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Nonlinear Richtmyer-Meshkov instability and the mixing transition induced by a Mach
1.45 shock and subsequent reshock at an interface between two ideal gases (sulfur hex-
afluoride and air) with high Atwood number are studied with second-moment analysis
using data from high-resolution compressible Navier-Stokes simulations. The analysis first
addresses the importance of two second-order moments: turbulent mass flux and density-
specific-volume covariance, together with their transport equations. These quantities play
an essential role in the development of Favre-averaged Reynolds stress and turbulent
kinetic energy in this variable-density flow. Then, grid sensitivities and the time evolution
of the turbulent quantities, which include the second moments, are investigated, followed
by a detailed study of the transport equations for the second moments, including the
Reynolds stress and the turbulent kinetic energy with well-resolved data before reshock.
After reshock, budgets of the same but large-scale turbulent quantities are studied with
the effects of the subfilter-scale stress taken into account. The budgets of these large-scale
quantities are shown to have an insignificant influence from the numerical regularization.
Finally, the effects of the subfilter-scale stress on the budgets of the large-scale turbulent
quantities with different degrees of filtering are also examined.
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I. INTRODUCTION

Richtmyer-Meshkov (RM) instability (RMI) [1,2] arises in many natural phenomena and engi-
neering applications when a shock wave traverses an interface separating two materials of different
densities [3]. RMI is used by astrophysicists to explain the cause of turbulent mixing during a
supernova explosion [4–6], and it is also taken into account in many stellar models [7]. In inertial
confinement fusion (ICF), it is a common belief that there exists mixing between the capsule
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material and fuel due to RMI, and this prohibits a useful yield obtained from a fusion reaction for
power generation [8–10]. RMI is also employed in some proposed combustion systems since it can
enhance the mixing of fuel and oxidizer in supersonic and hypersonic air-breathing engines [11,12].
RMI is similar to Rayleigh-Taylor (RT) instability (RTI), which appears when there is a gravitational
acceleration pointing in the opposite direction of the density gradient across an interface. In contrast
to RTI, RMI occurs because of impulsive acceleration and is unstable regardless of the direction
of the acceleration. Turbulent mixing induced from RMI and RTI with high density variations
at the interfaces falls into the category of variable-density turbulence [13], where the Atwood
number, which is defined as the difference in the fluid densities divided by their sum, is high.
Variable-density turbulent mixing can also be triggered by other types of instabilities at an interface,
such as Kelvin-Helmholtz (KH) instability (KHI), at a shear layer [13].

Direct numerical simulation (DNS) [14], which resolves all flow scales using a mesh with grid
spacing of at least an order of magnitude of the Kolmogorov scale, is a powerful tool for studying
turbulent flows, especially flows with a laminar to turbulent transition. However, its requirements of
computational resources is tremendous for high Reynolds number flows, and it is computationally
too expensive for many engineering applications, even on the largest supercomputers to date. As
a result, turbulence modeling approaches are commonly adopted to avoid resolving all spatial
and temporal scales in simulations of complex turbulent flows. Large-eddy simulation (LES) and
Reynolds-averaged Navier-Stokes (RANS) methodologies are two popular modeling strategies
[15,16]. LES consists of modeling of small scales that are assumed to be more universal and
self-similar, while the larger scales are resolved on the grid. On the other hand, the entire flow
structure is modeled based on statistical averaging in the RANS approach. In general, LES has
higher fidelity than RANS-based simulations for turbulent flows where unsteady large scales play
critical roles, since the large-scale features are resolved in LES. However, LES also has a larger
demand on computational resources due to constraints on grid spacing and time step size for
representing the motions of the scales captured. Often, the hybrid RANS-LES approach is chosen
as a compromise between computational cost and accuracy [17].

The Besnard-Harlow-Rauenzahn (BHR) family of models based on second-moment closure
represent a popular RANS-based approach for variable-density turbulence. The first version of the
BHR model was proposed by Besnard et al. [18], in which the unclosed Reynolds stress tensor in
the multispecies Favre-averaged (density-weighted-averaged) Navier-Stokes (FANS) equations is
closed with the aid of additional modeled transport equations. These include modeled equations of
decay rate of turbulent kinetic energy and other second-moment quantities, such as turbulent
mass flux and density-specific-volume covariance. These second moments play important roles in
variable-density turbulence; in particular, the turbulent mass flux directly affects the development
of Favre-averaged Reynolds stress. The modeling assumptions of the first BHR model were not
tested against different types of variable-density flows until the work by Banerjee et al. [19], where
simplifications of the original BHR model were also introduced. In their model (BHR k-S-a), the
Favre-averaged equations are closed with the turbulent kinetic energy transport equation instead of
the equation of the Reynolds stress tensor. The transport equation of the decay rate of turbulent
kinetic energy is also replaced with a more physically interpretable transport equation of turbulent
length scale. Their model was validated with experimental data, but the model coefficients are tuned
from flow to flow. Later, the BHR-2 model by Stalsberg-Zarling and Gore [20] was proposed.
BHR-2 readopts the modeled transport equation of density-specific-volume covariance instead of
an algebraic model in the BHR k-S-a model, which is only strictly valid for immiscible fluids. An
improved BHR-3 model with modeled transport equations of the Reynolds stress tensor and density-
specific-volume covariance was proposed by Schwarzkopf et al. [21] and was shown to be capable
of capturing the Reynolds normal stress anisotropy and density-specific-volume covariance well in
various variable-density flows, without varying model coefficients. The BHR-3 model was further
improved by Schwarzkopf et al. [22] with two length scales to capture the difference between the
transport and dissipation turbulent scales in RTI-induced turbulence. A two-point spectral closure
model [23,24] modified from the constant-density BHRZ model [25] for variable-density flows was
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analyzed for the buoyancy-driven variable-density homogeneous turbulence [26]. The model with
minimal augmentation was further assessed for the RTI turbulence [27]. In addition to the BHR
family of models, there are also similar models for turbulent mixing, such as the second-moment
model by Grégoire et al. [28] with a Boussinesq approximation, and the k-L-a model by Morgan
and Wickett [29] extended from the k-L model [30]. A literature review of different RANS-based
models for RMI and other types of variable-density turbulence is provided by Zhou [31].

Modeling based on the transport of second moments is more popular in the RANS-based
approach for variable-density flows, and most proposed LES models for the subfilter-scale (SFS) or
subgrid-scale (SGS) terms are based on first-order closures [32]. These include the eddy-viscosity
type SFS/SGS closure [33–35] and the stretched-vortex approach, such as [36,37]. There is still
a lack of research on the application of second moments for the closure of SFS/SGS terms in
LES. Besides, the role of SFS/SGS terms on the large-scale turbulent quantities, especially the
resolved turbulent kinetic energy in variable-density flows, is still unclear. In this paper, we have
performed high-resolution RMI simulations with reshock to provide high-fidelity data for analyzing
the physical mechanisms underlying the evolution of second moments. The setup of the numerical
experiment follows the highest Reynolds number three-dimensional (3D) case in our previous
paper [38]. Before reshock, the instability induced at the interface grows nonlinearly but does
not achieve the mixing transition. After reshock, the flow inside the mixing layer transitions and
remains turbulent with a wide span of scales until the end of the simulation. The 3D simulation
presented in this work is advanced to higher grid resolution compared to the cases in the previous
work, with the number of grid cells exceeding 4.5 billion. Grid sensitivity tests show that the second
moments required for closing the FANS equations are well grid-converged during the simulations.
We also examine the budgets of the second-moment transport equations before and after reshock.
The budgets analyzed after reshock are based on large-scale contributions to second moments under
the influence of the SFS stress. The budgets of the large-scale second moments are not affected by
the numerical regularization, and the effects of SFS stress in the evolution of large-scale second
moments are studied. Finally, we also analyze the large-scale second-moment budgets at different
filtering scales.

II. GOVERNING EQUATIONS

The conservative multicomponent Navier-Stokes equations are solved in this study:
∂ρYi

∂t
+ ∇ · (ρuYi ) = −∇ · Ji, (1)

∂ρu
∂t

+ ∇ · (ρuu + pδ) = ∇ · τ, (2)

∂E

∂t
+ ∇ · [(E + p)u] = ∇ · (τ · u − qc − qd ), (3)

where ρ, u = [u, v,w]T = [u1, u2, u3]T , p, and E are the density, velocity vector, pressure, and total
energy of the fluid mixture, respectively. Yi is the mass fraction of species i ∈ [1, 2, . . . , N], with N
the total number of species. Ji is diffusive mass flux for species i. τ, qc, and qd are the viscous stress
tensor, conductive heat flux, and interspecies diffusional enthalpy flux, respectively. δ is the identity
tensor. Since all Yi’s sum up to 1 by definition, the continuity equation for the mixture density can
be derived by summing up the continuity equations of all species given by Eq. (1) as

∂ρ

∂t
+ ∇ · (ρu) = 0. (4)

The mixture is assumed to be ideal and calorically perfect, with

E = ρ
(
e + 1

2 u · u
)
, (5)

p = (γ − 1)ρe, e = cvT, (6)
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where e and T are, respectively, specific internal energy and temperature of the mixture. γ and cv

are the ratio of specific heats and the specific heat at a constant volume of the mixture, respectively.
The multicomponent diffusive mass flux of species i is given by [39]

Ji = ρ
Mi

M2

N∑
j=1

MjD̃i j∇Xj, (7)

where Mi and Xi are, respectively, the molecular weight and the mole fraction of species i. M
is the molecular weight of the mixture, and D̃i j is the i jth element of the matrix of ordinary
multicomponent diffusion coefficients D̃. The mole fraction of species i is given by

Xi = M

Mi
Yi. (8)

The multicomponent diffusive mass flux is reduced to Fick’s law for a binary mixture:

Ji = −ρDi∇Yi, i = 1, 2, (9)

where D1 = D2 is the binary diffusion coefficient. Note that Fick’s law is sufficient in this work
since only a binary mixture is studied.

The viscous stress tensor τ for a Newtonian mixture is

τ = 2μS + (
μv − 2

3μ
)
δ(∇ · u), (10)

where μ and μv are the shear viscosity and bulk viscosity, respectively, of the mixture. S is the
strain-rate tensor given by

S = 1
2 [∇u + (∇u)T ]. (11)

The conductive flux and the interspecies diffusional enthalpy flux [40] are given by

qc = −κ∇T, (12)

qd =
N∑

i=1

hiJi, (13)

where κ is the thermal conductivity of the mixture. hi is the specific enthalpy of species i:

hi = cp,iT, (14)

where cp,i is the specific-heat capacity at constant pressure of species i.
The equations and mixing rules for the fluid properties γ , cv , cp,i, μ, μv , κ , and Di are given in

the Appendixes C and D.

III. NUMERICAL METHODS

Three-dimensional numerical experiments with adaptive mesh refinement (AMR) were con-
ducted with the Hydrodynamics Adaptive Mesh Refinement Simulator (HAMeRS) [41] supported
with the Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI) library
[42–46] from Lawrence Livermore National Laboratory (LLNL). The convective fluxes of the
governing equations are discretized with the explicit form of the sixth-order localized dissipation
weighted compact nonlinear scheme (WCNS) [47] for shock-capturing and stabilization of solu-
tions. The accuracy and robustness of the WCNS family for compressible multifluid flows have been
demonstrated in previous works [47–49]. Derivatives of diffusive and viscous fluxes are computed
with explicit sixth-order finite-difference schemes in nonconservative form. A third-order total
variation diminishing Runge-Kutta (RK-TVD) scheme [50] is employed for the time advancement
with a convective Courant-Friedrichs-Lewy (CFL) number of 0.5 and a diffusive CFL number of
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FIG. 1. Schematic diagram of the initial flow field and the computational domain.

0.25. The regions for adaptive mesh refinement are identified with a gradient sensor on the pressure
field and a wavelet sensor [51] on the density field to detect shock waves and mixing regions,
respectively. An additional sensor based on mass fractions is also used to assist the detection of
mixing regions.

IV. INITIAL CONDITIONS AND COMPUTATIONAL DOMAIN

The 3D case setup in our previous paper [38], with physical transport coefficients for the gases
considered, is chosen in this work. In this setup, the shock-induced mixing problem is simulated in a
numerical shock tube with a cross-sectional area of 2.5 cm × 2.5 cm. A planar shock wave of Mach
number Ma = 1.45 is initialized in a sulfur hexafluoride (SF6) region, with the Rankine-Hugoniot
jump conditions to interact with a diffuse interface between SF6 and air. A multimode perturbation
expressed in the following equation is imposed on the interface:

S(y, z) = A
∑

m

cos

(
2πm

Lyz
y + φm

)
cos

(
2πm

Lyz
z + ψm

)
, (15)

where Lyz = 2.5 cm. The perturbation has 11 modes with wave number m between 20 and 30 in each
transverse direction. Constant amplitude A = √

2 × 0.01 mm is used for each mode, and random
phase shifts φm and ψm between 0 and 2π are introduced to each mode to prevent summing up of
harmonic modes. φm and ψm of each mode are given in the Supplemental Material [52].

The computational domain and initial conditions are shown in Fig. 1. Boundaries are periodic in
the transverse directions, and reflective boundary conditions are applied at the end wall. The length
of the domain is chosen to be large enough such that no waves leave the open-sided boundary during
the simulations. The preshocked gases are stationary initially and have temperature T = 298 K and
pressure p = 101 325 Pa. Table I shows the initial conditions of gases in different portions of the
domain. The initial Atwood number At = (ρSF6 − ρair )/(ρSF6 + ρair ) across the interface is 0.68.

All simulations start at t = −0.05 ms, and the shock wave is initially positioned at a location such
that the shock-interface interaction first happens at t = 0. Since the simulations are initiated in the
heavy-light gas setting, the shock wave is transmitted to the light-fluid side and a rarefaction wave is
reflected back to the heavy-fluid side. After hitting the wall, the transmitted shock is reflected back
toward the interface when it hits the end wall, and this causes the reshock of the interface. Since the
shock arrives at the interface from the light-fluid side this time, a transmitted shock and a reflected
shock are generated. The reflected shock leads to a second reshock. The end time of the simulations
is chosen at t = 1.75 ms, when the second reshock is just about to happen, as the grid resolution
requirements become too large to accurately capture this flow stage. Figure 2 shows the space-time
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TABLE I. Initial conditions of the postshock state and the preshock states of the light- and heavy-gas sides.

Quantity Postshock SF6 Preshock SF6 Air

ρ (kg m−3) 11.97082 5.972866 1.145601
p (Pa) 218005.4 101325.0 101325.0
T (K) 319.9084 298.0 298.0
u (m s−1) 98.93441 0 0

(x-t) diagram for different features in a one-dimensional (1D) flow representation. This problem was
studied in the previous work [38] with both two-dimensional (2D) and 3D simulations. In this work,
results from a higher-resolution 3D AMR simulation are studied for the second-moment analysis of
the shock-induced variable-density instability and turbulence.

V. TRANSPORT EQUATIONS OF THE SECOND MOMENTS

To get a statistical view of a chaotic or turbulent field, it is a common practice to ensemble
average the governing equations. The conserved variables are decomposed into ensemble means and
fluctuations through Reynolds decomposition. The Reynolds decomposition of an arbitrary variable,
f , rewrites the variable as

f = f̄ + f ′, (16)

where f̄ and f ′ are the mean and fluctuation of f , respectively. If the flow has homogeneous
directions and the widths of the domain in the homogeneous directions are sufficiently larger than
the length scales of turbulent features, one can estimate the ensemble mean with the mean over all

FIG. 2. x-t diagram showing the propagation of material interface, shock waves, and rarefaction. Red
dashed line: material interface; black lines: shock waves; gray region: rarefaction. The blue dotted line indicates
the end time of the simulations.
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homogeneous directions. For variable-density flows, after averaging the conserved variables of the
governing equations, it is natural to see the Favre-averaged (density-weighted-averaged) quantities.
The Favre decomposition is given by

f = f̃ + f ′′, (17)

where f̃ = ρ f /ρ̄. The Reynolds and Favre averages of the velocity are related with

ũi = ūi + ai, (18)

where ai = ρ ′u′
i/ρ̄ is the velocity associated with the turbulent mass flux ρ̄ai. The fluctuation, u′

i,
and the Favre fluctuation, u′′

i , have a similar relation to the averages:

u′′
i = u′

i − ai. (19)

If we apply averaging on the continuity equation and the conservative transport equation of
momentum given by Eqs. (4) and (2), respectively, we obtain

∂ρ̄

∂t
+ ∂ (ρ̄ũk )

∂xk
= 0, (20)

∂ (ρ̄ũi )

∂t
+ ∂ (ρ̄ũk ũi )

∂xk
= −∂ ( p̄δki )

∂xk
+ ∂τ̄ki

∂xk
− ∂ (ρ̄R̃ki )

∂xk
, (21)

where R̃i j is the Favre-averaged Reynolds stress tensor given by

R̃i j = ρu′′
i u′′

j

ρ̄
. (22)

The Favre-averaged Reynolds stress tensor appears as an unclosed term in the Favre-averaged
transport equation of momentum. The development of the Favre-averaged Reynolds stress can be
studied through its transport equations given by Besnard et al. [18]:

∂ρ̄R̃i j

∂t︸ ︷︷ ︸
term (I)

+∂ (ρ̄ũkR̃i j )

∂xk︸ ︷︷ ︸
term (II)

= ai

(
∂ p̄

∂x j
− ∂τ̄ jk

∂xk

)
+ a j

(
∂ p̄

∂xi
− ∂τ̄ik

∂xk

)
− ρ̄R̃ik

∂ ũ j

∂xk
− ρ̄R̃ jk

∂ ũi

∂xk︸ ︷︷ ︸
term (III)

−∂ (ρu′′
i u′′

j u
′′
k )

∂xk
− ∂ (u′

i p
′)

∂x j
− ∂ (u′

j p′)

∂xi
+ ∂ (u′

iτ
′
jk )

∂xk
+ ∂ (u′

jτ
′
ik )

∂xk︸ ︷︷ ︸
term (IV)

+p′ ∂u′
i

∂x j
+ p′ ∂u′

j

∂xi︸ ︷︷ ︸
term (V)

−τ ′
jk

∂u′
i

∂xk
− τ ′

ik

∂u′
j

∂xk︸ ︷︷ ︸
term (VI)

, (23)

where the left-hand side consists of the rate of change [term (I)] and convection [term (II)]. The
right-hand side consists of production [term (III)], turbulent transport [term (IV)], pressure-strain
redistribution [term (V)], and dissipation [term (VI)].

In the paper by Schwarzkopf et al. [21], Favre decomposition is used for the viscous stress in the
Favre-averaged Reynolds stress transport equation instead of Reynolds decomposition. However,
we follow the original work by Besnard et al. [18] to use Reynolds decomposition for the viscous
stress as we believe Favre decomposition should only be applied in the advective or convective
terms. The Reynolds decomposition of the viscous stress was also employed in the DNS analysis of
Livescu et al. [53], which was later used to refine the model by Schwarzkopf et al. [22]. Besides,
the dissipation term with Reynolds decomposition on viscous stress in the turbulent kinetic energy
transport equation can be proved to be strictly negative if both shear and bulk viscosities are uniform
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in the domain, while that with Favre decomposition on viscous stress cannot be proved to be strictly
negative. Also, note that with the relation given by Eq. (19),

∂ (u′
i p

′)
∂x j

= ∂ (u′′
i p′)

∂x j
, (24)

∂ (u′
iτ

′
jk )

∂xk
= ∂ (u′′

i τ
′
jk )

∂xk
, (25)

p′ ∂u′
i

∂x j
= p′ ∂u′′

i

∂x j
, (26)

τ ′
jk

∂u′
i

∂xk
= τ ′

jk

∂u′′
i

∂xk
. (27)

The relations above are commonly used to interchange terms in the transport equations of R̃i j

and k in many previous studies.
In flows where the mean is 1D, such as the numerical experiment being studied in this work

(where the y and z directions are homogeneous), the transport equation of R̃11 can be simplified to

∂ρ̄R̃11

∂t︸ ︷︷ ︸
term (I)

+∂ (ρ̄ũR̃11)

∂x︸ ︷︷ ︸
term (II)

= 2a1

(
∂ p̄

∂x
− ∂τ̄11

∂x

)
− 2ρ̄R̃11

∂ ũ

∂x︸ ︷︷ ︸
term (III)

−∂ (ρu′′u′′u′′)
∂x

− 2
∂ (u′ p′)

∂x
+ 2

∂ (u′τ ′
11)

∂x︸ ︷︷ ︸
term (IV)

+2p′ ∂u′

∂x︸ ︷︷ ︸
term (V)

−2

(
τ ′

11

∂u′

∂x
+ τ ′

12

∂u′

∂y
+ τ ′

13

∂u′

∂z

)
︸ ︷︷ ︸

term (VI)

. (28)

The transport equation of R̃22 for 1D mean flow can be reduced to

∂ρ̄R̃22

∂t︸ ︷︷ ︸
term (I)

+∂ (ρ̄ũR̃22)

∂x︸ ︷︷ ︸
term (II)

= −∂ (ρv′′v′′u′′)
∂x

+ 2
∂ (v′τ ′

21)

∂x︸ ︷︷ ︸
term (IV)

+2p′ ∂v′

∂y︸ ︷︷ ︸
term (V)

−2

(
τ ′

21

∂v′

∂x
+ τ ′

22

∂v′

∂y
+ τ ′

23

∂v′

∂z

)
︸ ︷︷ ︸

term (VI)

.

(29)
Note that there is no production term [term (III)] in the transport equation of R̃22. The transport

equation of R̃33 is similar. In the present flow, the Reynolds shear stress components, R̃12, R̃13, and
R̃23, are statistically zero due to the homogeneity of the problem in the transverse directions.

The transport equation of the turbulent kinetic energy per unit mass, k = R̃ii/2, can be simply
obtained by taking half of the trace of the Reynolds stress tensor transport equation. For 1D mean
flow, it has the following form:

∂ρ̄k

∂t︸︷︷︸
term (I)

+∂ (ρ̄ũk)

∂x︸ ︷︷ ︸
term (II)

= a1

(
∂ p̄

∂x
− ∂τ̄11

∂x

)
− ρ̄R̃11

∂ ũ

∂x︸ ︷︷ ︸
term (III)

−1

2

∂ (ρu′′
i u′′

i u′′)
∂x

− ∂ (u′ p′)
∂x

+ ∂ (u′
iτ

′
i1)

∂x︸ ︷︷ ︸
term (IV)

+p′ ∂u′
i

∂xi︸ ︷︷ ︸
term (V)

−τ ′
i j

∂u′
i

∂x j︸ ︷︷ ︸
term (VI)

, (30)

where the LHS consists of the rate of change [term (I)] and convection [term (II)]. The RHS consists
of production [term (III)], turbulent transport [term (IV)], the pressure-dilatation [term (V)], and
dissipation [term (VI)]. Note that the production term represents the energy transfer rate between
the mean kinetic energy and the turbulent kinetic energy, and it can have a negative sign.
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The velocity associated with the turbulent mass flux, ai, in the mean flow pressure gradient
terms only appears in variable-density or/and compressible flows. It is an important term for
understanding the energetics in these kinds of flows, as the mean pressure gradient multiplied by it
is the agent for the transfer of mean kinetic energy into turbulent kinetic energy. Correct modeling of
ai can also help us close the Reynolds stress transport equations. The transport equation of turbulent
mass flux ρ̄ai is given by [18]

∂ (ρ̄ai )

∂t︸ ︷︷ ︸
term (I)

+∂ (ρ̄ũkai )

∂xk︸ ︷︷ ︸
term (II)

= b

(
∂ p̄

∂xi
− ∂τ̄ki

∂xk

)
− R̃ik

∂ρ̄

∂xk︸ ︷︷ ︸
term (III)

+ρ̄
∂ (akai )

∂xk
− ρ̄ak

∂ ūi

∂xk︸ ︷︷ ︸
term (IV)

−ρ̄
∂ (ρ ′u′

iu
′
k/ρ̄ )

∂xk︸ ︷︷ ︸
term (V)

+ρ̄

(
1

ρ

)′(
∂ p′

∂xi
− ∂τ ′

ik

∂xk

)
+ ρ̄εai︸ ︷︷ ︸

term (VI)

, (31)

where the LHS consists of the rate of change [term (I)] and convection [term (II)]. The RHS contains
production [term (III)], redistribution [term (IV)], the turbulent transport [term (V)], and destruction
[term (VI)]. Also,

εai = −u′
i

∂u′
k

∂xk
. (32)

Note that εai is ignored in the work by Besnard et al. [18] and in many turbulence models. However,
εai was shown to be non-negligible at early times in the evolution of constant acceleration RTI [53].
Here, it is also found that εai is significant in the budgets at different times before reshock for the
flow being studied in this work.

For 1D mean flow, the transport equation of ρ̄a1 can be simplified to

∂ (ρ̄a1)

∂t︸ ︷︷ ︸
term (I)

+∂ (ρ̄ũa1)

∂x︸ ︷︷ ︸
term (II)

= b

(
∂ p̄

∂x
− ∂τ̄11

∂x

)
− R̃11

∂ρ̄

∂x︸ ︷︷ ︸
term (III)

+ρ̄
∂ (a1a1)

∂x
− ρ̄a1

∂ ū

∂x︸ ︷︷ ︸
term (IV)

−ρ̄
∂ (ρ ′u′u′/ρ̄ )

∂x︸ ︷︷ ︸
term (V)

+ρ̄

(
1

ρ

)′(
∂ p′

∂x
− ∂τ ′

11

∂x
− ∂τ ′

12

∂y
− ∂τ ′

13

∂z

)
+ ρ̄εa1︸ ︷︷ ︸

term (VI)

. (33)

Note that a2 and a3 for 1D mean flow are statistically equal to zero. The density-specific-volume
covariance, b = −ρ ′(1/ρ)′, mediates the turbulent mass flux production mechanism. The compo-
nent of the production term, bp̄,1, is crucial to the prediction of the rate of change of turbulent mass
flux and requires the modeling of b.

The transport equation of b was first derived by Besnard et al. [18] in the following advection
form with the Reynolds-averaged velocity:

∂b

∂t
+ ūkb,k = −b + 1

ρ̄
(ρ̄ak ),k − ρ̄

((
1

ρ

)′
u′

k

)
,k

− 2ρ̄εb, (34)

where

εb =
(

1

ρ

)′
∂u′

k

∂xk
. (35)
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TABLE II. Different grids used for the grid sensitivity study. Three levels of grids with 1:8 overall
refinement ratio are used in all cases.

Grid Base grid resolution Refinement ratios Finest grid spacing (μm)

B 640 × 32 × 32 1:2, 1:4 97.7
C 1280 × 64 × 64 1:2, 1:4 48.8
D 2560 × 128 × 128 1:2, 1:4 24.4
E 5120 × 256 × 256 1:2, 1:4 12.2

In Ref. [21], the transport equation of ρ̄b in the conservative form is derived from Eq. (34) with
the averaged mixture continuity equation [Eq. (4)] as

∂ρ̄b

∂t︸︷︷︸
term (I)

+∂ (ρ̄ũkb)

∂xk︸ ︷︷ ︸
term (II)

= −2(b + 1)ak
∂ρ̄

∂xk︸ ︷︷ ︸
term (III)

+2ρ̄ak
∂b

∂xk︸ ︷︷ ︸
term (IV)

+ρ̄2 ∂ (ρ ′(1/ρ)′u′
k/ρ̄ )

∂xk︸ ︷︷ ︸
term (V)

+2ρ̄2εb︸ ︷︷ ︸
term (VI)

, (36)

where the left-hand side consists of the rate of change [term (I)] and convection [term (II)]. The
right-hand side consists of production [term (III)], redistribution [term (IV)], turbulent transport
[term (V)], and destruction [term (VI)]. For 1D mean flow, the transport equation of ρ̄b can be
simplified to

∂ (ρ̄b)

∂t︸ ︷︷ ︸
term (I)

+∂ (ρ̄ũb)

∂x︸ ︷︷ ︸
term (II)

= −2(b + 1)a1
∂ρ̄

∂x︸ ︷︷ ︸
term (III)

+2ρ̄a1
∂b

∂x︸ ︷︷ ︸
term (IV)

+ρ̄2 ∂ (ρ ′(1/ρ)′u′/ρ̄ )

∂x︸ ︷︷ ︸
term (V)

+2ρ̄2εb︸ ︷︷ ︸
term (VI)

. (37)

The transport equation of ρ̄b in conservative form shown above instead of that in advection form
is studied in this work. Advection form of the b transport equation was considered in the DNS
analysis of Livescu et al. [53].

VI. GRID SENSITIVITY ANALYSIS

In this section, the quality of the simulations is studied through a grid sensitivity analysis. Table II
shows the grid settings used for the problem. There are a total of three levels of grids with two
levels of mesh refinement in all grid settings. The refinement ratios in each direction from the base
level to the second level and from the second level to the finest level are 1:2 and 1:4, respectively.
Four different grid settings are tested, with the number of grid points in the transverse directions
increasing from 32 points (grid B) to 256 points (grid E) on the base level. The finest level for the
largest mesh resolution case has a grid spacing of 12.2 μm. With this grid spacing, there are around
68 grid points across the smallest wavelength among the initial modes. The 3D simulations with
grids B–D were first presented in [38], but the new simulation using the grid E settings presented
here is a higher grid resolution compared to those runs and provides more accurate statistical results.
This ultrahigh resolution simulation has cell counts surpassing 4.5 billion, as shown in Appendix B.
Figure 3 presents visualizations of the mixing layer at different times with grid E.

The grid sensitivities of the integral mixing width W and the domain-integrated quantities of
interest (ρ̄a1, ρ̄b, ρ̄R̃11, ρ̄R̃22, ρ̄R̃33, and ρ̄k) in the transport equations of second moment quantities
are examined in this section. The mixing width is defined as

W =
∫

4X̄SF6 (1 − X̄SF6 )dx. (38)

The mixing width estimates the characteristic length of the mixing layer due to the entrainment of
the fluids. Note that since ρ̄R̃22 and ρ̄R̃33 are statistically identical, the grid sensitivity of ρ̄(R̃22 +
R̃33)/2 is studied instead.
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FIG. 3. Isovolumes of the SF6 mole fraction, XSF6 , at different times in the numerical shock tube with grid
E. The colorbar indicates the value of XSF6 . The first and second (last) refinement levels of the AMR grid are
shown on the side walls of the domain for the plot at t = 1.40 ms.

Figure 4 compares the time evolution of the statistical quantities computed on different grids.
From the figure, it can be seen that mixing width, integrals of ρ̄a1, ρ̄b, and ρ̄R̃11 are well grid-
converged for the entire simulation with the highest resolution grid. The grid sensitivity of the
integral of ρ̄(R̃22 + R̃33)/2 is higher than other quantities before reshock, but its contribution to the
integral of turbulent kinetic energy, ρ̄k, is an order of magnitude smaller than that of ρ̄R̃11. Thus,
the integral of ρ̄k is also grid-converged reasonably well at all times. The grid sensitivities of the
spatial profiles of these second moments including the turbulent kinetic energy at different times are
also observed to be small between the grid D and the grid E, which are shown in Appendix A.

As the statistical quantities of interest computed on the finest resolution grid (grid E) show very
small grid sensitivity throughout the simulation when compared with those from the next finest
resolution grid (grid D), only results from grid E are presented and discussed in the remaining
sections.
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FIG. 4. Grid sensitivities of mixing width and second moment statistics. Cyan solid line: grid B; red dashed
line: grid C; green dash-dotted line: grid D; blue dotted line: grid E.

VII. ANALYSIS OF THE SECOND MOMENTS

The importance of the second moments—ρ̄a1, ρ̄b, ρ̄R̃11, ρ̄R̃22, and ρ̄R̃33—to close the Favre-
averaged momentum equation for the mixture is discussed earlier. In this section, the time evolution
of the spatial profiles of different second moments including the Favre-averaged Reynolds stress
and the turbulent kinetic energy is studied in detail, with an examination on their asymmetry due to
the variable-density or non-Boussinesq effects.

At each impulsive acceleration such as at first shock and reshock, the advection velocity of the
mixing layer changes abruptly. However, the advection speed of the mixing layer between impulsive
accelerations is essentially constant in time and is close to that given by the solutions of the 1D
flow representation, Ui. Besides, the mean velocity across the mixing layer is observed to be quite
uniform. Therefore, in a moving reference frame with speed Ui relative to the simulation reference
frame, ū ≈ 0 and ũ ≈ a1 statistically. All of the 1D spatial profiles of the second moments discussed
in this section are plotted in the moving frame of the mixing layer with the x̃ coordinate system. In
other words, the x coordinate is shifted as

x̃(x, t ) = x − xi(t ), (39)

where xi is the location of the interface from the solutions of the 1D flow representation.

A. Mean density and turbulent mass flux

The mean density profiles at different times in the moving frame of the mixing layer are shown
in Fig. 5. The density profiles are asymmetric where the spikes penetrate into the lighter fluid more
than the bubbles into the heavier fluid due to variable-density effects that are also observed in RTI
[53,54]. The density profiles become wider over time after first shock and reshock due to the mixing
caused by the RMI. While not shown here, the density profiles collapse reasonably well at late times
after both first shock and reshock when they are normalized with the mixing width W , similar to
RTI [53]. A similar collapse for the mole fraction profiles was also reported in our previous RMI
work [38].
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FIG. 5. Profiles of the mean density, ρ̄, at different times. Cyan solid line in (a): t = 0.05 ms; red dashed
line in (a): t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan
solid line in (b): t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms;
blue dotted line in (b): t = 1.75 ms.

Figure 6 compares the profiles of ρ̄a1 at different times before and after reshock. The study of
turbulent mass flux, ρ̄a1, and the velocity associated with turbulent mass flux, a1, is very important
for understanding variable-density effects in the current problem and modeling similar types of
flows. The turbulent mass flux determines the growth of the Favre-averaged Reynolds stress and
turbulent kinetic energy in variable-density flows and is studied in previous works on RMI [55–57],
RTI [53,54,58], and buoyancy-driven variable-density turbulence [59]. From the figure, it can be
seen that there is a sudden rise in ρ̄a1, followed by its decay after each shock event. The jump in
the magnitude of ρ̄a1 is caused by the large amount of energy injected at the mixing layer at each
impulsive acceleration. The profiles of ρ̄a1 are asymmetric and have longer tails on the light fluid
side. It can also be noticed that at late times after first shock and reshock, ρ̄a1 peaks at a position
slightly toward the heavier fluid side (slightly negative x̃). This suggests that there is a fixed point
at the same location in the mean density profiles at late times, which can be deduced from Eq. (20).

FIG. 6. Profiles of the turbulent mass flux component in the streamwise direction, ρ̄a1, at different times.
Cyan solid line in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms; green dash-dotted line in (a): t =
0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in (b):
t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.
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FIG. 7. Profiles of the density-specific-volume covariance, b, at different times. Cyan solid line in (a):
t = 0.05 ms; red dashed line in (a): t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line
in (a): t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted
line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.

The fixed point can be seen and verified from the mean density profiles shown in Fig. 5. A fixed
point in mean density profiles was also observed in RTI [53].

B. Density-specific-volume covariance

The density-specific-volume covariance b mediates the turbulent mass flux production mecha-
nism. It can also be viewed as a metric for the homogeneity of mixing. b is a non-negative quantity,
and b = 0 corresponds to fluids that are homogeneously mixed. On the contrary, a high value of b
indicates inhomogeneous mixing of the fluids. This statistical quantity was extensively studied in
many previous investigations on RMI [56,60–66] and also RTI [53]. Figure 7 displays the profiles of
b at different times before and after reshock. The shapes of b have a single peak and are asymmetric
at different times due to the variable-density or non-Boussinesq effects. The shapes have longer tails
on the lighter fluid side at all times. Before reshock, the peak appears to be on the lighter fluid side
at late times, but the peak shifts to the heavier fluid side after reshock. It can be seen that the peak of
b at late times after first shock and reshock remains quite stationary. This slow rate of change in the
magnitude of b at late times was also observed in the RMI experiments by Balasubramanian et al.
[60] and Tomkins et al. [62] after incident shock and reshock, respectively, and RMI simulations by
Tritschler et al. [64] after reshock. Similar late-time behavior was also seen in the RTI simulations
by Livescu et al. [53].

b can also be expressed as a sum of a series of density probability density function (PDF)
moments [67]:

b = ρ ′2

ρ̄2

[
1 − iρ

ρ ′3

(ρ ′2)3/2
+ i2

ρ

ρ ′4

(ρ ′2)2
− i3

ρ

ρ ′5

(ρ ′2)5/2
+ · · ·

]
, (40)

where iρ = (ρ ′2)1/2/ρ̄. If iρ is very small, the equation reduces to the Boussinesq relation:

b ≈ ρ ′2

ρ̄2
. (41)

The ratio of the left-hand side (density-specific-volume covariance) and the right-hand side (square
of density intensity) of Eq. (41) can be used to test the Boussinesq approximation, where the
corresponding component in turbulent mass flux production can be approximated with density
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FIG. 8. Profiles of the ratio of the density-specific-volume covariance to the square of density intensity at
different times. Cyan solid line in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms; green dash-dotted line
in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in
(b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.

variance instead of b. The Boussinesq approximation is valid when the ratio is close to 1. Figure 8
shows the variations in the ratio across the mixing region at different times. It can be seen that
the ratio varies from 0.5 to 2.5. The ratio is, in general, larger than 1 on the heavier fluid side and
smaller than 1 on the lighter fluid side, because of the skewness of the density field. The peaks are
located at the edges of the mixing layers, which indicates that variable-density effects are larger at
the edges than at the central part of the mixing layer. The same behavior is also observed in the
spherical RMI simulations by Lombardini et al. [65] with essentially the same Atwood number and
the planar RTI simulations by Livescu et al. [53] with slightly smaller Atwood number (At = 0.5).
As a result, Boussinesq equations would lead to an underestimation of the energy conversion rate on
the heavier fluid side and an overestimation on the lighter fluid side for high Atwood number flows.
A grid sensitivity analysis of the profiles of the ratio at different times is given in the Supplemental
Material [52]. The analysis shows that the differences of the profiles between the grid D and the
grid E at different times are minor.

C. Favre-averaged Reynolds stress and turbulent kinetic energy

The Favre-averaged Reynolds stress tensor, R̃i j , appears as an unclosed term in the averaged
transport equation of momentum given by Eq. (21). Figures 9 and 10, respectively, show the profiles
of Favre-averaged Reynolds normal stress components in the streamwise and transverse directions
at different times. Immediately after first shock, there is generation of the Favre-averaged Reynolds
normal stress in the mixing region. However, the Favre-averaged Reynolds normal stress component
in the streamwise direction is much larger than those in the transverse directions at that instance.
As time advances, the ratios of the component in the streamwise direction to those in the transverse
directions decrease, but the Reynolds normal stress fields are still very anisotropic at the moment
just before reshock. The streamwise Favre-averaged Reynolds normal stress component peaks at
the lighter fluid side because of smaller inertia to entrain the fluid from nonlinear convection. After
re-shock, the Favre-averaged Reynolds normal stress fields become more isotropic, but there is
still more contribution to the turbulent kinetic energy from the streamwise Reynolds normal stress
component until the end of simulation. The comparison of different Favre-averaged Reynolds stress
components is shown in Fig. 11. All Reynolds shear stress components should be statistically zero,
but Fig. 11 shows that the Reynolds shear stress components are not absolutely zero. This is due to
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FIG. 9. Profiles of the Reynolds normal stress component in the streamwise direction multiplied by the
mean density, ρ̄R̃11, at different times. Cyan solid line in (a): t = 0.05 ms; red dashed line in (a): t = 0.40 ms;
green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in (b): t =
1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted line in (b):
t = 1.75 ms.

some lack of full statistical convergence, but the values are all negligible compared to the Reynolds
normal stress components.

The Favre-averaged Reynolds stress R̃i j can be decomposed as

R̃i j = ρu′
iu

′
j

ρ̄
− aia j = u′

iu
′
j︸︷︷︸

term (I)

+ ρ ′u′
iu

′
j

ρ̄︸ ︷︷ ︸
term (II)

− aia j︸︷︷︸
term (III)

,

where term (I), u′
iu

′
j , is the definition of the Reynolds stress tensor for single-species incompressible

flows. This decomposition is commonly found in previous papers on RMI, such as [55,66,68].
Figure 12 compares the contributions of different terms to R̃11 at different times. We can see from the

FIG. 10. Profiles of the Reynolds normal stress component in the transverse directions multiplied by the
mean density, ρ̄(R̃11 + R̃22)/2, at different times. Cyan solid line in (a): t = 0.05 ms; red dashed line in (a):
t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a): t = 1.10 ms. Cyan solid line in
(b): t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b): t = 1.60 ms; blue dotted
line in (b): t = 1.75 ms.
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FIG. 11. Comparison of the Reynolds stress components multiplied by the mean density at different
times. Cyan solid line: R̃11; red dashed line: (R̃22 + R̃33)/2; green dash-dotted line: (R̃12 + R̃13)/2; blue dotted
line: R̃23.

plots that, although the profile of R̃11 is very similar to u′u′ [term (I)], the contributions of the other
two terms, especially ρ ′u′u′/ρ̄ [term (II)], are not negligible. Term (II) is around 20–40 % of term (I)
within the mixing region at late times after first shock and different times after reshock. −a2

1 [term
(III)] is around one order of magnitude smaller than term (I). This is different from the observations
in [55,66], where terms (II) and (III) are at least 100 and 1000 times smaller, respectively, than term
(I). Figure 13 shows the discrepancies between R̃11 and the two different approximations: (i) u′u′ and
(ii) ρu′u′/ρ̄ = u′u′ + ρ ′u′u′/ρ̄, through the ratios of R̃11 to the approximations. It can be seen that
R̃11 cannot be well represented by u′u′ alone, as the ratio can vary from 0.6 to 2.2. This is associated
with the strong variable-density effects of the flow. If ρ ′u′u′/ρ̄ is included to approximate R̃11, there
is a huge improvement in the approximation, as the ratio now only varies from 0.85 to 1. Although
this suggests that a1 has a small contribution to the decomposition of R̃11, this does not mean that a1

has an insignificant effect on the time evolution of R̃11. Thus, it is shown in the next few sections that
a1 plays an important role in the transport equation of R̃11 through the component of the production
term, 2a1 p̄,1. A grid sensitivity analysis of the spatial profiles of different contributions to R̃11 is also

FIG. 12. Decomposition of the Reynolds normal stress component in the streamwise direction multiplied
by the mean density, ρ̄R̃11, at different times. Cyan solid line: R̃11; red dashed line: u′u′ [term (I)]; green
dash-dotted line: ρ ′u′u′/ρ̄ [term (II)]; blue dotted line: −a2

1 [term (III)].
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FIG. 13. Ratios of the Reynolds normal stress component in the streamwise direction multiplied by the
mean density, ρ̄R̃11, to different approximations at different times. Cyan solid line: t = 0.40 ms; red dashed
line: t = 1.10 ms; green dash-dotted line: t = 1.20 ms; blue dotted line: t = 1.75 ms.

provided in the Supplemental Material [52]. The profiles only show small grid sensitivities between
the grid D and the grid E, and the discussion above is not much affected by the grid sensitivities.

Figure 14 shows the profiles of the turbulent kinetic energy at different times. Before reshock,
the profiles look similar to those of ρ̄R̃11 as most of the turbulent kinetic energy is contributed by
the Reynolds normal stress component in the streamwise direction. At reshock, the turbulent kinetic
energy is amplified by three orders of magnitude. However, it decays rapidly due to large viscous
dissipation over time.

VIII. BUDGETS OF THE SECOND MOMENTS BEFORE RESHOCK

In this section, the budgets of second moments—ρ̄a1, ρ̄b, and ρ̄R̃11—together with ρ̄k across
the mixing layer before reshock are studied. All budgets are computed with the results from the
highest resolution (grid E) simulation, for which the flow fields are well-resolved. A grid sensitivity
analysis of the budgets is also given in the Supplemental Material [52]. The budgets are studied in
the x̃ coordinate system, equivalent to studying the budgets in the moving reference frame of the

FIG. 14. Profiles of the turbulent kinetic energy, ρ̄k, at different times. Cyan solid line in (a): t = 0.05 ms;
red dashed line in (a): t = 0.40 ms; green dash-dotted line in (a): t = 0.75 ms; blue dotted line in (a): t =
1.10 ms. Cyan solid line in (b): t = 1.20 ms; red dashed line in (b): t = 1.40 ms; green dash-dotted line in (b):
t = 1.60 ms; blue dotted line in (b): t = 1.75 ms.
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FIG. 15. Budgets of the turbulent mass flux component in the streamwise direction, ρ̄a1, given by Eq. (33),
at different times before reshock. Cyan solid line: production [term (III)]; red dashed line: redistribution [term
(IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line: destruction [term (VI)];
orange dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent
mass flux; magenta dotted line: residue; thin black solid line: summation of all terms (rate of change in the
moving frame).

mixing layer. The convective terms in all of the transport equations of second moments for 1D mean
flow have the common form of [ρ̄ũ(·)],1, where (·) represents any of the second moments (a1, b, or
Ri j). Using Eq. (18), the convective terms can be rewritten as

∂ρ̄ũ(·)
∂x

= ∂ρ̄ū(·)
∂x︸ ︷︷ ︸

term (I)

+ ∂ρ̄a1(·)
∂x︸ ︷︷ ︸

term (II)

, (42)

where term (I) is the convection due to mean velocity, and term (II) is the convection due to velocity
associated with turbulent mass flux. In the moving reference frame of the mixing layer, it is observed
that ū is quite uniformly close to zero compared to a1. Hence term (I) can be ignored. The convective
term in this section is assumed to be fully represented by [ρ̄a1(·)],1.

A. Turbulent mass flux

Figure 15 shows the spatial profiles of different terms on the right-hand side of the transport
equation of the streamwise component of turbulent mass flux, ρ̄a1, given by Eq. (33) at different
times before reshock across the mixing layer. The negative of the convective term of the same
equation due to a1 is also shown in the figure. The rate of change term on the left-hand side of the
transport equation is computed by restarting the simulation at different checkpoints. In each plot,
the magenta dotted line shows the profile of the residue, which is defined as the subtraction of the
net right-hand-side term from the net left-hand-side term in the simulation frame. Therefore, the
residue represents the numerical effect or the SGS effect on the rate of change of the conserved
variable, i.e., ρ̄a1 here. From both Figs. 15(a) and 15(b), it can be seen that the residue is virtually
zero across the mixing layer at different times before reshock. Note that the thin black solid line in
each plot is the sum of all of the right-hand-side terms including the residue and the negative of the
convection term due to a1, thus it represents the rate of change of ρ̄a1 in the moving frame of the
mixing layer.

From Fig. 15, we can see that production [term (III)], destruction [term (VI)], and turbulent
transport [term (V)] terms play important roles in the budget equation at the chosen times before
reshock: t = 0.40 and 1.10 ms. At the two chosen times, the instability is in the nonlinear growth
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FIG. 16. Compositions of the production term [term (III)] in the transport equation for the turbulent mass
flux component in the streamwise direction, ρ̄a1, at different times before reshock. Cyan solid line: overall
production; red dashed line: bp̄,1; green dash-dotted line: −bτ̄11,1 ; blue dotted line: −R̃11ρ̄,1.

regime. The production and destruction terms are not symmetric as they are skewed to the lighter
fluid side with peaks also slightly positioned at that side. In the interior part of the mixing layer,
the production, destruction, and turbulent transport terms are the dominant terms. The production
term is strictly positive in the mixing region and peaks around the middle part of the mixing region.
Nonetheless, both destruction and turbulent transport terms are negative in the interior part of the
mixing layer to offset the effect from production. Overall, the combined effect of the destruction and
turbulent transport terms is larger than that of the production, and hence the peak of turbulent mass
flux reduces over time. At the edges of the mixing layer, all right-hand-side terms are small except
the turbulent transport term, which is positive and responsible for the spreading of the turbulent
mass flux. The magnitudes of redistribution [term (IV)] and convective terms are smaller than those
of other terms but still have significant effects at different times before reshock. The two terms have
similar magnitudes but opposite signs. The convective term decreases the turbulent mass flux on
the heavier fluid side and increases that on the lighter fluid side. The redistribution term has the
opposite effect of bringing the turbulent mass flux from the light fluid side back to the heavy fluid
side. Opposite sign but close magnitude for the two corresponding transport terms in the budgets of
ρ̄a1 is also noticed in the RTI turbulence by Livescu et al. [53].

The composition of the production term [term (III)] is shown in Fig. 16. It can be seen that at
the chosen times before reshock, the production term is mainly contributed from the component,
−R̃11ρ̄,1, which is observed to be strictly positive. Another constituent, bp̄,1, has a smaller contri-
bution to the overall term, and −bτ̄11,1 is negligible. bp̄,1 transfers the turbulent mass flux from the
heavier fluid side to the lighter fluid side, although this effect is hidden in the overall production
term. As for the destruction term [term (VI)], Fig. 17 shows that all three constituents [ρ̄(1/ρ)′ p′

,1,

−ρ̄(1/ρ)′τ ′
1i,i

, and ρ̄εa1 ] have similar magnitudes and are generally negative at the two times before
reshock.

B. Density-specific-volume covariance

Figure 18 shows the spatial profiles of different budget terms that appear in the transport
equation of ρ̄b given by Eq. (37) before reshock. Similar to the plots for budgets of the turbulent
mass flux, the magenta dotted line represents the residue, which is the difference between the net
left-hand-side and net right-hand-side terms. As seen in Figs. 18(a) and 18(b), the residue is basically
zero. This means that there is a negligible numerical effect due to insufficient spatial grid spacing
on the time evolution of ρ̄b before reshock. Before reshock, the production [term (III)], turbulent
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FIG. 17. Compositions of the destruction term [term (VI)] in the transport equation for the turbulent mass
flux component in the streamwise direction, ρ̄a1, at different times before reshock. Cyan solid line: overall
destruction; red dashed line: ρ̄(1/ρ )′ p′

,1; green dash-dotted line: −ρ̄(1/ρ )′τ ′
1i,i

; blue dotted line: ρ̄εa1 .

transport [term (V)], and destruction [term (VI)] terms are dominant, but the redistribution [term
(IV)] and convective terms cannot be neglected in the transport equation of ρ̄b either. Similar to the
budgets of ρ̄a1, both production and destruction terms are asymmetric and skewed to the light fluid
side. Although there is a positive effect in the interior part of the mixing layer from the production
term to increase ρ̄b, the effect is offset by both turbulent transport and destruction terms. The net
rate of change of ρ̄b around the peak of b is small, so the peak of b (similarly for ρ̄b) remains
relatively constant in time compared to peaks of other second moments, which is shown earlier. At
the edges of the mixing layer, most terms are small except the turbulent transport term, which is
positive, which leads ρ̄b and b to spread. Both the redistribution term and the convection term due
to a1 redistribute ρ̄b across the layer, but they have exactly opposite effects (the redistribution term
brings ρ̄ from the lighter fluid side to the heavy fluid side and vice versa the convective term). They

FIG. 18. Budgets of the density-specific-volume covariance multiplied by the mean density, ρ̄b, given
by Eq. (37), at different times before reshock. Cyan solid line: production [term (III)]; red dashed line:
redistribution [term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line:
destruction [term (VI)]; orange dash-triple-dotted line: negative of convection due to streamwise velocity
associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation of all terms
(rate of change in the moving frame).
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FIG. 19. Budgets of the Reynolds normal stress component in the streamwise direction multiplied by the
mean density, ρ̄R̃11, given by Eq. (28), at different times before reshock. Cyan solid line: production [term
(III)]; red dashed line: press-strain redistribution [term (V)]; green dash-dotted line: turbulent transport [term
(IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted line: negative of convection
due to streamwise velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid
line: summation of all terms (rate of change in the moving frame).

also have similar shapes and thus roughly cancel effects from each other. A similar cancellation is
also shown earlier for the corresponding terms in the budgets of ρ̄a1.

C. Favre-averaged Reynolds stress and turbulent kinetic energy

In Fig. 19, the spatial profiles of different terms in the transport equation of ρ̄R̃11 given by
Eq. (28) at different times before reshock are compared. Similar to the budgets of other second
moments, the residue due to spatial discretization is negligible before reshock. The critical terms
in the interior mixing region that cause the peak of ρ̄R̃11 (slightly inclined towards the lighter fluid
side) to decrease before reshock are the pressure-strain redistribution [term (V)], turbulent transport
[term (IV)], and dissipation [term (VI)] terms. The production [term (III)] and convection terms
are quite positive there, but their combined effect is smaller than that from the negative terms. In
general, both production and convection terms are positive on the lighter fluid side and negative on
the heavier fluid side. These two terms transport ρ̄R̃11 from the heavier fluid side to the lighter fluid
side. On the other hand, the turbulent transport term helps bring ρ̄R̃11 from the lighter fluid side to
the heavier fluid side, and more importantly it is also responsible for the spreading of the statistical
quantity at the edges of the mixing layer.

Figure 20 shows the composition of production term [term (III)] before reshock. It can be seen
that both 2a1 p̄,1 and −2ρ̄R̃11ũ,1 have large contributions to the production term, while the remaining
component, −2a1τ̄11,1 , is negligible. The composition of the turbulent transport term [term (IV)] is
shown in Fig. 21. All three constituents, −(ρu′′u′′u′′),1, −2(u′ p′),1, and 2(u′τ ′

11),1, have significant
contributions to the term before reshock. The triple correlation component, −(ρu′′u′′u′′),1, is the
root of the spreading effect, while −2(u′ p′),1 and 2(u′τ ′

11),1 have opposite effects for the transfer of
ρ̄R̃11 between heavy and light fluid regions. −2(u′ p′),1 transports ρ̄R̃11 from the heavier fluid side
to the lighter fluid side and vice versa for 2(u′τ ′

11),1.
Finally, the budget terms in the transport equation for the turbulent kinetic energy, ρ̄k, given by

Eq. (30) are compared at different times before reshock in Fig. 22. The residue due to numerical
discretization is negligible at t = 0.40 ms. At later times, it becomes slightly larger relative to other
budget terms, although it is still small in the budgets. At late times, the major terms in the interior
part of the mixing layer are the pressure-dilatation [term (V)] and dissipation [term (VI)] terms.
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FIG. 20. Compositions of the production term [term (III)] in the transport equation for the Reynolds normal
stress component in the streamwise direction multiplied by the mean density, ρ̄R̃11, at different times before
reshock. Cyan solid line: overall production; red dashed line: 2a1 p̄,1; green dash-dotted line: −2a1τ̄11,1 ; blue
dotted line: −2ρ̄R̃11ũ,1.

In single-species incompressible flows, the pressure-dilatation term is absent, but this term plays
a large role to reduce the effects of dissipation term in this variable-density decaying flow before
reshock. At the edges of the mixing layer, the turbulent transport term [term (IV)] is relatively more
important and is responsible for the spread of the turbulent kinetic energy.

IX. FILTERED NAVIER-STOKES EQUATIONS AND TRANSPORT EQUATIONS
OF THE LARGE-SCALE SECOND MOMENTS

In the present flow, the mixing transition follows after the mixing layer is traversed by the
reflected shock. This reshock deposits baroclinic vorticity at both large and small scales, and rapid
breakdown to fully developed turbulence ensues. The eddies span a wide range of length scales,
where the largest and smallest eddies are estimated to be at scales of O(1000) and O(1) μm,

FIG. 21. Compositions of the turbulent transport term [term (IV)] in the transport equation for the Reynolds
normal stress component in the streamwise direction multiplied by the mean density, ρ̄R̃11, at different times
before reshock. Cyan solid line: overall turbulent transport; red dashed line: −(ρu′′u′′u′′),1; green dash-dotted
line: −2(u′ p′),1; blue dotted line: 2(u′τ ′

11),1.
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FIG. 22. Budgets of the turbulent kinetic energy, ρ̄k, given by Eq. (30), at different times before reshock.
Cyan solid line: production [term (III)]; red dashed line: pressure-dilatation [term (V)]; green dash-dotted line:
turbulent transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted
line: negative of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted
line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).

respectively [38]. The small scales of the turbulent flow after reshock are not well-resolved even
in the highest resolution simulation. Therefore, it is more appropriate to study the transport equa-
tions of large-scale second moments derived from the filtered Navier-Stokes equations at times
after reshock. The idea is that numerical regularization is assumed to have negligible effects on
large-scale second moments that only contain scales from zero wave number to a cutoff wave
number imposed by a filter that is considerably larger than the grid cutoff wave number. The
analysis of the transport equations of the large-scale second moments is useful for (i) studying
the mechanisms of the generation, destruction, and spreading of the large-scale turbulent features in
shock-induced variable-density turbulence, (ii) examining the self-similarity of the turbulent flow,
and (iii) understanding how the subfilter-scale stress can affect the resolved large-scale turbulent
features in LES.

While the effects of filtering on the buoyancy-driven variable-density turbulence have been stud-
ied in [69], the focus in the current work is different. The analysis proposed here mainly focuses on
the effects of SFS stress on large-scale statistical quantities resolved on a lower resolution grid, and
the aim is to gain insight into the suitability of using LES data for analyzing RANS-based models.
Spherical surface-averaged transport equations of different statistical quantities were also derived
with the SGS stress in [65]. Here, we present the planar surface-averaged transport equations of the
second moments, including the Favre-averaged Reynolds stress and turbulent kinetic energy, with
the effects of SFS stress included.

The filtering operation of a variable, f = f (xi, t ), with filter width, �, can be defined as

〈 f (xi, t )〉� =
∫ ∞

−∞
f (x′

i, t )G(x′
i, xi )dx′

i, (43)

where 〈 f 〉� is the filtered value and G(x′
i, xi ) denotes a filter function. In variable-density flows, it is

also convenient to define the Favre-filtered value, 〈 f 〉L, as

〈 f 〉L = 〈ρ f 〉�
〈ρ〉�

. (44)
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If we apply the filter on the mixture continuity equation and transport equation of momentum
given by Eqs. (4) and (2), respectively, we can obtain the filtered Navier-Stokes equations:

∂〈ρ〉�
∂t

+ ∂ (〈ρ〉�〈uk〉L )

∂xk
= 0, (45)

∂ (〈ρ〉�〈ui〉L )

∂t
+ ∂ (〈ρ〉�〈uk〉L〈ui〉L )

∂xk
= −∂ (〈p〉�δki )

∂xk
+ ∂〈τki〉�

∂xk
− ∂τ SFS

ki

∂xk
, (46)

where commutation terms are assumed to be negligible. τ SFS
i j is the SFS stress tensor given by

τ SFS
i j = 〈ρuiu j〉� − 〈ρ〉�〈ui〉L〈u j〉L. (47)

If averaging is further applied on the filtered continuity equation and transport equation of
momentum given by Eqs. (45) and (46), respectively, the following Favre-averaged filtered Navier-
Stokes equations are obtained:

∂〈ρ〉�
∂t

+ ∂ (〈ρ〉�〈̃uk〉L )

∂xk
= 0, (48)

∂ (〈ρ〉�〈̃ui〉L )

∂t
+ ∂ (〈ρ〉�〈̃uk〉L 〈̃ui〉L )

∂xk
= −∂ (〈p〉�δki )

∂xk
+ ∂〈τki〉�

∂xk
− ∂τ SFS

ki

∂xk
− ∂ (〈ρ〉�R̃L,ki )

∂xk
, (49)

where Reynolds and Favre decompositions on the filtered variables (〈 f 〉� or 〈 f 〉L) are involved:

〈 f 〉�/L = 〈 f 〉�/L + 〈 f 〉′�/L = 〈̃ f 〉�/L + 〈 f 〉′′�/L, (50)

and R̃L,i j is the large-scale Favre-averaged Reynolds stress tensor computed with the filtered density
and velocity fields and is given by

R̃L,i j = 〈ρ〉�〈ui〉′′L〈u j〉′′L
〈ρ〉�

. (51)

In a 1D mean flow, the transport equation of 〈ρ〉�R̃L,11 is given by

∂ (〈ρ〉�R̃L,11)

∂t︸ ︷︷ ︸
term (I)

+∂ (〈ρ〉�〈̃u〉LR̃L,11)

∂x︸ ︷︷ ︸
term (II)

= 2aL,1

(
∂〈p〉�
∂x

− ∂〈τ11〉�
∂x

+ ∂τ SFS
11

∂x

)
− 2〈ρ〉�R̃L,11

∂ 〈̃u〉L

∂x︸ ︷︷ ︸
term (III)

−∂ (〈ρ〉�〈u〉′′L〈u〉′′L〈u〉′′L )

∂x
− 2

∂ (〈u〉′L〈p〉′�)

∂x
+ 2

∂ (〈u〉′L〈τ11〉′�)

∂x
− 2

∂ (〈u〉′Lτ SFS
11

′)
∂x︸ ︷︷ ︸

term (IV)

+2〈p〉′�
∂〈u〉′L
∂x︸ ︷︷ ︸

term (V)

−2

(
〈τ11〉′�

∂〈u〉′L
∂x

+〈τ12〉′�
∂〈u〉′L
∂y

+〈τ13〉′�
∂〈u〉′L
∂z

)
+ 2

(
τ SFS

11
′ ∂〈u〉′L

∂x
+ τ SFS

12
′ ∂〈u〉′L

∂y
+ τ SFS

13
′ ∂〈u〉′L

∂z

)
︸ ︷︷ ︸

term (VI)

,

(52)

where the left-hand side consists of the rate of change [term (I)] and convection [term (II)]. The
right-hand side consists of production [term (III)], turbulent transport [term (IV)], pressure-strain
redistribution [term (V)], and dissipation [term (VI)]. aL,i = 〈ρ〉′�〈ui〉′L/〈ρ〉� is the velocity associ-
ated with the large-scale turbulent mass flux 〈ρ〉�aL,i = 〈ρ〉′�〈ui〉′L computed on filtered fields.
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The transport equation of 〈ρ〉�R̃L,22 for 1D mean flow can be reduced to

∂ (〈ρ〉�R̃L,22)

∂t︸ ︷︷ ︸
term (I)

+∂ (〈ρ〉�〈̃u〉LR̃L,22)

∂x︸ ︷︷ ︸
term (II)

= −∂ (〈ρ〉�〈v〉′′L〈v〉′′L〈u〉′′L )

∂x
+ 2

∂ (〈v〉′L〈τ21〉′�)

∂x
− 2

∂ (〈v〉′Lτ SFS
21

′)
∂x︸ ︷︷ ︸

term (IV)

+2〈p〉′�
∂〈v〉′L
∂y︸ ︷︷ ︸

term (V)

−2

(
〈τ21〉′�

∂〈v〉′L
∂x

+〈τ22〉′�
∂〈v〉′L
∂y

+〈τ23〉′�
∂〈v〉′L
∂z

)
+2

(
τ SFS

21
′ ∂〈v〉′L

∂x
+τ SFS

22
′ ∂〈v〉′L

∂y
+τ SFS

23
′ ∂〈v〉′L

∂z

)
︸ ︷︷ ︸

term (VI)

.

(53)
The transport equation of 〈ρ〉�R̃L,33 is similar.

The large-scale turbulent kinetic energy per unit mass is defined as kL = R̃L,ii/2. The transport
equation of 〈ρ〉�kL can be obtained by taking half of the trace of the transport equation of 〈ρ〉�R̃L,i j .
In 1D mean flow, it has the following form:

∂ (〈ρ〉�kL )

∂t︸ ︷︷ ︸
term (I)

+∂ (〈ρ〉�〈̃u〉LkL )

∂x︸ ︷︷ ︸
term (II)

= aL,1

(
∂〈p〉�
∂x

− ∂〈τ11〉�
∂x

+ ∂τ SFS
11

∂x

)
− 〈ρ〉�R̃L,11

∂ 〈̃u〉L

∂x︸ ︷︷ ︸
term (III)

−1

2

∂ (〈ρ〉�〈ui〉′′L〈ui〉′′L〈u〉′′L )

∂x
− ∂ (〈u〉′L〈p〉′�)

∂x
+ ∂ (〈ui〉′L〈τi1〉′�)

∂x
− ∂ (〈ui〉′Lτ SFS

i1
′)

∂x︸ ︷︷ ︸
term (IV)

+〈p〉′�
∂〈ui〉′L
∂xi︸ ︷︷ ︸

term (V)

−〈τi j〉′�
∂〈ui〉′L
∂x j

+ τ SFS
i j

′ ∂〈ui〉′L
∂x j︸ ︷︷ ︸

term (VI)

, (54)

where the left-hand side consists of the rate of change [term (I)] and convection [term (II)].
The right-hand side consists of production [term (III)], turbulent transport [term (IV)], pressure-
dilatation [term (V)], and dissipation [term (VI)]. Note that term (III) represents the transfer
of energy between 〈ρ〉�kL and the mean kinetic energy computed from filtered fields, KL =
〈ρ〉�〈̃ui〉L 〈̃ui〉L/2. Besides, the combination of −(〈ui〉′Lτ SFS

i1
′),1 and τ SFS

i j
′
∂〈ui〉′L, j contributes to the

transfer of energy between 〈ρ〉�kL and the mean SFS turbulent kinetic energy, τ SFS
ii /2.

In 1D mean flow, the transport equation of the large-scale turbulent mass flux component in the
streamwise direction, 〈ρ〉�aL,1, can be simplified to

∂ (〈ρ〉�aL,1)

∂t︸ ︷︷ ︸
term (I)

+∂ (〈ρ〉�〈̃u〉LaL,1)

∂x︸ ︷︷ ︸
term (II)

= bL

(
∂〈p〉�
∂x

− ∂〈τ11〉�
∂x

+ ∂τ SFS
11

∂x

)
− R̃L,11

∂〈ρ〉�
∂x︸ ︷︷ ︸

term (III)
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+〈ρ〉�
∂ (aL,1aL,1)

∂x
− 〈ρ〉�aL,1

∂〈u〉L

∂x︸ ︷︷ ︸
term (IV)

−〈ρ〉�
∂ (〈ρ〉′�〈u〉′L〈u〉′L/〈ρ〉�)

∂x︸ ︷︷ ︸
term (V)

+〈ρ〉�
(

1

〈ρ〉�

)′(
∂〈p〉′�
∂x

−∂〈τ11〉′�
∂x

−∂〈τ12〉′�
∂y

−∂〈τ13〉′�
∂z

+∂τ SFS
11

′

∂x
+∂τ SFS

12
′

∂y
+∂τ SFS

13
′

∂z

)
+〈ρ〉�εaL,1︸ ︷︷ ︸

term (VI)

,

(55)

where the left-hand side consists of the rate of change [term (I)] and convection [term (II)]. The
right-hand side contains production [term (III)], redistribution [term (IV)], turbulent transport [term
(V)], and destruction [term (VI)]. Also,

εaL,i = −〈ui〉′L
∂〈uk〉′L
∂xk

. (56)

bL is the large-scale density-specific-volume covariance computed from the filtered fields and is
given by bL = −〈ρ〉′�(1/〈ρ〉�)′.

In 1D mean flow, the transport equation of 〈ρ〉�bL is given by

∂ (〈ρ〉�bL )

∂t︸ ︷︷ ︸
term (I)

+∂ (〈ρ〉�〈̃u〉LbL )

∂x︸ ︷︷ ︸
term (II)

= −2(bL + 1)aL,1
∂〈ρ〉�
∂x︸ ︷︷ ︸

term (III)

+2〈ρ〉�aL,1
∂bL

∂x︸ ︷︷ ︸
term (IV)

+〈ρ〉2
�

∂ (〈ρ〉′�(1/〈ρ〉�)′〈u〉′L/〈ρ〉�)

∂x︸ ︷︷ ︸
term (V)

+2〈ρ〉2
�εbL︸ ︷︷ ︸

term (VI)

, (57)

where the left-hand side consists of the rate of change [term (I)] and convection [term (II)]. The
right-hand side consists of production [term (III)], redistribution [term (IV)], turbulent transport
[term (V)], and destruction [term (VI)]. Also,

εbL =
(

1

〈ρ〉�

)′
∂〈uk〉′L
∂xk

. (58)

A truncated Gaussian filter [70] is used. At each filtering operation, 1D filters in the x, y, and z
directions are applied successively to the 3D fields. The filter in the x direction is given by

〈 fi, j,k〉�,x = 3565

10 368
fi, j,k + 3091

12 960
( fi−1, j,k + fi+1, j,k ) + 1997

25 920
( fi−2, j,k + fi+2, j,k )

+ 149

12 960
( fi−3, j,k + fi+3, j,k ) + 107

103 680
( fi−4, j,k + fi+4, j,k ), (59)

where the effective filter width of one filtering operation is � = 4, and  is the grid spacing of
the finest grid level. Filtering in the y and z directions is in similar forms. The Gaussian filtering
operation can be applied successively to achieve filtering with an essentially larger filter width. If
the filter is applied Nf times repeatedly, the effective filter width is � ≈ 4

√
Nf . The approximated

filter widths obtained on the finest grid level of grid E with different numbers of filtering operations
are shown in Table III. The truncated Gaussian filter is selected because of its positivity-preserving
property for the density field.
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TABLE III. Approximated filter widths obtained on the finest grid level of grid E with different numbers
of filtering operations.

Number of filtering Approximated filter Approximated filter width in physical
operations width in  unit (mm)

1 4  0.049
4 8  0.098
16 16  0.195
64 32  0.391
256 64  0.781

X. EFFECTS OF THE FILTER WIDTH ON THE LARGE-SCALE SECOND MOMENTS
AND THE SFS STRESS

The effects of filter width on the large-scale second moments including the Reynolds normal
stress in the streamwise direction multiplied by the mean filtered density—〈ρ〉�aL,1, 〈ρ〉�bL, and
〈ρ〉�R̃L,11—at t = 1.40 ms are shown in Figs. 23(a), 23(b), and 23(c), respectively. It can be seen
that the magnitudes of the large-scale quantities reduce when the essential width of the filter applied
to the density and momentum fields is increased because they are composed of scales from zero

FIG. 23. Effect of filtering on the large-scale second moments and the turbulent kinetic energy, 〈ρ〉�kL ,
at t = 1.40 ms after reshock. Black solid line: no filtering; cyan dashed line: � ≈ 8; red dash-dotted line:
� ≈ 16; green dash-dot-dotted line: � ≈ 32; blue dotted line: � ≈ 64.
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FIG. 24. Effect of filtering on the mean SFS stress component in the streamwise direction, τ SFS
11 , and the

mean SFS turbulent kinetic energy, τ SFS
ii /2, at t = 1.40 ms after reshock. Cyan dashed line: � ≈ 8; red dash-

dotted line: � ≈ 16; green dash-dot-dotted line: � ≈ 32; blue dotted line: � ≈ 64.

wave number to a larger cutoff wave number. The shape of each quantity remains quite self-similar
with different filter widths. Especially the location of the peak of each quantity does not move
significantly under the effect of filtering. At large filter widths, all large-scale second moments
including 〈ρ〉�R̃L,11 have similar degrees of changes in the magnitudes with the same filter width
change.

Figure 24(a) shows the effect of filtering on the mean SFS normal stress component in the
streamwise direction, τ SFS

11 . It can be seen that the magnitude of the SFS stress component increases

with larger filter width. In fact, it is noticed that the sum of τ SFS
11 and large-scale 〈ρ〉�R̃L,11 is virtually

constant under the filtering effect. The same relation is also observed for the sum of the large-scale
turbulent kinetic energy and the mean SFS turbulent kinetic energy, τ SFS

ii /2. The magnitude of the
large-scale turbulent kinetic energy decreases while that of the SFS turbulent kinetic energy rises
when more filtering operations are applied, as seen in Figs. 23(d) and 24(b), respectively. These
suggest that the correlations between the small scales and large scales are negligible compared
to the large-scale–large-scale and small-scale–small-scale correlations. The effects of filter width
on large-scale second-moments, SFS stress, and SFS turbulent kinetic energy at other times after
reshock are shown in the Supplemental Material [52].

XI. BUDGETS OF THE LARGE-SCALE SECOND MOMENTS AFTER RESHOCK

In this section, the budgets of large-scale second moments computed with the filtered density
and Favre-filtered velocity fields—〈ρ〉�aL,1, 〈ρ〉�bL, and 〈ρ〉�R̃L,11—together with 〈ρ〉�kL across the
mixing layer after reshock are examined. The chosen filter width is � ≈ 64 = 0.781 mm. A grid
sensitivity analysis of the budgets at this filter width is provided in the Supplemental Material [52].

As with the unfiltered budgets before reshock, the budgets of large-scale second moments after
reshock are studied in the x̃ coordinate system, equivalent to studying the budgets in the moving
reference frame of the mixing layer. The convective terms in all of the transport equations of
large-scale second moments for 1D mean flow have the common form of [〈ρ〉�〈̃u〉L(·)],1, where
(·) represents any of the large-scale second moments (aL,1, bL, R̃L,i j , or kL). Using the relation
〈̃u〉L = 〈u〉L + aL,1, the convective terms can be rewritten as

∂〈ρ〉�〈̃u〉L(·)
∂x

= ∂〈ρ〉�〈u〉L(·)
∂x︸ ︷︷ ︸

term (I)

+ ∂〈ρ〉�aL,1(·)
∂x︸ ︷︷ ︸

term (II)

, (60)
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FIG. 25. Budgets of the large-scale turbulent mass flux component in the streamwise direction, 〈ρ〉�aL,1,
given by Eq. (55), at different times after reshock. Cyan solid line: production [term (III)]; red dashed line:
redistribution [term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted line:
destruction [term (VI)]; orange dash-triple-dotted line: negative of convection due to streamwise velocity
associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation of all terms
(rate of change in the moving frame).

where term (I) is the convection due to mean Favre-filtered velocity, and term (II) is the convection
due to velocity associated with large-scale turbulent mass flux. Similar to the scenario without
filtering, 〈u〉L is observed to be uniformly close to zero in the moving reference frame of the mixing
layer, and the term (I) can be neglected. Thus, the convective term is thought to be fully contributed
by [〈ρ〉�aL,1],1 in the analysis of this section. While only the budgets of the large-scale second
moments at t = 1.20 and 1.60 ms are shown in this section, the budgets at two other times after
reshock are included in the Supplemental Material [52].

A. Large-scale turbulent mass flux

Figure 25 shows the spatial profiles of different right-hand-side terms in the transport equation for
the large-scale turbulent mass flux component in the streamwise direction, 〈ρ〉�aL,1, given by
Eq. (55), together with the negative of the convection term due to aL,1 after reshock. Similar to
the budgets before reshock, the magenta dotted line represents the residue which is defined as
the subtraction of the net right-hand-side terms from the net left-hand-side term in the simulation
frame. The residue here provides a way to verify that the numerical regularization or SGS effect has
negligible effects on the budgets of large-scale second moments at the chosen filter width. The rate
of change of 〈ρ〉�aL,1 in the moving reference frame of the mixing layer is represented by the thin
black line, which is the subtraction of the convective term due to aL,1 from the summation of the net
right-hand side and the residue.

Similar to the times before reshock, production [term (III)] and destruction [term (VI)] terms are
asymmetric after reshock, as shown in Fig. 25. Both terms are skewed toward and have peaks at
positions slightly toward the lighter fluid side. As seen from Fig. 25, the production and destruction
terms are the dominant terms among all the right-hand-side terms in the interior mixing region
after reshock. In this region, the magnitude of the destruction is larger than that of the production,
and this drives the peak of the large-scale turbulent mass flux to diminish over time after reshock,
as indicated by the negative rate of change at all times. At the edges of the mixing region, the
turbulent transport term [term (V)] becomes relatively more important and causes the turbulent
mass flux to spread over time. The redistribution [term (IV)] and convective terms are small across
the mixing layer compared to the other right-hand-side terms. In fact, the redistribution term is
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FIG. 26. Compositions of the production term [term (III)] in the transport equation for the large-scale
turbulent mass flux component in the streamwise direction, 〈ρ〉�aL,1, at different times after reshock. Cyan solid
line: overall production; red dashed line: bL〈p〉�,1; green dash-dotted line: −bL〈τ11〉�,1; orange dash-dot-dotted

line: bLτ
SFS
11 ,1; blue dotted line: −R̃L,11〈ρ〉�,1.

commonly ignored in many turbulent mixing models, such as the BHR k-S-a model by Banerjee
et al. [19] and the k-L-a model by Morgan and Wickett [29]. The compositions of the production
and destruction terms are shown in Figs. 26 and 27, respectively. As seen from both figures, the
components with filtered molecular shear stress, −bL〈τ11〉�,1 and −〈ρ〉�(1/〈ρ〉�)′(∂〈τ1i〉′�/∂xi ), are
both zero at different times, and this indicates that the molecular shear stress has no direct effect on
the large-scale turbulent mass flux through its budget.

Examining Fig. 26 for the composition of the production term [term (III)], it can be seen that
the shapes and relative importance of the two components of the production term, −R̃L,11〈ρ〉�,1 and
bL〈p〉�,1, after reshock are similar to those of the corresponding ones before reshock. However, there

is an additional term with the SFS stress, bLτ SFS
11 ,1, in the composition due to filtering. In general,

FIG. 27. Compositions of the destruction term [term (VI)] in the transport equation for the large-
scale turbulent mass flux component in the streamwise direction, 〈ρ〉�aL,1, at different times after
reshock. Cyan solid line: overall destruction; red dashed line: 〈ρ〉�(1/〈ρ〉�)′〈p〉′

�,1; green dash-dotted

line: −〈ρ〉�(1/〈ρ〉�)′(∂〈τ1i〉′
�/∂xi ); orange dash-dot-dotted line: 〈ρ〉�(1/〈ρ〉�)′(∂τ SFS

1i
′
/∂xi ); blue dotted line:

〈ρ〉�εaL,1 .
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FIG. 28. Budgets of the large-scale density-specific-volume covariance multiplied by the mean filtered
density, 〈ρ〉�bL , given by Eq. (57), at different times after reshock. Cyan solid line: production [term (III)]; red
dashed line: redistribution [term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-
dotted line: destruction [term (VI)]; orange dash-triple-dotted line: negative of convection due to streamwise
velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation of
all terms (rate of change in the moving frame).

the component with the large-scale Reynolds stress, −R̃L,11〈ρ〉�,1, has the largest contribution to the

production term and appears strictly positive. Another two constituents, bL〈p〉�,1 and bLτ SFS
11 ,1, have

smaller contributions and have conflicting effects. The latter largely reduces the influence of the
former on the production term. Therefore, the production term can be regarded as mainly supplied
by the component with the large-scale Reynolds stress. As for the destruction [term (VI)], it can be
seen in Fig. 27 that the contribution of each constituent after reshock is similar to the corresponding
one in the unfiltered budgets before reshock, except that the role of the component with molecular

shear stress is replaced by a component with SFS stress, 〈ρ〉�(1/〈ρ〉�)′(∂τ SFS
1i

′
/∂xi ). Similar to the

corresponding component with εa1 in the budgets before reshock, the component with εaL,1 also
contributes significantly to the destruction term after reshock.

B. Large-scale density-specific-volume covariance

Figure 28 shows the spatial profiles of different terms that appear in the transport equation for
the large-scale density-specific-volume covariance multiplied by the mean filtered density, 〈ρ〉�bL,
given by Eq. (57) after reshock. As for the plots for budgets of the large-scale turbulent mass flux,
the magenta dotted line represents the residue. As seen in the subfigures, the residue is virtually
zero at different times after reshock, and this means that there is an insignificant effect of numerical
regularization on the rate of change of 〈ρ〉�bL.

As seen from the figure, the production [term (III)] and destruction [term (VI)] terms are the
dominant terms in the interior region of the mixing layer. In the papers by Tomkins et al. [62] and
Mohaghar et al. [66], it was also observed in the layer interior that the production term is dominant
in the budgets of density-specific-volume covariance. In the interior part of the mixing layer, the
rate of change of 〈ρ〉�bL is negative just after reshock as the magnitude of the negative destruction
term is larger than that of the positive production term. Thus, the amplitude of the large-scale second
moment decreases just after reshock. Nevertheless, soon after reshock, the relative magnitude of the
production term in the middle part of the mixing layer becomes larger, and even larger than that of
the destruction term at late times. As a result, the rate of change of 〈ρ〉�bL at the peak location turns
slightly positive at later times. Overall, the budget terms are quite balanced in the interior part of
the mixing layer at late times as the production term roughly cancels the destruction term. This is
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FIG. 29. Budgets of the large-scale Favre-averaged Reynolds normal stress component in the stream-
wise direction multiplied by the mean filtered density, 〈ρ〉�R̃L,11, given by Eq. (52), at different times after
reshock. Cyan solid line: production [term (III)]; red dashed line: press-strain redistribution [term (V)]; green
dash-dotted line: turbulent transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange
dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent mass flux;
magenta dotted line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).

similar to the observations on the budgets of density-specific-volume covariance in the heavy-light
case of the spherical RMI [65] and the planar RTI [53]. As a result, 〈ρ〉�bL and bL have quite
stationary peaks at late times. Although the turbulent transport term [term (V)] is not small in the
central part of the mixing layer, its effect is small compared to the production and destruction terms.
However, the turbulent transport term becomes relatively more important at the heavier fluid edge
of the mixing region. The term is positive at both edges of the mixing layer and is the vital term at
the heavier fluid side for the spreading of 〈ρ〉�bL over time.

C. Large-scale Favre-averaged Reynolds stress and large-scale turbulent kinetic energy

In Fig. 29, the spatial profiles of different budget terms of the large-scale Favre-averaged
Reynolds stress component in the streamwise direction multiplied by the mean filtered density,
〈ρ〉�R̃L,11, after reshock are shown. Each budget term in the transport equation for 〈ρ〉�R̃L,11 is given
by Eq. (52). As shown in the figure, the residue, represented by the magenta dotted line, is basically
zero at all times. Thus, the effect of numerical regularization on 〈ρ〉�R̃L,11 can be ignored.

From the figure, we can see that all terms except the convection term play significant roles in the
rate of change of 〈ρ〉�R̃L,11 in the interior part of the mixing region. Similar to the budgets before
reshock, the production term [term (III)] is positive on the light fluid side and negative on the heavy
fluid side to transport 〈ρ〉�R̃L,11 from the heavier fluid side to the lighter fluid side. On the other hand,
generally the turbulent transport term [term (IV)] has a larger magnitude but the opposite effect in
the interior region of the mixing layer compared to the production term. In the same region, both
pressure-strain redistribution [term (V)] and dissipation [term (VI)] terms are negative in general
and hence the overall rate of change is negative. At the edges of the mixing layer, only the turbulent
transport and pressure-strain redistribution are critical terms. Their combined effect contributes to
the spreading of 〈ρ〉�R̃L,11 on the lighter fluid side over time, while there is some antispreading
effect on the heavier fluid side for quite a long period of time after reshock.

Figures 30 and 31 show the compositions of production [term (III)] and turbulent transport
[term (IV)] terms, respectively, after reshock. Both figures show that the components due to filtered
molecular shear stress, −2aL,1〈τ11〉�,1 and 2(〈u〉′L〈τ11〉′�),1, are insignificant to the budgets at different
times after reshock. Considering the composition of the production term in Fig. 30, the component
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FIG. 30. Compositions of the production term [term (III)] in the transport equation for the large-scale
Favre-averaged Reynolds normal stress component in the streamwise direction multiplied by the mean filtered
density, 〈ρ〉�R̃L,11, at different times after reshock. Cyan solid line: overall production; red dashed line:
2aL,1〈p〉�,1; green dash-dotted line: −2aL,1〈τ11〉�,1; orange dash-dot-dotted line: 2aL,1τ

SFS
11 ,1; blue dotted line:

−2〈ρ〉�R̃L,11 〈̃u〉L,1.

with SFS stress, 2aL,1τ
SFS
11 ,1, appears as a new term compared to the budgets without filtering before

reshock. Both constituents 2aL,1〈p〉�,1 and −2〈ρ〉�R̃L,11〈̃u〉L,1 play similar roles to the production
term. They are negative on the heavier fluid side and positive on the lighter fluid side. However, the
former has a larger effect on the lighter side while the effect of the latter is stronger on the heavier
fluid side. The component with SFS stress has a similar magnitude to −2〈ρ〉�R̃L,11〈̃u〉L,1 but the
opposite effect that brings 〈ρ〉�R̃L,11 from the lighter fluid side to the heavier fluid side. Inspecting
the composition of the turbulent transport term, the three constituents, −(〈ρ〉�〈u〉′′L〈u〉′′L〈u〉′′L ),1,

−2(〈u〉′L〈p〉′�),1, and −2(〈u〉′Lτ SFS
11

′),1, have significant contributions to the term after reshock. The
triple velocity correlation component, −(〈ρ〉�〈u〉′′L〈u〉′′L〈u〉′′L ),1, and the component arising from

FIG. 31. Compositions of the turbulent transport term [term (IV)] in the transport equation for the large-
scale Favre-averaged Reynolds normal stress component in the streamwise direction multiplied by the mean
filtered density, 〈ρ〉�R̃L,11, at different times after reshock. Cyan solid line: overall turbulent transport; red
dashed line: −(〈ρ〉�〈u〉′′

L〈u〉′′
L〈u〉′′

L ),1; green dash-dotted line: −2(〈u〉′
L〈p〉′

�),1; blue dotted line: 2(〈u〉′
L〈τ11〉′

�),1;

orange dash-dot-dotted line: −2(〈u〉′
Lτ

SFS
11

′),1.
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FIG. 32. Budgets of the large-scale turbulent kinetic energy, 〈ρ〉�kL , given by Eq. (54), at different times
after reshock. Cyan solid line: production [term (III)]; red dashed line: pressure-dilatation [term (V)]; green
dash-dotted line: turbulent transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange
dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent mass flux;
magenta dotted line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).

filtering, −2(〈u〉′Lτ SFS
11

′),1, are responsible for the spreading of 〈ρ〉�R̃L,11. On the other hand, the
constituent −2(〈u〉′L〈p〉′�),1 has an antispreading effect.

Figure 32 shows a comparison of different budget terms in the transport equation for the large-
scale turbulent kinetic energy, 〈ρ〉�kL, given by Eq. (54). The residue of 〈ρ〉�kL is negligible at early
times after reshock but becomes slightly larger at later times. At t = 1.60 ms, the residue cannot
be considered as zero but is still small compared with other budget terms. Through grid sensitivity
analysis presented in the Supplemental Material [52], it is found that the residue computed with the
grid E is largely reduced compared to that with the grid D.

It should be noted again that in incompressible single-species flow, the pressure-dilatation term
[term (V)] is zero. As seen from the figure, the pressure-dilatation term in the variable-density flow
being studied here is not zero. However, its influence is generally very small across the mixing
layer, and its effect is roughly canceled by the convection term. The effect from pressure-dilatation
is commonly ignored in many RANS-based models [19,29] for RMI-induced turbulence. In the
interior part of the mixing region, the dissipation dominates the overall rate of change of the large-
scale turbulent kinetic energy, and the quantity decays over time. Note that the dissipation term is

contributed mainly by the component with SFS stress, τ SFS
i j

′(∂〈ui〉′L/∂x j ). In the interior region of
RTI [53], the production and dissipation terms are equally important in the turbulent kinetic energy
budget, while the former has a small contribution for the RMI turbulence studied in this work. The
production term is large over time in RTI and buoyancy-driven variable-density turbulence due to the
continuous conversion of potential energy into kinetic energy [53,59,71]. However, this mechanism
does not exist in RMI.

XII. EFFECTS OF FILTERING ON THE BUDGETS OF THE LARGE-SCALE SECOND
MOMENTS AFTER RESHOCK

The effects of filtering on the budgets of different large-scale second moments and turbulent
kinetic energy with � ≈ 16 and � ≈ 64 at t = 1.40 ms after reshock are shown in Figs. 33–36,
respectively. Note that the unfiltered budgets and the filtered budgets with another filter width can
be found in the Supplemental Material [52].
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FIG. 33. Effect of filtering on the budgets of the large-scale turbulent mass flux component in the stream-
wise direction, 〈ρ〉�aL,1, given by Eq. (55), at t = 1.40 ms. Cyan solid line: production [term (III)]; red dashed
line: redistribution [term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue dash-dot-dotted
line: destruction [term (VI)]; orange dash-triple-dotted line: negative of convection due to streamwise velocity
associated with turbulent mass flux; magenta dotted line: residue; thin black solid line: summation of all terms
(rate of change in the moving frame).

It should be mentioned that the budget of ρ̄a1 is already closed when no filtering is used and
hence from Fig. 33, it can be seen that the residues in the budgets of the corresponding large-scale
turbulent mass flux component with different filter widths are also negligible across the entire
mixing region. Similar to the effects of the filter on the large-scale second-moments, the magnitudes
of different terms in the transport equation for the large-scale turbulent mass flux component
decrease when a larger filter width is applied on the mixture density and momentum equations,
but their shapes remain quite similar. From Figs. 34 and 35, it can be seen that the residues in
the budgets of the density-specific-volume covariance and the Reynolds normal stress component

FIG. 34. Effect of filtering on the budgets of the large-scale density-specific-volume covariance multiplied
by the mean filtered density, 〈ρ〉�bL , given by Eq. (57), at t = 1.40 ms. Cyan solid line: production [term
(III)]; red dashed line: redistribution [term (IV)]; green dash-dotted line: turbulent transport [term (V)]; blue
dash-dot-dotted line: destruction [term (VI)]; orange dash-triple-dotted line: negative of convection due to
streamwise velocity associated with turbulent mass flux; magenta dotted line: residue; thin black solid line:
summation of all terms (rate of change in the moving frame).
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FIG. 35. Effect of filtering on the budgets of the large-scale Reynolds normal stress component in the
streamwise direction multiplied by the mean filtered density, 〈ρ〉�R̃L,11, given by Eq. (52), at t = 1.40 ms. Cyan
solid line: production [term (III)]; red dashed line: press-strain redistribution [term (V)]; green dash-dotted line:
turbulent transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)]; orange dash-triple-dotted
line: negative of convection due to streamwise velocity associated with turbulent mass flux; magenta dotted
line: residue; thin black solid line: summation of all terms (rate of change in the moving frame).

(both multiplied by the mean filtered density) are already virtually zero when the Navier-Stokes
equations are filtered with filter width � ≈ 16. The shapes of different terms in the budgets of
the two large-scale second moments also appear similar, and the magnitudes reduce with a larger
filter width. As for the budgets of large-scale turbulent kinetic energy, an even larger filter width or
more successive filtering operations are needed for the residue to become negligibly small, which
is indicated by Fig. 36. Nevertheless, the budget terms of the large-scale turbulent kinetic energy
are also quite similar for filter widths � ≈ 16 and � ≈ 64. From all of these figures mentioned
above, it can also be noticed that the ratios of the magnitudes between the major terms for each

FIG. 36. Effect of filtering on the budgets of the large-scale turbulent kinetic energy, 〈ρ〉�kL , given by
Eq. (54), at t = 1.40 ms. Cyan solid line: production [term (III)]; red dashed line: pressure-dilatation [term
(V)]; green dash-dotted line: turbulent transport [term (IV)]; blue dash-dot-dotted line: dissipation [term (VI)];
orange dash-triple-dotted line: negative of convection due to streamwise velocity associated with turbulent
mass flux; magenta dotted line: residue; thin black solid line: summation of all terms (rate of change in the
moving frame).
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FIG. 37. Effect of filtering on the compositions of the production term [term (III)] in the transport equa-
tion for the large-scale turbulent mass flux component in the streamwise direction, 〈ρ〉�aL,1, at t = 1.40 ms.
Cyan solid line: overall production; red dashed line: bL〈p〉�,1; green dash-dotted line: −bL〈τ11〉�,1; orange

dash-dot-dotted line: bLτ
SFS
11 ,1; blue dotted line: −R̃L,11〈ρ〉�,1.

budget do not change much with different filter widths. Thus, the budget terms in each transport
equation are quite self-similar with different degrees of filtering.

Figures 37 and 38, respectively, show the effects of filtering on the compositions of the produc-
tion [term (III)] and destruction [term (VI)] terms in the budgets of the large-scale turbulent mass
flux component in the streamwise direction at t = 1.40 ms. It can be seen from both figures that the
magnitudes of the components with the SFS stress in the production and destruction compositions,

bLτ SFS
11 ,1 and 〈ρ〉�(1/〈ρ〉�)′(∂τ SFS

1i
′
/∂xi ), increase when a larger filter width is applied. Examining the

production term, while there is a larger effect from the constituent with the SFS stress, bLτ SFS
11 ,1, with

a wider filter width, the magnitude of term bL〈p〉�,1 also becomes larger to offset the increased effect

FIG. 38. Effect of filtering on the compositions of the destruction term [term (VI)] in the trans-
port equation for the large-scale turbulent mass flux component in the streamwise direction, 〈ρ〉�aL,1, at
t = 1.40 ms. Cyan solid line: overall destruction; red dashed line: 〈ρ〉�(1/〈ρ〉�)′〈p〉′

�,1; green dash-dotted

line: −〈ρ〉�(1/〈ρ〉�)′(∂〈τ1i〉′
�/∂xi ); orange dash-dot-dotted line: 〈ρ〉�(1/〈ρ〉�)′(∂τ SFS

1i
′
/∂xi ); blue dotted line:

〈ρ〉�εaL,1 .
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FIG. 39. Effect of filtering on the compositions of the production term [term (III)] in the transport
equation for the large-scale Favre-averaged Reynolds normal stress component in the streamwise direction
multiplied by the mean filtered density, 〈ρ〉�R̃L,11, at t = 1.40 ms. Cyan solid line: overall production; red
dashed line: 2aL,1〈p〉�,1; green dash-dotted line: −2aL,1〈τ11〉�,1; orange dash-dot-dotted line: 2aL,1τ

SFS
11 ,1; blue

dotted line: −2〈ρ〉�R̃L,11 〈̃u〉L,1.

from bLτ SFS
11 ,1. Thus, the shape of the overall production term remains self-similar with filtering. As

for the destruction term, the corresponding component with SFS stress also increases in magnitude
to provide more of a destruction effect when the filter width is larger, but another two constituents,
〈ρ〉�(1/〈ρ〉�)′〈p〉′�,1 and 〈ρ〉�εaL,1 , adjust (the magnitude of the former decreases and that of the latter
increases) and hence the overall destruction term is also self-similar with filtering.

The effects of filtering on the composition of the production [term (III)] and turbulent transport
[term (IV)] terms in the budget of the large-scale Reynolds normal stress component in the stream-
wise direction multiplied by the mean filtered density are studied in Figs. 39 and 40, respectively,
at t = 1.40 ms. The component with the SFS stress in the production term, 2aL,1τ

SFS
11 ,1, has a larger

FIG. 40. Effect of filtering on the compositions of the turbulent transport term [term (IV)] in the transport
equation for the large-scale Favre-averaged Reynolds normal stress component in the streamwise direction mul-
tiplied by the mean filtered density, 〈ρ〉�R̃L,11, at t = 1.40 ms. Cyan solid line: overall turbulent transport; red
dashed line: −(〈ρ〉�〈u〉′′

L〈u〉′′
L〈u〉′′

L ),1; green dash-dotted line: −2(〈u〉′
L〈p〉′

�),1; blue dotted line: 2(〈u〉′
L〈τ11〉′

�),1;

orange dash-dot-dotted line: −2(〈u〉′
Lτ

SFS
11

′),1.
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magnitude with more filtering operations, but this change is offset by the adjustment of 2aL,1〈p〉�,1,
which also has a larger magnitude but the opposite effect compared with the former. Similarly, the
constituent with SFS stress in the turbulent transport term, −2(〈u〉′Lτ11

′),1, has a greater magnitude
as the filter width increases, but its larger influence is offset by the change of −2(〈u〉′L〈p〉′�),1. In
general, the overall shapes of the production and turbulent transport terms are quite similar for
different filter widths, but their compositions change as the SFS stress plays a more important role
in each of the two terms.

XIII. CONCLUSIONS

A second-moment analysis of high Atwood number variable-density mixing induced by RMI
was conducted with high-resolution 3D AMR simulation data. In the numerical experiment, the
material interface separating SF6 and air is impulsively accelerated twice and the mixing layer
becomes turbulent after reshock. The roles that the two second moments, turbulent mass flux and
density-specific-volume covariance, play in the development of Favre-averaged Reynolds stress
were discussed through the examination the transport equations for the second moments, includ-
ing the Favre-averaged Reynolds stress and turbulent kinetic energy. The study of the transport
mechanisms of the second moments can foster the improvement of existing reduced-order models
for closing the Favre-averaged Navier-Stokes equations in RANS-based simulations. The quantities
of interest, including the second moments computed with the simulation data, were found to be
well grid-converged at the finest grid setting, and the study of their time evolution revealed the
non-Boussinesq and anisotropic nature of the variable-density flow induced by RMI. The transport
equations of the Reynolds stress and second moments were studied before reshock when mixing
occurs due to the instability. The relative importance of different terms in the budgets of the quanti-
ties across the mixing layer was found to vary a lot, and the origins of the generation, destruction,
and spreading of the quantities of interest over time were traced back to the corresponding budget
terms. Unlike the situation where all scales in the flow are well-resolved in the highest resolution
simulation before reshock, the wide span of scales generated due to mixing transition after reshock
leads to underresolved simulation results. While the budgets of some second moments, including
the Reynolds stress, are unclosed during this time period, the budgets of large-scale Reynolds stress
and second moments at sufficiently large scale were found to be unaffected by the numerical
regularization, when the influence of the SFS stress is taken into account. The effects of the
SFS stress on the development of large-scale quantities at different filtered scales were studied.
Although the SFS stress can significantly contribute to the composition of different budget terms
when a large filter width is used, the overall budgets of large-scale Reynolds stress and second
moments remain quite self-similar with filtering as the shapes of different budget terms and their
relative magnitudes are similar with different filter widths. This suggests that the budget analysis of
large-scale quantities in LESs can be relevant for the development and validation of RANS-based
closures that model each budget term as a whole, even when the Reynolds stress and turbulent
kinetic energy are not well-resolved, provided that the effects of an accurate representation of the
SFS stress are included in the budget terms. This also addresses the importance of reconstructing the
SFS stress in LESs of this type of variable-density flows in order to model the development of the
turbulence accurately. Nevertheless, the study of the evolution mechanism of the SFS stress requires
an analysis of its transport equation with fully resolved turbulence data. As a result, future research
of RMI-induced variable-density turbulence with higher resolution simulations, such as DNSs that
resolve all spatiotemporal scales, can largely advance turbulence modeling in LES, RANS, and
hybrid RANS-LES approaches.
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APPENDIX A: GRID SENSITIVITY ANALYSIS OF THE SPATIAL PROFILES
OF SECOND MOMENTS

The grid sensitivities of the spatial profiles of ρ̄a1, b, ρ̄R̃11, and ρ̄k at different times between the
grid D and the grid E are shown, respectively, in Figs. 41–44. Overall, these spatial profiles have
small grid sensitivities between the two grid resolutions at different times, which are consistent with
the grid sensitivities of the time evolution of the domain-integrated values.

APPENDIX B: TIME EVOLUTION OF THE NUMBERS OF GRID CELLS IN THE SIMULATIONS

Figure 45 shows the number of grid cells and the weighted number of grid cells summed over
all grid levels for different AMR grid resolutions over time. The weighted number of grid cells is
defined as

lmax∑
l=0

xlmax

xl
Nl , (B1)

where Nl and xl are the number of grid cells and grid spacing, respectively, at level l . The
maximum level number lmax = 2 is used in this work. The weighted number of grid cells accounts
for the fact that the time step size is larger for grid cells at the lower grid level from the CFL
condition and has less computational cost compared to grid cells at higher grid levels. Since larger
time step sizes are used for coarser grid levels in the multitime stepping (subcycling) algorithm of
the AMR code, the weighted number of grid cells is a better metric for comparing the computational
cost of different AMR simulations. From Fig. 45, it can be seen that both the number of cells and
the weighted number of cells are the largest near the end of simulation for each grid resolution. The
maximum number of cells and the weighted number of cells for the grid E setting are around 4.55

FIG. 41. Grid sensitivities of the profiles of the turbulent mass flux component in the streamwise direction,
ρ̄a1, at different times between the grid D and the grid E. The profiles with the grid D and the grid E are shown
with symbols and lines, respectively. Cyan circles or solid line in (a): t = 0.05 ms; red squares or dashed line
in (a): t = 0.40 ms; green hexagons or dash-dotted line in (a): t = 0.75 ms; blue diamonds or dotted line in
(a): t = 1.10 ms. Cyan circles or solid line in (b): t = 1.20 ms; red squares or dashed line in (b): t = 1.40 ms;
green hexagons or dash-dotted line in (b): t = 1.60 ms; blue diamonds or dotted line in (b): t = 1.75 ms.
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FIG. 42. Grid sensitivities of the profiles of the density-specific-volume covariance, b, at different times
between the grid D and the grid E. The profiles with the grid D and the grid E are shown with symbols and
lines, respectively. Cyan circles or solid line in (a): t = 0.05 ms; red squares or dashed line in (a): t = 0.40 ms;
green hexagons or dash-dotted line in (a): t = 0.75 ms; blue diamonds or dotted line in (a): t = 1.10 ms. Cyan
circles or solid line in (b): t = 1.20 ms; red squares or dashed line in (b): t = 1.40 ms; green hexagons or
dash-dotted line in (b): t = 1.60 ms; blue diamonds or dotted line in (b): t = 1.75 ms.

and 4.19 billion, respectively. Both the number of cells and the weighted number of cells are close
to each other over time since most of the grid cells are on the finest level.

APPENDIX C: TRANSPORT COEFFICIENTS

The shear viscosity, μi, of species i is given by the Chapman-Enskog model [72]:

μi = 2.6693 × 10−6

√
MiT

�μ,iσ
2
i

, (C1)

FIG. 43. Grid sensitivities of the profiles of the Reynolds normal stress component in the streamwise
direction multiplied by the mean density, ρ̄R̃11, at different times between the grid D and the grid E. The
profiles with the grid D and the grid E are shown with symbols and lines, respectively. Cyan circles or solid
line in (a): t = 0.05 ms; red squares or dashed line in (a): t = 0.40 ms; green hexagons or dash-dotted line in
(a): t = 0.75 ms; blue diamonds or dotted line in (a): t = 1.10 ms. Cyan circles or solid line in (b): t = 1.20 ms;
red squares or dashed line in (b): t = 1.40 ms; green hexagons or dash-dotted line in (b): t = 1.60 ms; blue
diamonds or dotted line in (b): t = 1.75 ms.
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FIG. 44. Grid sensitivities of the profiles of the turbulent kinetic energy, ρ̄k, at different times between
the grid D and the grid E. The profiles with the grid D and the grid E are shown with symbols and lines,
respectively. Cyan circles or solid line in (a): t = 0.05 ms; red squares or dashed line in (a): t = 0.40 ms; green
hexagons or dash-dotted line in (a): t = 0.75 ms; blue diamonds or dotted line in (a): t = 1.10 ms. Cyan circles
or solid line in (b): t = 1.20 ms; red squares or dashed line in (b): t = 1.40 ms; green hexagons or dash-dotted
line in (b): t = 1.60 ms; blue diamonds or dotted line in (b): t = 1.75 ms.

where σi is the collision diameter and �μ,i is the collision integral of the species given by

�μ,i = A(T ∗
i )B + C exp(DT ∗

i ) + E exp(FT ∗
i ), (C2)

where T ∗
i = T/(ε/k)i, A = 1.161 45, B = −0.148 74, C = 0.524 87, D = −0.7732, E = 2.161 78,

and F = −2.437 87. T is the temperature of the species. (ε/k)i is the Lennard-Jones energy
parameter, and Mi is the molecular mass of the species. The values of Mi, (ε/k)i, and σi are given
in Table IV.

The bulk viscosity, μv , of air is given by the linear model by Gu and Ubachs [73]:

μv = A + BT, (C3)

where A = −3.15 × 10−5 kg m−1 s−1 and B = 1.58 × 10−7 kg m−1 s−1 K−1.

FIG. 45. Number of grid cells during the simulations. Cyan solid line: grid B; red dashed line: grid C; green
dash-dotted line: grid D; blue dotted line: grid E.
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TABLE IV. Fluid properties.

Gas γi cp,i (J kg−1 K−1) cv,i (J kg−1 K−1) Mi (g mol−1) Ri (J kg−1 K−1) (ε/k)i (K) σi (Å) Pri

SF6 1.09312 668.286 611.359 146.055 56.9269 222.1 5.128 0.79
Air 1.39909 1040.50 743.697 28.0135 296.802 78.6 3.711 0.71

The bulk viscosity, μv , of SF6 is given by Cramer’s model [74]:

μv = (γ − 1)2 cv|v (pτv ), (C4)

cv|v =
(

cv

R
− fr + 3

2

)
, (C5)

(pτv ) = A exp

(
B

T
1
3

+ C

T
2
3

)
, (C6)

where fr = 3, A = 0.2064 × 10−5 kg m−1 s−1, B = 121 K1/3, and C = −339 K2/3 for SF6.
The thermal conductivity of species i, κi, is defined by

κi = cp,i
μi

Pri
, (C7)

where Pri and cp,i are the species-specific Prandtl number and specific heat at constant pressure,
respectively.

Mass diffusion coefficient of a binary mixture, Di j , is given by [75]

Di j = Di = Dj = 0.0266

�D,i j

T 3/2

p
√

Mi jσ
2
i j

, (C8)

where p and T are the pressure and temperature of the mixture. �D,i j is the collision integral for
diffusion given by

�D,i j = A(T ∗
i j )B + C exp(DT ∗

i j ) + E exp(FT ∗
i j ) + G exp(HT ∗

i j ), (C9)

where T ∗
i j = T/Tεi j , A = 1.060 36, B = −0.1561, C = 0.193 00, D = −0.476 35, E = 1.035 87,

F = −1.529 96, G = 1.764 74, and H = −3.894 11. Mi j , σi j , and Tεi j are the effective molecular
mass, collision diameter, and Lennard-Jones energy parameter, respectively, for the mixture:

Mi j = 2
1

Mi
+ 1

Mj

, (C10)

σi j = σi + σ j

2
, (C11)

Tεi j =
√(ε

k

)
i

(ε

k

)
j
. (C12)

The values of Mi, (ε/k)i, and σi of different species are given in Table IV.

APPENDIX D: MIXING RULES

With the assumption that all species are at pressure and temperature equilibria, the ratio of
specific heats of the mixture follows as

γ = cp

cv

, cp =
N∑

i=1

Yicp,i, cv =
N∑

i=1

Yicv,i. (D1)

044602-44



ANALYSIS OF SECOND MOMENTS AND THEIR BUDGETS …

The molecular mass of the mixture is given by

M =
(

N∑
i=1

Yi

Mi

)−1

. (D2)

The mixture shear viscosity, bulk viscosity, and thermal conductivity are given by

μ =
∑N

i=1 μiYi/
√

Mi∑N
i=1 Yi/

√
Mi

, (D3)

μv =
∑N

i=1 μv,iYi/
√

Mi∑N
i=1 Yi/

√
Mi

, (D4)

κ =
∑N

i=1 κiYi/
√

Mi∑N
i=1 Yi/

√
Mi

. (D5)
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