Quantum chromodynamics, resonances, and the Riemann-Hilbert problem

Mark Paris

GWU collaborators:
D. Arndt, B. Briscoe, I. Strakovsky, & R. Workman

Data Analysis Center
Center for Nuclear Studies
The George Washington University

Department of Physics
The George Washington University
20 April 2010
Motivation

- Data Analysis Center/Center for Nuclear Studies
 - **SAID**: suite of programs to analyze 2 \(\rightarrow \) 2 & 3 body scattering and reaction data
 - Routines: database, fit, and analysis
 - Reactions: \(\pi N \rightarrow \pi N, \pi \pi N; \quad KN \rightarrow KN; \quad NN \rightarrow NN'; \quad \pi d \rightarrow \pi d; \quad \pi d \rightarrow pp; \quad \gamma N \rightarrow \pi N, \eta N, \eta' N, \eta N, \gamma N; \quad eN \rightarrow e\pi N \)

- Current studies
 - Meson-nucleon reactions
 - Electromagnetic meson production: photo- & electro-production

Objective: Learn about QCD

- Strongly interacting
- Infinitely many degrees-of-freedom
- Non-linear

\(\Rightarrow \) QCD is a challenging theory to solve

In our terminology, we sometimes use 'reaction' to include elastic scattering.

\(^a \text{Web: } \text{http://gwdac.phys.gwu.edu/} \)

\(^b \text{ssh: } \text{ssh -C -X said@said.phys.gwu.edu [passwordless]} \)
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Quantum chromodynamics</td>
</tr>
<tr>
<td>- Quantum field theory</td>
</tr>
<tr>
<td>- Gauge theory</td>
</tr>
<tr>
<td>2 Resonance</td>
</tr>
<tr>
<td>- Phenomena of resonance</td>
</tr>
<tr>
<td>- Description of resonance</td>
</tr>
<tr>
<td>- Resonance structure</td>
</tr>
<tr>
<td>3 Reaction theory</td>
</tr>
<tr>
<td>- Experiments</td>
</tr>
<tr>
<td>- Formalism</td>
</tr>
<tr>
<td>4 Amplitude parameterization</td>
</tr>
<tr>
<td>- Complex energy plane</td>
</tr>
<tr>
<td>- Analytic structure</td>
</tr>
<tr>
<td>- SAID Parameterization</td>
</tr>
<tr>
<td>5 Modeling</td>
</tr>
<tr>
<td>- Particles and fields</td>
</tr>
<tr>
<td>- Dynamics</td>
</tr>
<tr>
<td>- Results</td>
</tr>
<tr>
<td>6 Conclusion</td>
</tr>
</tbody>
</table>
Quantum physics

Quantum mechanics

- Dynamical variables \(\{x(t), p(t)\} \rightarrow [\hat{x}, \hat{p}] = i\hbar \) – ‘uncertainty’ principle (HUP)
- Quantum “weirdness” – position and velocity not definite simultaneously
- Wave-particle duality
 - wave ↔ continuum properties in propagation
 - particle ↔ energy exchanged discretely
- Fixed number of particles

Quantum field theory

- Dynamical variables → fields: \(\phi_\alpha(t, r) \)
- Predicts antiparticles: same mass, spin; opposite charge(s)
- Arises inevitably if:
 - Local: ‘action at a distance’ isn’t allowed
 - Poincaré (⊂ Lorentz xform) invariant: relativistic
 - Cluster decomposition: distant experiments are not correlated
 - CPT invariance
- Variable number of particles necessitated: HUP & Lorentz invariance
Outline

1. Quantum chromodynamics
 - Quantum field theory
 - Gauge theory

2. Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure

3. Reaction theory
 - Experiments
 - Formalism

4. Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization

5. Modeling
 - Particles and fields
 - Dynamics
 - Results

6. Conclusion
The “strong force”
Empirical considerations

- Strong & short ranged compared to electromagnetic, weak, and gravity

- Quarks (and gluons) aren’t directly observed

- Hadrons interact weakly at small momenta
Strong & short ranged compared to electromagnetic, weak, and gravity → Mass gap

Quarks (and gluons) aren’t directly observed

Hadrons interact weakly at small momenta

\[E(p) = \sqrt{|p|^2 + m^2} \]
The “strong force”

Empirical considerations

- Strong & short ranged compared to electromagnetic, weak, and gravity → Mass gap
- Quarks (and gluons) aren’t directly observed → Color confinement
- Hadrons interact weakly at small momenta

Illustration: Typoform

Indication of confinement from perturbation theory. The running strong coupling constant α_s as a function of the energy, E at which it is measured.
The “strong force”
Empirical considerations

- Strong & short ranged compared to electromagnetic, weak, and gravity
 → Mass gap
- Quarks (and gluons) aren’t directly observed
 → Color confinement
- Hadrons interact weakly at small momenta

Non-perturbative confinement via monopoles. Possible monopole configurations.
The “strong force”
Empirical considerations

- Strong & short ranged compared to electromagnetic, weak, and gravity → Mass gap
- Quarks (and gluons) aren’t directly observed → Color confinement
- Hadrons interact weakly at small momenta → Chiral symmetry breaking
Gauge theory & QCD

Gauge principle [Weyl, Lee, Yang]

- All four fundamental forces are governed by the gauge principle
 - Electromagnetic: phase invariance
 - Weak: broken non-Abelian symmetry
 - Strong: color invariance
 - Gravity: diffeomorphism invariance

- Invariance under some local symmetry transformations, *eg.*
 1-dim Abelian symmetry electrodynamics:

 \[\psi(x) \rightarrow e^{i\varphi(x)} \psi(x) \Rightarrow D_\mu \psi(x) = [\partial_\mu - ieA_\mu(x)]\psi(x) \]

 \(A_\mu(x) \), the four-vector electromagnetic potential, ‘compensates’ for possible changes in the phase and has its own dynamics

- QCD
 - Internal quantum number “color”: \(R, G, B \)
 - Invariance under local changes of color
 - ‘Compensating’ field are *gluons*, \(G^A_\mu(x) \) – come in 8 types

- Gauge fields are massless, vector bosons\(^1\)

\(^1\)Unless the ground state of the theory breaks the gauge symmetry as in, the Higgs mechanism in the electroweak sector.
Outline

1. Quantum chromodynamics
 - Quantum field theory
 - Gauge theory

2. Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure

3. Reaction theory
 - Experiments
 - Formalism

4. Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization

5. Modeling
 - Particles and fields
 - Dynamics
 - Results

6. Conclusion
Classical atomic resonance

Dispersion characteristics of (low-density) dielectrics: Classical EOM for an electron ($e > 0$) bound harmonically within a non-conducting material

\[-\frac{e}{m} \mathbf{E}(t, \mathbf{r}) = \ddot{\mathbf{r}}(t) + \gamma \dot{\mathbf{r}}(t) + \omega_0^2 \mathbf{r}(t)\]

\[\mathbf{E}(t) \sim e^{-i\omega t}\]

\[\epsilon(\omega) = 1 + \frac{4\pi Ne^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\omega \gamma}\]

Response function

- $\text{Re } \epsilon(\omega)$: related to phase velocity ($v = \frac{c}{\text{Re} \sqrt{\mu \epsilon}}$)
- $\text{Im } \epsilon(\omega) \neq 0$: energy dissipation EM wave \rightarrow medium

\[\text{The dielectric constant as a function of frequency.}\]
Quantum atomic resonance

Resonance fluorescence

\[i\hbar \frac{\partial \psi(t)}{\partial t} = [H_{\text{free}} + H_{\text{int}}] \psi(t) \]

\[\psi(t) = \sum_k c_k(t) u_k(r) e^{-iE_k t} \]

\[\dot{c}_m(t) = -i \sum_k \langle m|H_{\text{int}}|k\rangle e^{i(E_m-E_k)t} c_k(t) \]

\[\dot{c}_I(t) = -i \langle I|H_{\text{int}}|0\rangle c_0 e^{i(E_I-E_0)t} - \frac{\Gamma_I}{2} c_I(t) \]

\[|c_I|^2 = \frac{\langle I|H_{\text{int}}|0\rangle}{(E_I-E_0-\omega)^2 + \Gamma_I^2/4} \]

Breit–Wigner response fn.
Hadronic^2 resonance

Formation

Associated production

2Necessarily quantum.

M. Paris

QCD, N^*, & R–H
Background/non-resonant vs. resonant

Folklore

Setup:
- target at rest in the lab
- projectile impinges upon the target with energy E_L
- interact over (very) short range [neglect, eg. Coulomb]
- scattering elastically or inelastically, receding to infinity

Qualitatively:

Non-resonant
The target–projectile system interact via an attractive force, remaining in proximity for a time, τ all the while retaining their individual identities, then move off to infinity.

Resonant
The target–projectile system amalgamate to form a compound state, completely losing their individual identities in the process, existing for a time τ as a metastable state. This compound state may decay into particles whose species are identical to or distinct from the target–projectile species.
Background/non-resonant vs. resonant

QCD

- QCD degrees-of-freedom: quarks & gluons
- Observables are function(al)s of
 \[\langle 0 | T\{A_1(x_1) \cdots A_n(x_n)\} | 0 \rangle \]
- Consider the quark “dual diagram”
 - Quarks propagate forward in time – ‘up’
 - Antiquarks propagate backward in time – ‘up’
 - Gluon field is implicit and ubiquitous – imagine gluon field
 describing a membrane spanning quark lines
- “Channels”: a single quark diagram describes several
 processes at the hadronic level
 - s-channel: \(\pi^+\pi^- \rightarrow \rho^0 \rightarrow \pi^+\pi^- \)
 - t-channel: \(\pi^+\pi^- \rightarrow \pi^+\pi^- \rho^0 \rightarrow \pi^+\pi^- \)
- **Fact**: non-resonant and resonant are model dependent concepts
- **Query**: Are these useful concepts? And to what extent?
Background/non-resonant vs. resonant

QCD

- QCD degrees-of-freedom: quarks & gluons
- Observables are function(al)s of
 \[\langle 0 | T\{A_1(x_1) \cdots A_n(x_n)\} | 0 \rangle \]
- Consider the quark “dual diagram”
 - Quarks propagate forward in time – ‘up’
 - Antiquarks propagate backward in time – ‘up’
 - Gluon field is implicit and ubiquitous – imagine gluon field describing a membrane spanning quark lines
- “Channels”: a single quark diagram describes several processes at the hadronic level
 - s-channel: \(\pi^+ \pi^- \rightarrow \rho^0 \rightarrow \pi^+ \pi^- \)
 - t-channel: \(\pi^+ \pi^- \rightarrow \pi^+ \pi^- \rho^0 \rightarrow \pi^+ \pi^- \)
- **Fact**: non-resonant and resonant are model dependent concepts
- **Query**: Are these useful concepts? And to what extent?
Outline

1. Quantum chromodynamics
 - Quantum field theory
 - Gauge theory

2. Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure

3. Reaction theory
 - Experiments
 - Formalism

4. Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization

5. Modeling
 - Particles and fields
 - Dynamics
 - Results

6. Conclusion
The 1950’s proliferation of strongly interacting particles under the pejorative, “Particle Zoo,” drove some fairly serious folks to humor:

- **J.R. Oppenheimer’s lament**: ‘The Nobel Prize should be given to the physicist who did not discover a particle.’

- **W. Pauli’s other career**: [To Leon Lederman] ’If I could remember the names of these particles I would have gone into botany.’

The apparent chaos of the 100’s of known strongly interacting particles was brought to order by M. Gell-Mann, *The Eightfold Way, Symmetries of Baryons and Mesons*, Phys. Rev. **125**, 1962 without explicit reference to quarks.

- Goldberger-Treiman relation from PCAC: \(\frac{f_\pi g_{\pi NN}}{m_N} = g_A \)

- Adler-Weisberger relation:

\[
g_A^{-2} = 1 + \frac{2m_N^2}{\pi g_{\pi NN}^2} \int_{\nu_0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{\pi^- - p} - \sigma_{\pi^+ + p} \right]
\]
The *Eightfold Way* as an irreducible representation (the octet 8) of the global symmetry group $SU(3)_{\text{Flavor}}$.

Generators of $SU(3)_{\text{Flavor}}$

- $\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- $\lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- $\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- $\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
- $\lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$
- $\lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
- $\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$
- $\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

- Hermitian, traceless, 3×3 complex matrices
- Why 8 generators?
 - 3×3 elements
 - 2 real + imag
 - $9 - 1$ traceless
 - $= 8$
- Top row: isospin!
- First two matrices of each column: raising and lowering operators
- Third column: λ_3 & λ_8 diagonal

[D]Cartan subalgebra

Use these to classify states...
The **Eightfold Way** as an **irreducible** representation (the octet \(8\)) of the global symmetry group \(SU(3)_{\text{Flavor}}\).

Quarks/Antiquarks

\[
q = \begin{pmatrix} u \\ d \\ s \end{pmatrix} = \text{“}3\text{”}
\]

\[
l_3 = \frac{1}{2} \lambda_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]

\[
Y = \frac{1}{\sqrt{3}} \lambda_8 = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}
\]

\[
Q = l_3 + \frac{Y}{2} = \begin{pmatrix} \frac{2}{3} & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & -\frac{1}{3} \end{pmatrix}
\]
Group theoretic quark model

The *Eightfold Way* as an *irreducible* representation (the octet $\mathbf{8}$) of the global symmetry group $SU(3)_{\text{Flavor}}$

Mesons

$$M = q \otimes \bar{q} = 3 \otimes 3 = \begin{pmatrix} u\bar{u} & u\bar{d} & u\bar{s} \\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3}(2u\bar{u} - d\bar{d} - s\bar{s}) & u\bar{d} & u\bar{s} \\ d\bar{u} & \frac{1}{3}(2d\bar{d} - u\bar{u} - s\bar{s}) & d\bar{s} \\ s\bar{u} & s\bar{d} & \frac{1}{3}(2s\bar{s} - u\bar{u} - d\bar{d}) \end{pmatrix}$$

$$+ \frac{1}{3}(u\bar{u} + d\bar{d} + s\bar{s})$$

singlet

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}} \pi^0 + \frac{1}{\sqrt{6}} \eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}} \eta \end{pmatrix} + |\text{singlet}\rangle$$

$$= 8 \oplus 1 = 9 \text{ states}$$
The *Eightfold Way* as an irreducible representation (the octet 8) of the global symmetry group $SU(3)_{\text{Flavor}}$

Baryons

$$B = q \otimes q \otimes q = 3 \otimes 3 \otimes 3$$

$$= 10 \oplus 8 \oplus 8 \oplus 1 = 27 \text{ states}$$

$$8 = \begin{pmatrix}
\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda^0 & \Sigma^+ & p \\
\Sigma^- & -\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda^0 & n \\
\Xi^- & \Xi^0 & -\frac{2}{\sqrt{6}} \Lambda^0
\end{pmatrix}$$

$$10 = \{ \Delta, \Sigma, \Xi, \Omega \}$$
Quantum chromodynamics

Resonance

Reaction theory

Amplitude parameterization

Modeling

Conclusion

Experiments

Formalism

Outline

1 Quantum chromodynamics
 • Quantum field theory
 • Gauge theory

2 Resonance
 • Phenomena of resonance
 • Description of resonance
 • Resonance structure

3 Reaction theory
 • Experiments
 • Formalism

4 Amplitude parameterization
 • Complex energy plane
 • Analytic structure
 • SAID Parameterization

5 Modeling
 • Particles and fields
 • Dynamics
 • Results

6 Conclusion
Scattering & reactions

Definitions

- **Target**: a particle (elementary or composite) in the lab rest frame
- **Projectile**: a particle (elementary or composite) which impinges on the target
- **Initial state**: target and projectile at (effectively) infinite separation = non-interacting
- **Final state**: daughter particles (any number) at infinite separation
- **Reaction channel**: n particles where $n \geq 1$ in an initial state; *eg.* $e^- e^-, e^+ N, \pi N, \gamma N, \pi\pi N, \ldots$
Scattering & reactions

Definitions

- Target: a particle (elementary or composite) in the lab rest frame
- Projectile: a particle (elementary or composite) which impinges on the target
- Initial state: target and projectile at (effectively) infinite separation = non-interacting
- Final state: daughter particles (any number) at infinite separation
- Reaction channel: \(n \) particles where \(n \geq 1 \) in an initial state; *eg.*
 \(e^- e^-, e^+ N, \pi N, \gamma N, \pi \pi N, \ldots \)
- Elastic: kinetic energy conserved
 - Moller scattering: \(e^- e^- \rightarrow e^- e^- \)
 - Bhabha scattering: \(e^- e^+ \rightarrow e^- e^+ \)
 - Rayleigh/Thompson scattering: \(e^- N \frac{A}{2} (i) \rightarrow e^- N \frac{A}{2} (i) \)
 - Compton scattering: \(\gamma e^- \rightarrow \gamma e^-, \gamma p \rightarrow \gamma p, \gamma A \rightarrow \gamma A \) (nucleus \(A = d, \) \(^3 \)He, \ldots, \ldots)
 - \(\pi N \) scattering: \(\pi^0 p \rightarrow \pi^0 p \) (neutral), \(\pi^+ p \rightarrow \pi^+ p \) (charged)
 - Gold scattering: \(Au Au \rightarrow Au Au \)
Scattering & reactions

Definitions

- **Target**: a particle (elementary or composite) in the lab rest frame
- **Projectile**: a particle (elementary or composite) which impinges on the target
- **Initial state**: target and projectile at (effectively) infinite separation = non-interacting
- **Final state**: daughter particles (any number) at infinite separation
- **Reaction channel**: \(n \) particles where \(n \geq 1 \) in an initial state; *eg.* \(e^- e^-, e^+ N, \pi N, \gamma N, \pi \pi N, \ldots \)
- **Elastic**: kinetic energy conserved
 - Moller scattering: \(e^- e^- \rightarrow e^- e^- \)
 - Bhabha scattering: \(e^- e^+ \rightarrow e^- e^+ \)
 - Rayleigh/Thompson scattering: \(e^- N \frac{1}{2} A(i) \rightarrow e^- N \frac{1}{2} A(i) \)
 - Compton scattering: \(\gamma e^- \rightarrow \gamma e^-, \gamma p \rightarrow \gamma p, \gamma A \rightarrow \gamma A \) (nucleus \(A = d, ^3 He, \ldots, \ldots \))
 - \(\pi N \) scattering: \(\pi^0 p \rightarrow \pi^0 p \) (neutral), \(\pi^+ p \rightarrow \pi^+ p \) (charged)
 - Gold scattering: \(Au Au \rightarrow Au Au \)
- **Inelastic**
 - Electron-positron annihilation: \(e^- e^+ \rightarrow \gamma \gamma, \) hadrons
 - Raman scattering: \(e^- N \frac{1}{2} A(i) \rightarrow e^- N \frac{1}{2} A(f), i \neq f \)
 - \(\pi N \) scattering: \(\pi^- p \rightarrow \pi^0 n \) (charge exchange)
 - Meson \(\pi \)-production: \(\pi^- p \rightarrow \eta p, \omega p, \ldots \)
 - Meson photoproduction: \(\gamma p \rightarrow \pi^0 p, \pi^+ n, \eta p, \omega p, \pi^+ \pi^- p, \ldots \)
Scattering & reactions

Experimental setup

Incoming current j_0

Interaction region

Current dj scattered into $d\Omega$

Detector aperture dA

Scattering angle θ

Outgoing spherical wave

Incoming plane wave

Target

Beam axis

Area A
Resonance production

- Photoproduction exhibits strong resonance signature (bumps) in all channels
- Single meson production falls-off $E_\gamma \sim 750$ MeV, $W \sim 1500$ MeV
- Coupled-channel treatment absolute necessity
- Aside: energies
 - E_γ photon lab energy [experiment]
 - W total COM energy [calculations]
 - $W = (m_N^2 + 2m_NE_\gamma)^{1/2}$
 - $\approx m_N + E_\gamma - \frac{E_\gamma^2}{4m_N}$
 - $E_\gamma = \frac{W^2 - m_N^2}{2m_N}$
 - $= \frac{1}{2}(1 + \frac{W}{m_N})[W - m_N]$
Outline

1. Quantum chromodynamics
 - Quantum field theory
 - Gauge theory
2. Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure
3. Reaction theory
 - Experiments
 - Formalism
4. Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization
5. Modeling
 - Particles and fields
 - Dynamics
 - Results
6. Conclusion

M. Paris

QCD, N^*, & $\mathcal{R}-\mathcal{H}$
Formalism

Scattering matrix S

- In/Out states & Scattering matrix
 \[
 \psi_{\alpha}^{\pm} = \begin{cases}
 \text{In state } \alpha \text{ before scattering} \\
 \text{Out state } \alpha \text{ after scattering}
 \end{cases}
 \]

- Time-translation invariance (倾向于 Poincaré)

- Inverting $[E_{\alpha} - H_0] \rightarrow [E_{\alpha} - H_0 \pm i\epsilon]^{-1}$ with boundary conditions

Generalized Schrödinger equation

Relativistic Lippmann-Schwinger equation

\[
E_{\alpha} \psi_{\alpha}^{\pm} = H \psi_{\alpha}^{\pm} = [H_0 + H_{\text{int}}] \psi_{\alpha}^{\pm} \quad [E_{\alpha} - H_0] \psi_{\alpha}^{\pm} = H_{\text{int}} \psi_{\alpha}^{\pm}
\]

\[
\psi_{\alpha}^{\pm} = \Phi_{\alpha} + \frac{1}{E_{\alpha} - H_0 \pm i\epsilon} H_{\text{int}} \psi_{\alpha}^{\pm}
\]

\[
H_0 \Phi_{\alpha} = E_{\alpha} \Phi_{\alpha}
\]
Formalism

Lippmann-Schwinger equation

- L-S equation
 \[\psi^\pm_\alpha = \Phi_\alpha + G_0(E_\alpha) V \psi^\pm_\alpha \]
- Interaction mechanisms \(\pi N \rightarrow \pi N \)
- Iteration
 \[\psi^\pm_\alpha = \Phi_\alpha + G_0(E_\alpha) V \Phi_\alpha + G_0(E_\alpha) V \Phi_\alpha + G_0(E_\alpha) V \Phi_\alpha + \cdots \]

Definitions:
- \(\psi^\pm_\alpha \) exact w.f.
- \(\Phi_\alpha \) homogeneous w.f.
- \(G_0(E_\alpha) = \frac{1}{E_\alpha - H_0 \pm i\epsilon} \) propagator
- \(V \equiv H_{\text{int}} \) interaction

M. Paris QCD, \(N^* \), \& \(R - H \)
Define **free propagator** \(G_0 \) and **exact propagator** \(G \) which have singularities (denominator \(\to \) zero) in the spectrum of \(H_0 \) or \(H \)

\[
G_0^{-1}(E_\alpha) = E_\alpha - H_0 \pm i\epsilon \\
G^{-1}(E_\alpha) = E_\alpha - H \pm i\epsilon \\
G^{-1} = G_0^{-1} - V \\
G = G_0 + G_0 VG
\]

Rewrite L-S

\[
\Psi_\pm^\alpha = [1 + \ G^\pm V] \Phi_\alpha \\
\Psi_\alpha^- = \Psi_\alpha^+ + (G^- - G^+)V\Phi_\alpha
\]

S matrix

\[
S_{\alpha\beta} = (\Psi_\alpha^-, \Psi_\beta^+) \\
= (\Psi_\alpha^+, \Psi_\beta^+) + ([G^- - G^+]V\Phi_\alpha, \Psi_\beta^+) \\
= \delta_{\alpha\beta} + 2\pi i\delta(E_\alpha - E_\beta)(\Phi_\alpha, V\Psi_\beta^+) \mathcal{R-H}!! \\
= \delta_{\alpha\beta} + 2\pi i\delta(E_\alpha - E_\beta) T^+_{\alpha\beta} \\
T^+_{\alpha\beta} = -(\Phi_\alpha, V\Psi_\beta^+)
\]
Differential cross section $1 + 2 \rightarrow 1' + 2'$ (exclusive)

\[
d\sigma \over d\Omega = \frac{\# \text{ particles scattered into } (\theta, \phi)}{\text{unit time} \cdot \text{incident flux}} \\
= \frac{(4\pi)^2}{k^2} \rho_{1'2'}(k')\rho_{12}(k) \left| T_{\lambda_1, \lambda_2', \lambda_1 \lambda_2}(k', k; W) \right|^2
\]

- Complete set of measurements: \# ampls. = $\prod_i N(\lambda_i)$
- Need twice ($\mathbb{C} \rightarrow \mathbb{R}$) number of observables, modulo symmetries (C, P, T) & discrete ambiguities
- Polarized particles
- New experiments (FROST, HD-ICE)
- Upcoming complete measurement $\gamma \vec{p} \rightarrow K^+ \bar{\Lambda}$
- Unitarity requires *multi-channel* data, *eg.*
 $\gamma N \rightarrow \pi N, \gamma N \rightarrow \pi \pi N, \gamma N \rightarrow \eta N, \ldots$
Outline

1. Quantum chromodynamics
 - Quantum field theory
 - Gauge theory

2. Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure

3. Reaction theory
 - Experiments
 - Formalism

4. Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization

5. Modeling
 - Particles and fields
 - Dynamics
 - Results

6. Conclusion
The analytic continuation
The miracle of complex numbers

- Complex analytic functions (*holomorphic, regular*)
 - All derivatives exist everywhere in open domain, \mathcal{D}
 - Derivatives independent of direction
 (*Cauchy-Riemann eqs.*)
 - Harmonicity: $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$ [Laplace]

- Analytic continuation - AC
 - Analytic function in \mathcal{D} uniquely determined by values on a domain or along an 1-dim curve
 - $f_1(z)$ analytic in \mathcal{D}_1 and $f_1(z) = f_2(z)$ in $\mathcal{D}_1 \cap \mathcal{D}_2 \Rightarrow$, then there *may be* $f_2(z)$ analytic in \mathcal{D}_2; if so, **unique**.

- Contrast with real functions
 - Analytic $f_1(x)$ on $a < x < b$ and $f_1(x) = f_2(x)$ doesn’t imply $f_2(x)$ is unique (if it exists)

- Cauchy-Gorsat [Green’s/Stoke’s theorem+C-R]
 \[
 \oint_C dz f(z) = 0 \quad \left[\oint_C d\mathbf{l} \cdot \mathbf{A}(x) = \int d^2 \mathbf{S} \cdot \nabla \times \mathbf{A}(x) \right]
 \]
Poles & resonances
'Toy' model: 1-D scattering

Scattering from a finite square well

\[
V(x) = \begin{cases}
0 & x \geq \frac{a}{2} \\
-V_0 & -\frac{a}{2} \leq x \leq \frac{a}{2} \\
0 & x \leq -\frac{a}{2}
\end{cases}
\]

\[
\psi_1(x) = e^{ipx} + Re^{-ipx}
\]

\[
\psi_2(x) = Ae^{ipx} + Be^{-ipx}
\]

\[
\psi_3(x) = Se^{ipx}
\]

\[
p = \sqrt{2mW} \quad \bar{p} = \sqrt{2m(W + V_0)} \quad W > 0
\]

\[
S(E)e^{ipa} = \frac{1}{\cos \bar{p}a - \frac{i}{2} \left[\frac{p}{\bar{p}} + \frac{\bar{p}}{p} \right] \sin \bar{p}a}
\]

\[
T(E) = |S(W)|^2 = \frac{1}{1 + \frac{V_0^2}{4E(E + V_0)} \sin^2 \bar{p}a}
\]
Analytic structure of S

Bound states, resonances, & poles

Bound states: $W < 0$

$$
\begin{align*}
\psi_1(x) &= e^{\kappa x} \\
\psi_2(x) &= A \left(\frac{\cos \bar{p} x}{\sin \bar{p} x} \right) \\
\psi_3(x) &= \pm e^{-\kappa x}
\end{align*}
$$

$x < -a/2$
$-a/2 \leq x \leq a/2$
$a/2 < x$

$$
\kappa = \sqrt{-2mW} > 0, \ W \leq 0
$$

$$
S(E)e^{ip\alpha} = \frac{1}{\cos \bar{p} a - \frac{i}{2} \left[\frac{1}{\bar{p}} + \bar{p} \right] \sin \bar{p} a}
$$

Denominator zeros → bound states when $W < 0$

$$
\begin{align*}
\tan \frac{\bar{p} a}{2} &= \frac{\kappa}{\bar{p}} \\
\tan \frac{\bar{p} a}{2} &= -\frac{\bar{p}}{\kappa}
\end{align*}
$$

$p = i\kappa.$
Riemann surface

\[p = \sqrt{2mW} \quad W \in \mathbb{C} \]

\[\sqrt{W} = |W|^{1/2} e^{i\theta/2} \]

\[\theta = \begin{cases}
0 \leq \theta < 2\pi & \text{‘upper’ sheet} \\
2\pi \leq \theta < 4\pi & \text{‘lower’ sheet}
\end{cases} \]

Disc \(p \equiv p(W + i\epsilon) - p(W - i\epsilon) \)

\[= \sqrt{2m|W|[e^{i\cdot0/2} - e^{i\cdot2\pi/2}] = 2\sqrt{2m|W}|} \]

Riemann surface representation of the function \(\sqrt{W} \).

The complex–W plane is horizontal. The vertical axis gives the imaginary part of the function.
Analytic structure of S

Bound states, resonances, & poles

Given $T(W) = \text{Re} \, T(W) + i \text{Im} \, T(W)$, for $W > 0$ consider AC in $z = W + i \text{Im} \, z$

$$S(E) e^{i \rho a} = \frac{1}{\cos \rho a - \frac{i}{2} \left[\frac{p}{p} + \bar{p} \right] \sin \rho a}$$

- Denominator zeros on the second sheet \rightarrow resonances
Analytic structure of S

Bound states, resonances, & poles

Given $T(W) = \text{Re} T(W) + i \text{Im} T(W)$, for $W > 0$ consider AC in $z = W + i \text{Im} z$

$$S(E)e^{ip\alpha} = \frac{1}{\cos \bar{\alpha} - \frac{i}{2} \left(\frac{\bar{p}}{p} + \frac{p}{\bar{p}} \right) \sin \bar{\alpha}}$$

$$T(E) = |S(W)|^2 = \frac{1}{1 + \frac{V_0^2}{4E(E+V_0)} \sin^2 \bar{\alpha}}$$

$$\bar{\alpha} = n\pi \rightarrow E_n = n^2 \frac{\pi^2}{2m^2a^2} - V_0$$

- Denominator zeros on the second sheet \rightarrow resonances
Analytic structure of S
Bound states, resonances, & poles

Given $T(W) = \text{Re} \, T(W) + i \text{Im} \, T(W)$, for $W > 0$ consider AC in $z = W + i \text{Im} \, z$

$$S(E) e^{i\bar{p}a} = \frac{1}{\cos \bar{p}a - \frac{i}{2} \left[\frac{p}{\bar{p}} + \frac{\bar{p}}{p} \right] \sin \bar{p}a}$$

$$T(E) = |S(W)|^2 = \frac{1}{1 + \frac{V_0^2}{4E(E+V_0)} \sin^2 \bar{p}a}$$

$$\bar{p}a = n\pi \rightarrow E_n = n^2 \frac{\pi^2}{2ma^2} - V_0$$

- Denominator zeros on the second sheet \rightarrow resonances
Outline

1 Quantum chromodynamics
 - Quantum field theory
 - Gauge theory

2 Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure

3 Reaction theory
 - Experiments
 - Formalism

4 Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization

5 Modeling
 - Particles and fields
 - Dynamics
 - Results

6 Conclusion
The Riemann–Hilbert problem

Properly: ‘The scalar $\mathcal{R}–\mathcal{H}$ method’

- Reconstruction of complex *sectionally holomorphic* function given boundary data
- Diverse applications in math . . .
 - Find $f(z) = u(z) + iv(z)$ given $\alpha(z(t))u(z(t)) + \beta(z(t))v(z(t)) = \gamma(z(t))$ on a curve C
 - [Poisson problem on circle $\alpha = 1, \beta = 0$]
 - Solve (singular) linear integral equations
 - Solve partial differential equations
 - Integral transforms (generalized Fourier transforms)
 - Solve “Fuchsian” system diff. eqs. via representation of monodromy group on the punctured Riemann sphere
 - . . .

- . . . & physics
 - Elasticity: Laplace boundary value prob. on D^+
 - Hydrodynamics: non-linear Korteweg-deVries (KdV) equation, $u_t + u_{xxx} + uu_x = 0$ shallow water *soliton* waves
 - Electrostatics: find surface density on $C \Rightarrow$ constant potential
 - Hadronic physics: discontinuity data from unitarity
 - Renormalization group: *Connes & Kreimer* showed that renorm. is equivalent to solving an $\mathcal{R}–\mathcal{H}$ problem
 - . . .
Unitarity

- Unitarity \leftrightarrow Conservation of probability

$$|\Psi^+_{\beta}\rangle = \sum_{\alpha} |\Psi^-_{\alpha}\rangle \langle\Psi^-_{\alpha} | \Psi^+_{\beta}\rangle$$

$$= \sum_{\alpha} |\Psi^-_{\alpha}\rangle S_{\alpha\beta}$$

- Unitarity constraint on T

$$S^\dagger S = SS^\dagger = 1 \quad \text{and} \quad S = 1 + 2i\rho T$$

$$T^+ - T^- = 2iT^- \rho T^+$$

$$T^{-1} - T^+ = 2i\rho$$

$$\text{Disc } T^{-1} = -2i\rho$$
Unitarity ↔ analytic structure

\[\langle \alpha \left| \left\{ T^+ - T^- = 2iT^+ \rho T^- \right\} \right| \beta \rangle \rightarrow T^+_{\alpha \beta} - T^-_{\alpha \beta} = 2i \sum_{\sigma} T^+_{\alpha \sigma} \rho_{\sigma}(W) T^-_{\sigma \beta} \]

\[\rightarrow \text{Im } T(W) = 2i \sum_{\sigma} T^+_{\alpha \sigma}(W) \rho_{\sigma}(W) T^-_{\sigma \beta}(W) \]

\[\rho_{\sigma}^{(2)} = \theta(W - (m_{\sigma,1} + m_{\sigma,2}))K_2 \]

\[\rho_{\sigma}^{(3)} = \theta(W - (m_{\sigma,1} + m_{\sigma,2} + m_{\sigma,3}))K_3 \]

\[\vdots \]

\[\rho_{\sigma}^{(n)} = \cdots \]

- ‘Kinks’ due to Heaviside-\(\theta \) function, due to \(\delta(E - H) \)
- Non-analytic function? \([Eden (1952)]\)
- Violation of Cauchy-Riemann conditions → branch points
Unitarity \leftrightarrow analytic structure

$$\langle \alpha | \{ T^+ - T^- \} | \beta \rangle \rightarrow T^+_{\alpha \beta} - T^-_{\alpha \beta} = 2i \sum_{\sigma} T^+_{\alpha \sigma} \rho_{\sigma}(W) T^-_{\sigma \beta}$$

$$\rightarrow \text{Im } T(W) = 2i \sum_{\sigma} T^+_{\alpha \sigma}(W) \rho_{\sigma}(W) T^-_{\sigma \beta}(W)$$

$$\rho^{(2)}_{\sigma} = \theta(W - (m_{\sigma,1} + m_{\sigma,2})) \mathcal{K}_2$$

$$\rho^{(3)}_{\sigma} = \theta(W - (m_{\sigma,1} + m_{\sigma,2} + m_{\sigma,3})) \mathcal{K}_3$$

$$\vdots$$

$$\rho^{(n)}_{\sigma} = \ldots$$

- ‘Kinks’ due to Heaviside-θ function, due to $\delta(E - H)$
- Non-analytic function? [Eden (1952)]
- Violation of Cauchy-Riemann conditions \rightarrow branch points

Threshold behaviour in quantum field theory

By R. J. Ellis*, Pembroke College, University of Cambridge

(Communicated by P. A. M. Dirac, F.R.S. — Received 31 July 1951 — Revised 17 September 1951)

The elements of the S matrix are functions of the energy and momenta of a set of hadrons. For sufficiently high relative energies of the hadron particles the matrix is analytic and single valued inside the threshold. At the thresholds for each reaction process, the S matrix will have a complicated behaviour. This behaviour is investigated when the S matrix...
Riemann-Hilbert

First blush

\[
([G^- - G^+] V\Phi_\alpha, \Psi_\beta^+) = (\Phi_\alpha, V^+[G^+ - G^-]\Psi_\beta^+)
\]

Plemelj Formula:

\[
G^\pm = \frac{1}{E_\alpha - H \pm i\epsilon}
\]

\[
= \frac{1}{E_\alpha - H} \mp i \lim_{\epsilon \to 0^+} \frac{\epsilon}{(E_\alpha - H)^2 + \epsilon^2}
\]

\[
[\Phi_\alpha, V^+[G^+ - G^-]\Psi_\beta^+] = -2\pi i\delta(E_\alpha - E_\beta)\Psi_\beta^+
\]

\[
\rightarrow S_{\alpha\beta} = \delta_{\alpha\beta} + 2\pi i\delta(E_\alpha - E_\beta) T^+_{\alpha\beta}, \quad T^+_{\alpha\beta} = -(\Phi_\alpha, V\Psi_\beta^+)
\]

- The scattering amplitude is proportional to the discontinuity in G across the real energy axis E_α: Disc $G = G^+ - G^- = 2\pi i\delta(E_\alpha - H)$
- Plemelj formula \Rightarrow imaginary part gives coupling to the continuum
- Sectionally holomorphic function
Outline

1. Quantum chromodynamics
 - Quantum field theory
 - Gauge theory

2. Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure

3. Reaction theory
 - Experiments
 - Formalism

4. Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization

5. Modeling
 - Particles and fields
 - Dynamics
 - Results

6. Conclusion
Chew-Mandelstam approach

Discontinuity data from unitarity: \(\text{Disc} \ T^{-1}(W) = \Im T(W) = -\rho(W) \)

- Direct approach: Cauchy-integral representation or ‘dispersion relation’ \([W \in \mathbb{C}]\)

 \[
 T(W) = \frac{1}{2\pi i} \oint_C dW' \frac{T(W')}{W' - W} \\
 T(W) = \int_{W_t}^{\infty} \frac{dW'}{\pi} \frac{\Im T(W')}{W' - W}
 \]

- Alternate approach: Chew-Mandelstam

 - Use Heitler \(K \) matrix

 \[
 T^{-1} = \Re T^{-1} + \Im T^{-1} = K^{-1} - i\rho \\
 T = K + iK\rho T
 \]

 - Account for the cuts \textbf{exactly} . . .

 \[
 T^{-1} = K^{-1} - i\rho = K_{CM} - C \\
 \Im C = -\rho
 \]

 - . . . and parameterize \(K_{CM} \)

 \[
 K_{CM} = \sum_n c_n [W - W_t]^n
 \]

- Parameters are fixed by fitting \textbf{scattering observables} (unpolarized diff. x-sec., pol. asymmetries, . . .)
Chi-squared per datum compared with model calculations

\[\chi^2(p) = \frac{1}{N_{data}} \sum_{i=1}^{N_{data}} \left[\frac{\Phi_n(i) y_i(p) - Y_i}{\Delta Y_i} \right]^2 + \frac{1}{N_{exp}} \sum_{n=1}^{N_{exp}} \left[\frac{\Phi_n - 1}{\Delta \Phi_n} \right]^2 \]

<table>
<thead>
<tr>
<th>(\chi^2/\text{Data})</th>
<th>SP06</th>
<th>FA02</th>
<th>KA84</th>
<th>EBAC</th>
<th>Gießen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>Norm</td>
<td>UnNorm</td>
<td>Norm</td>
<td>UnNorm</td>
<td>Norm</td>
</tr>
<tr>
<td>(\pi^+p \rightarrow \pi^+p)</td>
<td>2.0</td>
<td>6.1</td>
<td>2.1</td>
<td>8.8</td>
<td>5.0</td>
</tr>
<tr>
<td>(\pi^-p \rightarrow \pi^-p)</td>
<td>1.9</td>
<td>6.2</td>
<td>2.0</td>
<td>6.6</td>
<td>9.1</td>
</tr>
<tr>
<td>(\pi^-p \rightarrow \pi^0n)</td>
<td>2.0</td>
<td>4.0</td>
<td>1.9</td>
<td>5.9</td>
<td>4.4</td>
</tr>
<tr>
<td>(\pi^-p \rightarrow \eta n)</td>
<td>2.5</td>
<td>9.6</td>
<td>2.5</td>
<td>10.5</td>
<td></td>
</tr>
</tbody>
</table>

\[\pi N \rightarrow \pi N \]

Analytic continuation

Spectroscopic notation: \(L_{2I,2J} - L \): rel. \(\pi N \) orb. ang. mom.; \(I \): isospin; \(J \): total intrinsic ang. mom.
$\pi N \rightarrow \pi N$ dispersion relations

πNN coupling; σ term

- The fit supplement with dispersion relation (DR) 'pseudo-data'
- Solution method
 - Fit data via K_{CM}-matrix parameters
 - Evaluate forward/fixed-t DR’s, evaluate subtraction constants and include deviations from average as pseudo-data
 - Adjust real part of invariant amplitudes (and K_{CM} pars.) to minimize χ^2

Fixed-t DR

\[
\begin{align*}
(\nu_B \pm \nu) \left\{ \mp \Re B_{\mp} (\nu, t) \right\} \\
\pm \frac{\nu}{\pi} \int_{\nu_{th}}^{\infty} \frac{d\nu'}{\nu'} \left[\frac{\Im B_+}{\nu' \mp \nu} + \frac{\Im B_-}{\nu' \pm \nu} \right] \\
= \frac{g^2}{M} + \tilde{B}(0, t)(\nu_B \pm \nu)
\end{align*}
\]

\[g = 13.69 \pm 0.07\] \[f = 0.0757 \pm 0.0004\]
Outline

1 Quantum chromodynamics
 - Quantum field theory
 - Gauge theory
2 Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure
3 Reaction theory
 - Experiments
 - Formalism
4 Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization
5 Modeling
 - Particles and fields
 - Dynamics
 - Results
6 Conclusion
Effective field theory

Local, relativistic fields + canonical commutation relations → correct analytics poss.

Hadronic interactions:
\(\pi, \eta, N, \Delta: \)

\[
L_{\pi NN} = -\frac{f_{\pi NN}}{m_\pi} \bar{\psi}_N \gamma_\mu \vec{\tau} \psi_N \cdot \partial^\mu \bar{\phi}_N,
\]
\[
L_{\pi NA} = -\frac{f_{\pi NA}}{m_\pi} \bar{\psi}_N \gamma_5 \hat{T} \psi_N \cdot \partial_\mu \bar{\phi}_N,
\]
\[
L_{\pi AA} = \frac{f_{\pi AA}}{m_\pi} \bar{\psi}_N \gamma_\mu \vec{\tau} \gamma_5 \hat{T} \bar{\psi}_N \cdot \partial_\nu \bar{\phi}_N,
\]
\[
L_{\eta NN} = -\frac{f_{\eta NN}}{m_\eta} \bar{\psi}_N \gamma_\mu \vec{\tau} \psi_N \gamma_5 \partial^\mu \bar{\phi}_N.
\]

\(\rho: \)

\[
L_{\rho NN} = g_{\rho NN} \bar{\psi}_N \left[\gamma_\mu - \frac{\kappa_\rho}{2m_N} \sigma_{\mu\nu} \partial^\nu \right] \vec{\rho}^\mu \cdot \vec{r} \bar{\psi}_N,
\]
\[
L_{\rho NA} = -i \frac{f_{\rho NA}}{m_\rho} \bar{\psi}_N \gamma^\mu \gamma_5 \vec{r} \cdot [\partial_\mu \rho_N - \partial_\mu \vec{r} \times \partial_\nu \psi_N] + [h.c.],
\]
\[
L_{\rho AA} = g_{\rho AA} \bar{\psi}_N \left[\gamma_\mu - \frac{\kappa_{\rho AA}}{2m_A} \sigma_{\mu\nu} \partial^\nu \right] \vec{r} \bar{\psi}_A,
\]
\[
L_{\rho NN} = g_{\rho NN} \bar{\psi}_N \partial_\mu \phi_\rho \partial^\mu \bar{\phi}_N \phi_\sigma.
\]

\(\omega: \)

\[
L_{\omega NN} = g_{\omega NN} \bar{\psi}_N \left[\gamma_\mu - \frac{\kappa_{\omega}}{2m_N} \sigma_{\mu\nu} \partial^\nu \right] \omega^\mu \psi_N,
\]
\[
L_{\omega pp} = -\frac{g_{\omega pp}}{m_\omega} \epsilon_{\mu\nu\lambda} \bar{\omega}^\mu \partial_\nu \phi_\rho \partial_\lambda \bar{\phi}_N \phi_\sigma.
\]

\(\sigma: \)

\[
L_{\sigma NN} = g_{\sigma NN} \bar{\psi}_N \psi_N \phi_\sigma,
\]
\[
L_{\sigma pp} = -\frac{g_{\sigma pp}}{m_\sigma} \partial^\mu \phi_\rho \partial_\mu \bar{\phi}_N \phi_\sigma.
\]
Outline

1. Quantum chromodynamics
 - Quantum field theory
 - Gauge theory

2. Resonance
 - Phenomena of resonance
 - Description of resonance
 - Resonance structure

3. Reaction theory
 - Experiments
 - Formalism

4. Amplitude parameterization
 - Complex energy plane
 - Analytic structure
 - SAID Parameterization

5. Modeling
 - Particles and fields
 - Dynamics
 - Results

6. Conclusion
Lagrangian density of preceding page → Hamiltonian density

\[H = \int d^3x \mathcal{H}(x) = H_0 + H_{\text{int}} \]
\[H_{\text{int}} = \sum_{M, B, B'} \Gamma_{MB, B'} + \sum_{M, M', M''} \Gamma_{MM', M''} \]

Dynamical Lippmann-Schwinger equation

\[T = V + TG_0 V \]
Hadronic π and ω production

$\pi N \rightarrow \pi N, \omega N$

Real part, isospin 1/2
Hadronic π and ω production

$\pi N \rightarrow \pi N, \omega N$

Imag part, isospin 1/2
Hadronic π and ω production

$\pi N \rightarrow \pi N, \omega N$

Real part, isospin 3/2
Hadronic π and ω production
$\pi N \rightarrow \pi N, \omega N$

Imag part, isospin 3/2
Photoproduction of π and ω production

$\gamma N \rightarrow \pi N, \omega N$

\[
\frac{d\sigma}{d\Omega} \gamma p \rightarrow \pi^0 p
\]
Photoproduction of π and ω production

$\gamma N \rightarrow \pi N, \omega N$

$\frac{d\sigma}{d\Omega} \frac{\gamma p}{\pi^+ n}$

M. Paris
Photoproduction of π and ω production

$\gamma N \rightarrow \pi N, \omega N$

$\Sigma(W) \gamma p \rightarrow \pi^0 p$
Photoproduction of π and ω production

$\gamma N \rightarrow \pi N, \omega N$

$\Sigma(W)\gamma p \rightarrow \pi^+ n$
Conclusion

- Non-perturbative QCD
 - Problem of mass in QCD requires detailed understanding of the hadronic spectrum
- Resonance
 - Signals onset of complex dynamics
- Scattering & reaction amplitudes
 - Comprehensive reaction theory required to make contact between theory and experiment
- Phenomenology
 - Provides an indispensable bridge between measured and calculated quantities
- Modeling
 - Necessarily challenging endeavor of \textit{ab initio} calculations guided by/informs phenomenology
Dedication

To the memory of our friend and colleague, Dick Arndt, GWU Research Professor and Virginia Tech Emeritus Professor, who passed Saturday, April 10, 2010.