A6=0.008 , A7=-
1.028 , A8=-0.214 , A9=0.602 , A10=0.095 ,
A11=-0.582

S2 plastic bending 10 A2=1.259 , A4=-0.193 , A6=-0.242 ,
A8=0.208 , A10=-0.032

S3 quenching [10] 3 A1=1.489 , A3=-0.496

S4 plastic compres-
sion on top sur-
face [8]

4 A1=-1.12 , A2=0.467 , A3=0.373 , A4=-0.233

Table II. Considered residual stress profiles, their typical causes, Legendre series order (m∗) and coefficients (Ai).

2.5 Specifics of the finite element analysis

In order to handle the large parameter space, the Abaqus c© [17] software employed for FEA is en-

compassed by a software structure coded in pythonTM [18] further using scientific tool packages such as

SciPy [19]. There are two distinct stages of the process: (i) the automation of FEA computations for a

desired parameter space, (ii) processing the desired subset of computational data ( “slitting reduction”).

These stages communicate with a common database which is filled with the targeted parameter space at

the start of the operation. Once the database is formed/appended, each unprocessed line is executed suc-

cessively through the three stages of the FEA analysis: (i) formation of the model (script fed to Abaqus

Scripting Interface), (ii) execution (Abaqus Standard), (iii) postprocessing [retrieving displacement and

energy data and storing them (script fed to Abaqus Scripting Interface)]. In the ”data” reduction stage

that follows calculations, the database is consulted to locate the displacement/energy output files for a

desired subset of the parameter space. Then, the gage strain is computed from displacement data in ac-

cordance with the gage dimension specification (ly, lz). With this raw result, further utilities implement

all equations/evaluations in the text.

The 3-D meshing scheme is illustrated in Fig. 3 for norm parameters. The meshing scheme in-

volves a regular mesh of hexahedron elements followed by a coarsening mesh of wedge elements. The

hexahedron region provides high resolution next to the loading surface with 100 quadratic, reduced in-

tegration, C3D20R elements spanning the thickness of the sample. The C3D15 wedge elements have

the same interpolation order. The length of the wedges/hexahedrons in the z-direction is kept uniform

all through the mesh. The corresponding 2-D mesh—whose results are to be compared to the shown

mesh (Eq. 16)—is a slice of the 3-D mesh in any x− y plane (say, the front face). The 2-D elements
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Fig. 3. A considered 3-D finite element mesh composed of wedge and hexahedron elements. All parameters are at norm values (B = 1,

L = 4, w = 0) and the shown slit depth, a, is arbitrary. O is the origin (refer to Fig. 1(b) for notation) and the front face is placed in a

rectangle also revealing the corresponding 2-D mesh. The x-y-z triad is displaced from O for clarity.

are chosen with the same interpolation order: CPE8R/CPS8R rectangle and CPE6/CPS6 triangle for

pl-ε/pl-σ. Using matching meshes, the finite element discretization error is kept at the same order to

cancel in the comparison (Eq. 16). This argument, however, holds strictly only in the x− y plane and

the number of elements in the z-direction (nz) is checked for convergence for 3-D models: Comparing

nz = 5 and nz = 10 analyses, the former demonstrates sufficient convergence for all widths. Given a set

of parameters, n = 46 finite element analyses are submitted to Abaqus Standard, one for each depth,

ai = 0.02 i, i = 1, ...,46. In each run, δ•(x,ai) is applied at all x values that fall on mid-nodes and ele-

ment boundaries, namely, at x = J ·0.005 with x < ai , J positive integer. This results in 4∗ i load cases

for each analysis i, and for the last (i = 46, a = 0.92) analysis, the number of analyzed loads climb to

184. Consequently, through the 46 runs, 2n(n+1) = 4324 (load point x, slit depth a) pairs are evaluated.

In the Abaqus implementation, the *LOADCASE command is used for efficiency. Once the analysis

is finished, corresponding G•(x,a,p•) is evaluated (”Slitting reduction” stage) at the 4324 points of the

(x,a) mesh. Evaluation of Eqs. [6,8] is performed via numerical integration from these discrete points.

The total elastic energy of the domain is also stored at the (x,a) mesh defined above, obtained by

summing the integrated elastic energy of all elements. To compare 2-D and 3-D cases, this energy needs

to be normalized per width and the resulting quantity is denoted U•(x,a,p•),(•) = 2ε,2σ,3.

3 Results and discussion

A slitting experiment is typically analyzed with the pl-ε compliance, such as those accurately avail-

able in [9]. Taking this compliance as a base, the natural task is to offer simple functional corrections

on it to approximate the 3-D compliance for any p3. Prompted by the straightforward conversion from

pl-ε to pl-σ compliances, i.e., C2σ = ΓC2ε where Γ = (1− ν2)−1 (recall Eq. 4), the intuitive correc-
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tion is multiplication by a factor: C3(p3) ' Γ(p3)C2ε . Here, one expects to find Γ(p3) such that

1 < Γ < (1−ν2)
−1, where Γ = 1 and Γ = (1− ν2)−1 are the two extremes corresponding to pl-ε and

pl-σ cases, respectively. The intermediate value Γ(p3) will be called the “effective constraint”.

A clear-cut result would be obtained if the effective constraint just depends on the parameters p3 as

conjectured. Section 3.1, however, presents and provides theoretical footing for the fact that it is also

a function of the particular residual stress. This is the fundamental difficulty that surfaced in this work

and is apparent in all the practical results presented in the later sections.

3.1 The slit depth dependence of the level of constraint

Before tackling the problem of the effective (average) Γ, first consider adjusting the pl-ε Green’s

function by a pointwise definition of the level of constraint factor γ

G•(x,a,p•) = γ(x,a,p•)G2ε(x,a,p2) , (•) = 2σ,3 (17)

for it to match the pl-σ or the 3-D Green’s function. Naturally, if (•) = 3, intersecting elements of p3

and p2 are taken equal in the above expression. Inserting Eq. 17 in Eq. 6 yields:

ε•(a,p•) =
∫ a

0
σ(x)γ(x,a,p•)G2ε(x,a,p2)dx , (•) = 2σ,3 . (18)

For the case of pl-σ, γ(x,a, p2) remains constant at (1−ν2)−1, since Eq. 4 is valid for any symmetric

mode-I loading including the application of individual δ-loads. This leads to the trivial equality of

pointwise and effective constraints: γ(x,a, p2) = Γ = (1−ν2)−1.

In contrast, if γ has (x,a) dependence, the effective constraint that will reflect in strain (Eq. 18)

will be modulated by the particular stress σ(x). This is indeed the case in 3-D, as demonstrated in

Fig. 4(a) where γ is plotted vs. (x,a) for norm parameters (B = 1, ν = 0.3). (For norm ν = 0.3,

(1− ν2)−1 = 1.099.) Eq. 18 yields that (i) the effective constraint, Γ, for 3-D compliances will be a

function of σ(x), and (ii) this modulation will further be a function of depth (observe the ratio ε3/ε2ε

will vary with a). The latter complexity shows in the appropriate Γ definition (Section 3.4).
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Fig. 4. For B = 1 and ν = 0.3, constraint ratios (Eq. 19) of (a) strain at the gage, (b) depth-derivative of the strain at the gage, and (c)

energy release rate. Each curve in parts (a), (b) or (c) corresponds to fixing the δ-load (see Fig. 1) at the x value shown in the legend and

plots the corresponding ratio as a function slit depth a. The pl-σ level is at (1−ν2)−1 = 1.099.

3.2 Fracture mechanics interpretation

This section will discuss that the results of Fig. 4(a) do not correspond to available results in the

crack-tip literature, and then attempt to provide fracture-mechanics based insight into the reasons for

the particular constraint behavior observed. These discussions are not critical for readers only interested

in the final outcome. Investigating the problem at this fundamental level, however, will also be crucial

for future work in formulating corrections on inverse solution methods other than the stress-series based

one studied in this paper.

Previous fracture mechanics results on constraint do not apply well to the current study. In the frac-

ture mechanics literature on the 3-D edge-crack problem (e.g., [20–23]) the constraint level is presented

in stress terms (as with σz/ν(σx +σy), called ‘degree of plane strain’). The focus there is to trace the

constraint level (and plastic zones) along the crack tip as the condition goes from pl-ε in the mid-plane

to pl-σ on the surface. In the geometric setup of the problem, shallow or deep cracks are avoided and far

field loading is applied. However, shallow and deep crack situations are a part of the physical problem in

slitting measurements, as well as loads that are close enough to the crack tip to alter the crack-tip stress

distributions. Furthermore, the constraint level of interest (γ(x,a,p3)) here is fundamentally different

because it relates to strains measured away from the crack tip.

To help interpret the constraint behavior, Fig. 4 (a), (b), (c) plot γ, r∂G, and r∂U , respectively, with
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their definitions given by

γ =
G3

G2ε

; r∂G =

(
∂G3

∂a

)
(

∂G2ε

∂a

) ; r∂U =

(
∂U3

∂a

)
(

∂U2ε

∂a

) . (19)

These plots present the (x,a) dependence by plotting selected constant-x curves versus slit depth a.

Physically, the x = 0 curve in Fig. 4(a) depicts fixing the δ-load at the top corner and plotting the ratio

of 3-D and pl-ε responses at the strain gage as the slit (crack) is incrementally extended. In this way, the

individual curves in Fig. 4(c) plot the ratio of ”energy release rates”c, r∂U as the crack is extended, with

δ-load fixed at x.

To show the role of r∂U and r∂G in the “level of constraint” discussion, firstly note

∂U•
∂a

=

(
K2

Iδ

E

)
•

, (•) = 2ε,2σ,3 (20)

which gives the energy release rate when δ at x is the sole load on the body and KIδ is its SIF. Secondly,

Castigliano’s theorem is recalled to link energy and deformation at the strain gage—a typical operation

in the derivation of the fracture-mechanics-based compliances (see, e.g., [24]). For this, an imaginary

force, F is applied in +y direction at the end point of the gage [at coordinates (1, ly)/(1, ly,0) for the

2-D/3-D case] simultaneously with δ. The energy release rate under this loading is then given by

∂U•
∂a

=

[
(KIδ +KIF)

2

E

]
•

, (•) = 2ε,2σ,3 (21)

where KIF is the SIF due to F . Carrying out the theorem (see, e.g., Schindler et al. [25] for details)

yields

∂G•
∂a

=
1
ly

(
KIδKIF

E

)
•

, (•) = 2ε,2σ,3. (22)

cFor the dead load problems in a linear elastic body, the elastic energy of the system (U defined in Section 2.5) is increased
by the released amount during crack extension [15].
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assuming unit F . Using Eqs. 20 and 22, and observing the equality of SIFs for pl-σ and pl-ε, the pl-σ

to pl-ε ratios (∂U2σ/∂a)/(∂U2ε/∂a) and (∂G2σ/∂a)/(∂G2ε/∂a) once again yield E2ε/E2σ = (1−ν2)−1,

in likeness to γ and Γ. It follows that r∂G and r∂U of Eq. 19, which are the similar ratios between 3-D

case and pl-ε, can be regarded as measures of the degree of constraint. The energy release rate ratio, r∂U

[see Fig. 4(c)], is an encompassing measure that is associated with the entire body—no dependence on

a particular gage location. r∂G plotted in Fig. 4(b), shows a similar trend to r∂U , but no exact numerical

similarity. This is because r∂G (and, naturally then, γ) depends on gage location in the 3-D domain.

[To illustrate with an example: if the gage was taken as wide as the sample itself, the peak value of the

x = 0 curve for γ (or r∂G) would increase to 1.048 (1.058) from its current 1.034 (1.043). The form of

the curves (not shown) would also be somewhat altered.] To elaborate briefly, Eqs. 20-22 are in fact

2-D formulations and (•) = 3 is allowed for a possible effective extension to 3-D. (If indeed pl-ε/pl-σ

values of KIδ and KIF remained valid for 3-D, Eqs. 20 and 22 would lead to r∂U = r∂G = E2ε/E3, where

E3 is an effective 3-D modulus.) As is well known, in the pl-ε/pl-σ cases, given any particular mode-

I loading, the crack tip stresses have an invariant characteristic distribution that is merely amplified

with KI . This underlies the superposition KIF +KIδ in Eq. 21. For the 3-D domain, however, point

force F at the mid-point of the bottom surface and δ uniform line load at the slit do not produce stress

distributions of the same functional form, along the crack front in the z-direction. The ensuing invalidity

of the superposition in Eq. 21 sheds light on the discrepancy of r∂U and r∂G from Castigliano’s Theorem

perspective.

For physical deductions, r∂U is considered first, as the measure of the crack-tip constraint level. It is

noticed in Fig. 4(c) that individual curves join, once the crack tip (a) moves sufficiently away from the

load application points (x). (Whether δ-force is at x=0 or x=0.16, once the crack tip moves away from

0.16, the same crack-tip constraint level is observed.) This ‘master’ curve may roughly be defined as the

linearly decreasing portion of the x = 0 curve.d The primary deduction here is that the constraint level is

near pl-σ at low depths (around a = 0.2, r∂U ∼ 1.08 nearing the pl-σ value 1.099), and goes toward pl-ε

as the crack-tip gets closer to the bottom face. This can be explained with the increased constraining

effect of the bulk relative to the increased compliance of the ligament as it thins. Note also that, before

each load-curve joins the master curve, i.e, for δ near a, r∂U is more pl-ε than the master curve itself.

This is likely a ramification of the stress field under the point load coupling with the crack-tip stress

field.

r∂G-curves are akin to r∂U -curves with the existence of a master curve as well as the primary pl-σ to

dIt is natural to ask whether the peak portion of the x = 0 curve is also characteristic. Looking at the results of immediate
neighbor δ-loads at x = 0.05,0.01, ..., this part of the curve does not remain invariant, but drops steadily with increasing x.
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pl-ε trend with increasing depth. γ curves of Fig. 4(a), on the other hand, do not exhibit a master curve

and are more average: Note in this regard that γ can be obtained by placing an integral (over a) both to

the numerator and denominator of r∂G in Eq. 19. Hence, γ is not a ‘sharp’ measure over the crack-tip

position, but regardless, it is the parameter that concerns this study (Eq. 17). Finally, Fig. 5 plots this

parameter for different sample widths, when the δ-load is fixed to the top corner. Naturally, for smaller

sample widths the curves tend to pl-σ and vice versa. However, the concave character of the curves is

invariant.

Fig. 5. The ratio of the measured strain, γ, in the 3-D analysis to plane strain analysis as a function of slit depth a. The particular loading

is a δ-load (see Fig. 1) at the top (x = 0). This figure is at the norm point of the parameter space ν = 0.3, etc., except for each curve

corresponding to different sample widths as indicated.

3.3 Plane stress versus plane strain

Before exploring any correction, this section will present the stress error level due to utilizing un-

corrected 2-D compliances in the inverse problem as a function of sample width, B (all other parameters

at norm values). In this discussion, it is important to consider that pl-σ compliance will bear less error

than the pl-ε compliance for widths smaller than a certain value. This particular transition width has

been another unanswered question for the user. The errors, a la Eq. 16, erms(σ2ε,σ3) and erms(σ2σ,σ3)

are plotted as a function of B in Fig. 6 with solid and hollow markers, respectively. Fig. 6(a) is reserved

for selected members of the stress series whereas Fig. 6(b) depicts the stress cases of Table II. The in-
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tersection of the pl-σ and pl-ε curves, shown with dashed lines for profile S1 in Fig. 6(b) is the transition

width (∼ 0.63 for S1).

Fig. 6. Error in calculated stresses due to utilizing plane strain (solid markers) and plane stress (hollow markers) assumptions (Eq. 16)

as a function of the thickness-normalized width (B) of the actual three-dimensional body: (a) residual stress profile (Legendre) series

elements, P1, P4, P7, P11, root-mean-square error; (b,c) residual stress profiles S1 · · ·S4 (Table II), root-mean-square error in part (b)

and maximum error in part (c). The intersection point of the plane stress and plane strain curves is shown specifically for profile S1 in part

(b) with dashed lines.

As expected based on Section 3.1, the answer turns out to be dependent on the actual stress profile.

For stress series members Pj , j = 1, ...,11, the transition width ranges between 0.33-0.83 with a ten-

dency to decrease with order. High order profiles like P11 are hardly practical residual stress profiles.

For the test case stress profiles Si, i = 1, ...,4, the transition with values are between 0.63-0.83, likely a

more realistic interval.

Fig. 6(c) is the equivalent figure for emax. To recall, emax(σ2ε,σ3) is the highest error of all n = 46

back-calculated stress points given as a percentage of maximum stress magnitude (Equations 13, 15).

Through comparison of parts (b) and (c) of Fig. 6, notice that emax is correlated roughly with a factor of

1.5-2 with erms. This plot serves to show that individual errors are ‘contained’. The inverse calculations

for Fig. 6 assumed the maximum fit order of m = 11, however the results in this figure are not sensitive

to the fit order provided m≥ m∗ for each case.

Since none of the rms errors exceed about 10%, the concern that the inverse solution might amplify

the errors appears unfounded. Nonetheless the errors are significant and worthy of correction.
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3.4 The effective constraint

This section makes the appropriate definition of the effective constraint (Γ) for this problem and

derives it. Γ is the multiplier of the standard pl-ε compliance that corresponds to a best approximation

of the stress results of the 3-D evaluation. To this end, firstly denote the modified compliance with a

subscript “Γ2ε” as

CΓ2ε = ΓC2ε (23)

In contrast to the trivial idea of minimizing of the difference between C3−CΓ2ε by some metric, match-

ing the stress results of the 3-D evaluation means matching the output of the inverse solutions. The

following is the form of the inverse solution operator for the modified case obtained by inserting Eq. 23

in Eq. 11:

RΓ2ε =
1
Γ

R2ε . (24)

Given strain data ε, the difference between the stress results of the two operators is then:

{σ3}−{σΓ2ε}= (R3−
1
Γ

R2ε){ε} (25)

Minimization of erms(σ3,σΓ2ε) (defined in Eq.14) in terms of Γ, namely, ∂

∂Γ
erms(σ3,σΓ2ε) = 0, yields

Γ =
〈ε〉RT

2ε
R2ε {ε}

〈ε〉RT
3 R2ε {ε}

(26)

where 〈·〉 denotes row vectors. Given this equation, recalling dependencies (Eq. 12), Γ depends on

the specific data {ε} (alternatively, the specific residual stress), the fit order m, and all the parameters.

Taking {ε}= {ε3} (Eq. 16) and {ε3}= C3{A} (Eq. 9), Eq. 26 can be cast in terms of coefficients:

Γ =
〈A〉CT

3 RT
2ε

R2ε C3 {A}
〈A〉PT R2ε C3 {A}

(27)
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Fig. 7. (a) The effective constraint Γ (Eq. 27) vs. thickness-normalized sample width B for stress profiles S1 · · ·S4 (Table II) and a

representative Lorentzian fit to the combined results labeled eq. (b) rms error in each case using the individual Γ corrections in part (a).

Fit order is m = 11 except the indicated additional curve for S3 profile with m = 3. (c) rms error in each case using the Γ-correction of

profile eq for all, m = 11. Inset: S1 curve of this plot put in perspective of pl-σ/pl-ε errors from Fig. 6.

Γ derived via Eq. 27 for stress profiles S1 · · ·S4 is plotted in Fig. 7(a) vs. sample width. The plot

considers norm values of parameters and full fit order m = 11. These Γ-corrections depend on the stress

profile as expected; and the remnant rms-error, erms(σ3,σΓ2ε), is plotted in Fig. 7(b). The remnant

error makes a peak in the vicinity of B = 0.6 for each case. Fig. 5 provides insight in this matter as it

shows the level of constraint (γ) variation as a function of slit depth. If there was no variation at all,

meaning a flat line, Γ equal to this line’s y-intercept would provide a perfect correction with no remnant

error. Conversely, as the variation in the constraint level increases, the remnant error increases in the

one-parameter Γ-correction which has to negotiate a middle value. The γ-variation is more contained

for small widths (B ∼ 0.2) and large widths (say, B > 1) where pl-σ and pl-ε dominate the respective

cases. Therefore, the remnant error is smaller in these regions than the intermediate widths that exhibit

pronounced γ-variation.

To touch on the dependence of the remnant error on the fit order, S3 is also analyzed with the order

of the linear combination itself, namely, m=m∗=3, shown in Fig. 7(b). Naturally, two reductions that are

equivalent except for fit order m show more discrepancy if the m values are distant. This is why S3, with

lowest m∗, is picked as a worst case, to reveal maximum discrepancy among its reductions, shown in

Fig. 7(b). The m=11 reduction reveals more remnant error than the m=3 reduction especially for small

B, obeying the general trend of higher fit orders enhancing errors in inverse analysis. In principle, then,

the m = 11 error results of Fig. 7 can be asserted to be worst case.

The practical approach here is to formulate an empirical Γ(B) that will have the general characteristic
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of the Γ-curves for S1 · · ·S4 in Fig. 7 (and any other realistic stress profile), that are in fact not so distant

from each other. It is also natural to impose Γ(0) = (1−ν2)−1, Γ(∞) = 1 to a general form to implement

the pl-σ and pl-ε extremes. Connecting the limiting cases with a Lorentzian-type distribution [dashed

lines in Fig 7(a)] and then fitting to the data for ν = 0.3 yields

Γ(B) = 1+(
ν2

1−ν2 )
1

1+(B/Ω)2 (28)

where Ω = 0.694. The remnant errors for correcting with Eq. 28 for all cases are shown in Fig. 7(c).

The ultimate justification of the choice and generic use of the Lorentzian form comes from the closeness

of the results in parts (b) and (c)—the errors are increased only ∼ 0.2%.

The inset in Fig. 7(c) is a visual aid for the user to bring together the results of Figs. 6 and 7. It

portrays the error reduction potency of the Γ-correction of Eq. 28 in comparison to merely reducing

with 2-D compliances. For clarity, only results for S1 are shown. Assuming the user knows when to

switch from pl-ε to pl-σ compliances, the correction’s effectiveness is highest around the intersection of

pl-ε and pl-σ curves reducing the erms from 3.5% to 1.5%. (Of course, Γ-correction is much bigger if the

user is erroneously using pl-ε compliances at small widths. The unifying nature of Eq. 28 is significant to

avoid such errors as well.) At the norm sample width B = 1, the correction is still appreciable reducing

erms from 1.9% to 1%. As expected, reducing with pl-ε compliances yield near equivalent results at

larger widths. On the other end of the B-spectrum, at B = 0.2 note pl-σ reduction is as successful

as the Γ-corrected reduction , and it follows that pl-σ compliances can be confidently applied to the

unexplored B < 0.2. Finally recall, the erms values of this paragraph have to be multiplied by 1.5-2 to

find the maximum individual error emax.

The effective constraint was determined for the studied case of 46 uniform cuts to a depth of 0.92.

Since Eq. 26 approximately integrates the pointwise constraints over the range of cut depths, any equally

spaced cut depths should return very similar results. Unequal cut depths will weight the results some-

what differently, but the effect is expected to be small for standard experimental usage and similar to the

effects of different stress profiles.

3.5 The effect of Poisson’s ratio

Because constraint is strongly dependent on Poisson’s ratio, and (Eq. 28) was only fit for ν = 0.3,

the procedure of the two prior sections has been repeated for ν = 0.2,0.25,0.35,0.4. A representative
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Fig. 8. For Poisson’s ratios 0.2, ..., 0.4, plots of (a) rms-error in reducing profile S1 with plane strain compliances, (b) remnant rms-error

after one-parameter correction with Eq. 28, versus thickness-normalized sample width B.

part of the plots is regenerated for different Poisson’s ratios in Fig. 8. The attention is constrained to

stress profile S1 and part (a) shows rms-errors upon plane strain reduction, erms(σ2ε,σ3), a la Fig. 6(b).

The errors, as expected, increase with higher Poisson’s ratio. This tendency is also valid for remnant

errors plotted in part (b) a la Fig. 7(c). The Γ-correction here is Eq. 28 that was fit with only ν = 0.3

data. Using this form only reduces complexity, noting that individual Γ-corrections for each ν (not

shown) yield hardly smaller remnant errors. The strong dependence on Poisson’s ratio is illustrated by

the scaling factor ν2/1−ν2, which is 0.042, 0.099, 0.190 for ν = 0.2,0.3,0.4, respectively. The error

curves in Fig. 8 scale with ν2/1−ν2 substantially in part (a) and more approximately in part (b). Hence

errors for materials with ν > 0.33 (aluminum, brass, copper, zinc, titanium, magnesium), errors would

be about 25% greater than those for ν = 0.3 and for materials with ν close to 0.4 (gold, some nickel

alloys) or even greater (lead, polymers) the errors would be double or more those for ν = 0.3.

It should not, however, be understood that this result stems from a trivial proportional relation be-

tween compliances of different ν. In fact, the ratio of Green’s functions of different Poisson’s ratio

(otherwise equivalent) samples, G3(x,a,ν1, · · ·)/G3(x,a,ν2, · · ·), in general, shows pronounced varia-

tion with (x,a) [not shown].

3.6 The effect of gage width

The gage width error proves to be worst for smallest width, B = 0.2. The largest gage width consid-

ered lz = 0.2 (about 3 times the chosen gage length), covers the entire sample width at this point. Even

then, the error erms(σ3(lz = 0.2),σ3(lz = 0)) stays below 0.25%. This means the gage width error can

effectively be disregarded.
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4 Conclusions

This manuscript investigated the effects of analyzing a 3-D body with a 2-D model in the slitting

method for measuring residual stresses in the rectangular bar geometry. A simple one-parameter cor-

rection provides the effective 3-D constraint and greatly reduces the errors from using 2-D compliances,

which are still used by the vast majority of practitioners. Furthermore, the result is crucial for making

an accurate standard for the slitting method because only 2-D compliances can be compactly tabulated.

The correction procedure can be briefly summarized as follows. One starts with pl-ε compliances

from a custom 2-D finite element analysis or from available compilations [9]. If necessary, compliances

are scaled to the appropriate elastic constants using Eq. 4. The effective constraint Γ for the given

Poisson’s ratio and specimen width (normalized by thickness) is calculated from Eq. 28. The corrected

compliances are calculated by simple multiplication in Eq. 23 and then used to calculate stresses with

the standard procedure presented in Section 2.3.

Without any correction, the worst root-mean-square (rms) error in the calculated stress profile from

using 2-D compliances is about 7% for the case of ν = 0.3. Maximum errors are about twice the rms

errors. Using the optimal 2-D compliances, pl-σ for B< 0.7 and pl-ε otherwise, reduces the rms errors to

about 3.5%. Using the effective constraint correction further reduced the worst rms error to about 1.5%,

as shown in Fig. 7(c). For Poisson’s ratio dependence, the study asserts that errors roughly proportional

to ν2/1−ν2. This will mean, e.g., ν = 0.4 errors are a factor of 1.92 higher than ν = 0.3 errors, which

are reviewed in detail above.

For width B = 1, the remnant rms-error is reduced to under 1%, and does not drop too much further

with increasing B. Considering experimental difficulties with testing overly wide samples, it is more

than possible to include more error while trying to make an incremental error reduction based on the

assumptions of this work. As a compromise, if the user is at the liberty of choosing a sample width,

B∼ 1−1.5 is recommended.
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List of Figure Captions

Figure 1. The (a) 2-D and (b) 3-D finite element domains of the slitting sample depicted as shaded

regions in the top sketches of the entire sample. O is the origin of the chosen x-y-z coordinate system;

SG stands for strain gage; δ is a point/line load in (a)/(b).

Figure 2. (a) The first four elements of the stress series (Legendre polynomials 2 to 5), (b) the con-

sidered residual stress profiles detailed in Table II.

Figure 3. A considered 3-D finite element mesh composed of wedge and hexahedron elements. All

parameters are at norm values (B = 1, L = 4, w = 0) and the shown slit depth, a, is arbitrary. O is

the origin (refer to Fig. 1(b) for notation) and the front face is placed in a rectangle also revealing the

corresponding 2-D mesh. The x-y-z triad is displaced from O for clarity.

Figure 4. For B = 1 and ν = 0.3, constraint ratios (Eq. 19) of (a) strain at the gage, (b) depth-derivative

of the strain at the gage, and (c) energy release rate. Each curve in parts (a), (b) or (c) corresponds to

fixing the δ-load (see Fig. 1) at the x value shown in the legend and plots the corresponding ratio as a

function slit depth a. The pl-σ level is at (1−ν2)−1 = 1.099.

Figure 5. The ratio of the measured strain, γ, in the 3-D analysis to plane strain analysis as a func-

tion of slit depth a. The particular loading is a δ-load (see Fig. 1) at the top (x = 0). This figure is at the

norm point of the parameter space ν = 0.3, etc., except for each curve corresponding to different sample

widths as indicated.

Figure 6. Error in calculated stresses due to utilizing plane strain (solid markers) and plane stress

(hollow markers) assumptions (Eq. 16) as a function of the thickness-normalized width (B) of the ac-

tual three-dimensional body: (a) residual stress profile (Legendre) series elements, P1, P4, P7, P11, root-

mean-square error; (b,c) residual stress profiles S1 · · ·S4 (Table II), root-mean-square error in part (b)

and maximum error in part (c). The intersection point of the plane stress and plane strain curves is

shown specifically for profile S1 in part (b) with dashed lines.
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Figure 7. (a) The effective constraint Γ (Eq. 27) vs. thickness-normalized sample width B for stress

profiles S1 · · ·S4 (Table II) and a representative Lorentzian fit to the combined results labeled eq. (b) rms

error in each case using the individual Γ corrections in part (a). Fit order is m = 11 except the indicated

additional curve for S3 profile with m = 3. (c) rms error in each case using the Γ-correction of profile eq

for all, m = 11. Inset: S1 curve of this plot put in perspective of pl-σ/pl-ε errors from Fig. 6.

Figure 8. For Poisson’s ratios 0.2, ..., 0.4, plots of (a) rms-error in reducing profile S1 with plane

strain compliances, (b) remnant rms-error after one-parameter correction with Eq. 28, versus thickness-

normalized sample width B.
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List of Table Captions

Table I. Parameters (p3) of the study (column 1), their norm values (column 2), and considered val-

ues/ranges of the parametric study (column 3).

Table II. Considered residual stress profiles, their typical causes, Legendre series order (m∗) and co-

efficients (Ai).
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