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ABSTRACT. This paper presents experimental results
from the vibration of a polycarbonate beam containing a
crack that opens and closes during vibration. Several
techniques were employed to detect and locate the crack
making use of the nonlinearity. “Harmonic mode shapes”
proved to be more sensitive to damage than conventional
mode shapes. Instantaneous frequency and time-
frequency methods also showed clear signatures for the
crack. The results indicate that nonlinearities may provide
increased capabilities for structural damage detection and
location.

1. INTRODUCTION

A desire to monitor a structure and detect damage at the
earliest possible stage is pervasive throughout the civil,
mechanical, and aerospace engineering communities.
Investigators have applied modal analysis techniques to
damage detection for more than 20 years. A recent review
of this literature is given in [1]. The vast majority of the work
has considered only linear types of structural damage,
such as a local reduction in stiffness, a non-closing notch,
or a change in geometry like removal of a member in a truss
structure. Actual structural damage is often nonlinear,
such as a fatigue crack that opens and closes. Only a
handful of works have looked at making use of the
nonlinearities for damage detection, e.g. [2-5]. It is hoped
that the nonlinearity will impart some characteristic to the
vibration signal that could result in a damage detection
technique with improved sensitivity and/or spatial
resolution.

This paper presents experimental results from the vibration
of a beam containing an opening and closing crack. Several
methods of examining the data are presented including
conventional modal analysis compared to extraction of
“harmonic mode shapes.” Methods using instantaneous
frequencies and time frequency transforms, which have
only recently been applied to damage detection [6-7], are
also applied. All the results presented here are based on
measured responses only. No measurements of the input
force or excitation were taken because a damage detection

algorithm to be implemented in the field will likely need to
work with only response measurements.

2. EXPERIMENTAL SETUP

A polycarbonate beam was constructed by bonding three
pieces together in order to form a beam with an opening and
closing crack. Figure 1 shows a finite element prediction for
the first eigenmode, which is shown just to illustrate the
geometry. It is noted that the bonding was not done
especially well and so in addition to the crack there is a
delaminated region near the crack. An uncracked beam
was constructed by bonding together the two halves, in
order to restrict the difference between the two beams to
the crack region. The final dimensions of the beams were
61 cm (24 in.) long by 5.1 cm (2.0 in.) wide by 1.21 cm
(0.475 in.) thick. The crack was located 24.9 cm (9.8 in.)
from one end and the delaminated region extended about
3 cm (1.2 in.) towards the closer end and 4.8 cm (1.9 in.)
towards the other end. The beam was constructed from
pieces of equal thickness, so the crack penetrates to half
the beam thickness.

For testing, about 1.3 cm (0.5 in.) of the end of the beam
was clamped into a vise. Eight Endevco model 2250A-10
accelerometers (0.4 grams each) were mounted using wax
along the centerline of the beam starting at 1.27 cm (0.5 in.)
from the free end and spaced 7.62 cm (3.0 in) apart. The
cracked beam was tested alternately with both ends
clamped in the vice, making two effective crack locations:
23.6 cm (9.3 in.) and 34.8 cm (13.7 in.) from the clamp. The
beams were excited by displacing the end of the beam by 1-
2 cm and then releasing it, i.e., step relaxation. This
excited predominantly the fundamental mode. In the case
of the cracked beam, the experiments were repeated with
the accelerometers on the same side as the crack and on
the opposite side, to see if this had any affect on the ability
to detect the crack.

Measurements included raw time histories, power spectra
and cross power spectra. The spectra calculated using an
exponential window and averaged over 10 runs. The
sampling rate gave 4096 points in 8 seconds.
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3. RESULTS — FREQUENCY DOMAIN

Figure 2 shows a portion of the time history for the acceler-
ometer nearest the free end on the cracked beam. The
closing event itself is apparent as the acceleration
approaches its minimum. The crack closing well after the
acceleration has passed through zero indicates an initial
gap which must be overcome. The initial gap is visually
apparent and varies from 0.2 mm to 0.3 mm (0.008 in. to
0.012 in.) along the length of the crack.

The trace clearly shows an asymmetry associated with the
crack being closed for part of the cycle. This behavior can
be approximated as being bilinear. For the portion of the
cycle in which the crack is closed, the beam vibrates
linearly with the modal properties of the uncracked beam.
For the portion of the cycle with the crack open, the beam
also vibrates linearly, but with the modal properties of the
beam with reduced local stiffness due to the crack. These
regions are referred to here as the “crack-open” and “crack-
closed” half-cycles, although due to the initial gap the
crack is closed for less than a full half-cycle.

Figure 3 shows the power spectra for the free end
accelerometer on both a cracked and an uncracked beam.
The cracked beam shows a frequency shift for the
fundamental frequency and the presence of several
harmonics. Note that one of the harmonics overlays the
second bending mode. However, the second mode was
barely excited so this peak appears to be predominantly
due to the harmonic.

Table 1 gives the frequencies for the first two bending
modes and the harmonics in between for the different tests.
Frequencies are given to the resolution of the power
spectra, 0.125 Hz. No effort was made to interpolate for
finer resolution. For the harmonics, x4 refers to the
harmonic at 4 times the fundamental frequency and 2-1
refers to a harmonic at the frequency of the second mode
minus the frequency of the first mode.

Uncracked
Beam

Crack at
23.6 cm

Crack at
34.8 cm

Mode 1 7.25 Hz 6.0 Hz 6.88 Hz
Harm. (x2) 11.88 Hz 13.63 Hz
Harm. (x4) 23.75 Hz 27.25 Hz
Harm. (2-1) 31.0 Hz
Harm. (x5) 29.63 Hz 34.13 Hz
Mode 2 40.5 Hz 35.5 Hz 37.75 Hz
Harm. (x6) 35.5 Hz 40.88 Hz

Table 1. Measured Frequencies

Mode shapes were calculated from the magnitudes of the
peaks in the cross power spectra. The cross power spectra
were taken relative to the accelerometer closest to the free
end. Such a procedure for identifying mode shapes has
been previously applied to nonlinear systems, e.g., [8]. The

same procedure was applied also to harmonic peaks
resulting in “harmonic mode shapes.”

Figure 4 shows shapes of the fundamental mode for the
uncracked beam and both of the cracked configurations.
Lines on the plot show the location of the crack for the two
configurations. Although the cracked mode shapes show a
change, they do not clearly indicate the location of the
crack. Also, the same figure shows the mode shapes for
the first harmonic, at twice the fundamental frequency. The
data points indicate sensor locations. The harmonic mode
shapes very clearly indicate the location of the crack, to
within the sensor resolution.

Figures 5 and 6 show the mode shapes for the second
bending mode for the two different crack locations. In this
case the cracked mode shapes do indicate the location of
the crack to within the sensor resolution. Also plotted are
the mode shapes for several higher harmonics. The
harmonics indicate the position of the crack more clearly
than the cracked mode shapes, but not as clearly as those
in figure 4. In general, as the order of the harmonics
increase, their ability to locate damage decreases. It is
also worth noting that the harmonic at twice the
fundamental frequency mimics the shape of the funda-
mental mode while the others mimic the shape of the sec-
ond bending mode. This occurs in spite of the fact that all
these harmonics occur before the second bending mode.

Figure 7 shows the uncracked and harmonic mode shapes
for tests with the accelerometers on the side of the beam
opposite the crack. The harmonic at twice the fundamental
mode does a poor job of locating the crack relative to the
case with the accelerometer on the same side as the crack
(see Fig. 4). But the higher harmonics still locate the crack
to within sensor resolution. Overall, there is clearly a
decrease in ability to locate the crack with the
accelerometers on the opposite side of the beam.

The power spectrum for the uncracked beam in Figure 3
shows a peak at about 22 Hz that could be a harmonic. This
peak only appears in the accelerometer closest to the free
end and could indicate some local nonlinearity.

4. RESULTS — HALF-CYCLE FREQUENCY

A very simple approach was used to identify the bilinear
vibration of the cracked beam in the time domain. The time
history signal (e.g., Fig. 2) was examined to locate the
times at which the acceleration passed through zero. The
time between these crossings, corresponding to
approximately a half period of vibration, was used to
calculate a frequency for the half cycle. This was only
possible because the beams responded almost purely in
mode 1 when excited using step relaxation.

Figure 8 shows this “half-cycle frequency” for the cracked
beam. The accelerometer in this case is located 14.5 cm
from the crack towards the clamp. Figure 9 shows the same
plot for the same accelerometer location on the uncracked
beam. The bilinear vibration of the beam is evident in Fig. 8.
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The effect diminishes as the beam rings down since the
amplitude of vibration is no longer sufficient to close the
crack. The effect is also dependent upon accelerometer
location. For accelerometers farther from the crack than in
Figure 8, the difference between the carck-open and crack-
closed frequencies is smaller. This suggests that this
effect may be useful in locating a crack as well as detecting
it.

It should be noted that these plots do not display the form
expected by the authors. The frequency for the crack-
closed half of the cycle (higher frequency) would be
expected to decay as the vibration amplitude decays
because the crack has a finite gap and takes a certain
amplitude to close. This is observed. However, the
frequency for the crack-open half of the cycle would be
expected to stay constant since the crack is open for this
entire half cycle irrespective of vibration amplitude. Yet this
frequency also changes in time as the beam rings down.

A possible explanation for this observation exists. The time
history measurements were taken in AC coupling mode,
which uses a high pass filter with a rolloff starting at about 2
Hz. The acceleration trace with the opening and closing
crack would have unequal amplitudes for the two halves of
the cycle, giving a non zero average acceleration or DC
offset. In removing this offset, the high pass filter changes
the zero crossing times slightly.

5. RESULTS — INSTANTANEOUS FREQUENCY

Another attempt to resolve the crack opening and closing
from the time history data is afforded by instantaneous
frequency techniques [9]. The instantaneous frequency is
defined as the time derivative of the phase angle of the
analytic signal divided by 2π. The analytic signal is
computed from the raw signal by keeping only positive
frequency components. A real signal will have a Fourier
transform symmetric between positive and negative
frequencies. The analytic signal zeros the negative
frequency components of the signal. The inverse Fourier
transform of the raw signal with zero negative frequency
components, and consequently the analytic signal, will
necessarily be complex. Hence it makes sense to talk
about the phase angle and its derivative. For example the
analytic signal of a sine wave is a complex exponential.

sin 2 ft( )→ ie−i2 ft .                                              (1)

It is easy to see that if the signal has only a single
frequency component the instantaneous frequency does in
fact give the frequency of the signal. Interpreting the
meaning of the instantaneous phase angle becomes more
difficult when the signal has more than a single frequency
component. This problem is analogous to interpreting the
mean of a multi-modal distribution.

To alleviate this problem, the raw signal for both the
cracked and uncracked runs was first low-pass filtered to
eliminate frequency components not near the fundamental.
A fifth order type II Chebyshev low-pass filter with 60 dB of

attenuation and a cutoff of approximately 50 Hz was
selected. It should be noted that the instantaneous
frequency is very sensitive to the filter parameters. If too
low a cutoff frequency is used then the harmonics are
filtered out and no bilinear behavior is observed. If the
cutoff frequency is chosen too high, then additional modes
are included and interpretation becomes difficult.

Figure 10 shows the results of applying the filter discussed
in the preceding paragraph to both the cracked and
uncracked data runs and then computing the
instantaneous frequency. The graphs show several
interesting effects. For the cracked run, after an initial
transient we see a large approximately square wave
oscillating between 5.75 Hz and 7.5 Hz. These can be
interpreted as the bilinear frequencies of the beam
correspond to the crack open and closed respectively.
Also notice how the lower frequency is of shorter time
duration corresponding to an initial gap which must be
overcome. The upper frequency of the crack is
approximately the same as the mean of the instantaneous
frequency for the uncracked beam.

There are several departures from the theoretically
expected results which deserve comment. The
theoretically expected curve for the uncracked beam
should be a flat line. The expected curve for the cracked
beam should be a square wave. In figure 10 we see a
significant ripple for the uncracked frequency and
departures from squareness for the cracked frequency.
The artifacts can easily be attributed to two causes. The
first is the inclusion of higher modes and noise which pass
through the filter. The second in the case of the cracked
beam is true high order harmonic response being removed
by the filter.

6. RESULTS — WIGNER-VILLE DISTRIBUTION

The data was also analyzed using the Wigner-Ville
distribution (WVD) [10]. The WVD is a method of
determining the energy density of a signal as both a
function of time and frequency. The WVD is defined by

Wx t, f( ) = e−2 if x t + 2( )x* t− 2( )d
−∞

∞

∫ .                (2)

Because it is bilinear in the signal, the WVD has cross
terms, or artifacts, that show spurious frequency content.
For example if a signal has two frequency components at f1

and f 2, then the WVD shows an oscillatory artifact at the
mean of the two frequencies. The explanation for the
artifact is that when a sine wave is modulated by another
sine wave, as the bilinear product in the definition of the
WVD necessitates, the result has frequency content at the
sum and difference frequencies. In practice the artifacts
may be easy to recognize because they typically oscillate
in magnitude between positive and negative values.

The problem of artifacts becomes worse if the signal is multi
component or broad band because artifacts appear at all
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possible sum and difference frequencies. The artifacts also
appear between positive and negative frequency
components of real signals. For this reason it is also typical
to use the analytic signal, which was described in the
section on instantaneous frequency methods. The analytic
signal zeros the negative frequency components and
thereby eliminates many of the spurious cross terms in the
WVD. A final property of the WVD which should be
mentioned is that the distribution can be negative. This is
an unfortunate property since we would like an energy
density to be positive definite. This is not specific to the
WVD. All time frequency methods suffer from analogous if
not identical pathologies such as spurious cross terms and
negativity [10].

Figures 11 and 12 show the WVD for the cracked and
uncracked beams respectively. Both figures show the
exponential ring-down in the energy of the beam. The
uncracked beam shows frequency content primarily at the
first bending mode, consistent with the excitation of the
beam being pulled and released which excites only the
fundamental mode. In contrast, even though the cracked
beam was also pulled and released, the WVD clearly shows
frequency content at harmonic frequencies of the
fundamental. The uncracked beam does show some minor
harmonic content. Possible sources of this are any nonlin-
earity in the system or sensor. We could easily attribute the
harmonics to an imperfect mount of the beam in the vise.

Ideally, we would like to see the frequency change for the
different half cycles of the bilinear response. Figure 11
does show periodic modulations but it is difficult to
determine if they are artifacts or true indications of the
crack opening and closing.

7. CONCLUSIONS

In this paper, experimental data from a beam with an
opening and closing crack was analyzed with the goal of
detecting and locating the crack. The main goal was to
explore the possibility of using the nonlinearity for improved
damage detection capability over linear based methods.
The authors realize that the laboratory conditions employed
do not translate necessarily translate to field applications.

The “harmonic mode shapes” were qualitatively
demonstrated to give improved sensitivity and spatial
resolution over conventional mode shapes.

Several time domain and time-frequency domain
techniques were employed in an effort to resolve the
opening and closing behavior of the crack. A half-cycle
frequency was able to resolve the different frequencies of
the crack-open and crack-closed portions of the vibration
cycle. A more sophisticated instantaneous frequency
based on the analytic signal was also employed. This too
resolved the opening and closing behavior, but also
showed some frequency oscillation in the uncracked data.
In both cases, the effects varied depending on sensor
location, indicating the possibility of locating the crack.
Both of these methods relied heavily on the fact that the

beam was vibrating almost purely in the fundamental mode.
Also, the results from both methods differed somewhat
from the expected behavior for a bilinear oscillation.

The Wigner-Ville distribution was also applied to the
experimental data. It clearly showed energy content at the
harmonic frequencies for the cracked beam. Ideally, the
frequency change for the different half-cycles in the
cracked beam would be apparent. There were some
periodic modulations in the results that may indicate the
crack opening and closing. No definite conclusion was
drawn.

The general conclusion to be drawn is that detection and
location of a structural nonlinearity may provide more
accurate damage identification than detection and
localization of linear structural perturbations.
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      Fig. 1. Specimen Geometry - Shown as 
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Fig. 2. Time History of Acceleration on Cracked 
Beam, Crack Closing is Evident
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Fig. 11. Wigner-Ville Distribution of the Cracked Signal

Fig. 12. Wigner-Ville Distribution of the  Uncracked Signal


