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Abstract

The interaction of β-particles with the weakly ionized plasma background is an important mechanism for powering
the kilonova (KN) transient signal from neutron star mergers. For this purpose, we present an implementation of
the approximate fast-particle collision kernel, described by Inokuti following the seminal formulation of Bethe, in a
spectral solver of the Vlasov–Maxwell–Boltzmann equation. In particular, we expand the fast-particle plane-wave
atomic excitation kernel into coefficients of the Hermite basis, and derive the relevant discrete spectral system. In
this fast-particle limit, the approach permits the direct use of atomic data, including optical oscillator strengths,
normally applied to photon–matter interaction. The resulting spectral matrix is implemented in the MASS-APP
spectral solver framework, in a way that avoids full matrix storage per spatial zone. We numerically verify aspects
of the matrix construction, and present a proof-of-principle 3D simulation of a 2D axisymmetric KN ejecta
snapshot. Our preliminary numerical results indicate that a reasonable choice of Hermite basis parameters for β-
particles in the KN is a bulk velocity parameter u= 0, a thermal velocity parameter α= 0.5c, and a 9× 9× 9
mode velocity basis set (Hermite orders of 0–8 in each dimension). For interior-ejecta sample zones, we estimate
that the ratio of thermalization from large-angle (2°.5) bound excitation scattering to total thermalization is
∼0.002–0.003.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Plasma physics (2089)

1. Introduction

Kilonovae (KNe) are radioactively powered electromagnetic
(EM) transients signaling the aftermath of double-neutron star
or neutron star–black hole binary mergers (an incomplete
sequence of kilonova (KN) model developments up to 2017
might be given by Lattimer & Schramm 1974, 1976; Li &
Paczyński 1998; Freiburghaus et al. Freiburghaus 1999;
Roberts et al. 2011; Kasen et al. 2013; Tanaka & Hotoke-
zaka 2013; Fontes et al. 2015a; Barnes et al. 2016;
Metzger 2017). As the two compact objects inspiral due to
the emission of gravitational waves, the neutron star(s) will be
tidally disrupted, causing neutron-rich mass to eject and
become gravitationally unbound. The merger results in a
compact remnant (neutron star or black hole) surrounded by an
accretion disk, from which various mechanisms produce further
(post-merger) ejecta (see, for example, Perego et al. 2014;
Martin et al. 2015; Desai et al. 2022). The detailed EM spectra
and broadband magnitudes from the observation of KN
AT2017gfo (see, for example, Arcavi et al. 2017; Cow-
perthwaite et al. 2017; Drout et al. 2017; Kasliwal et al. 2017;
Smartt et al. 2017; Tanvir et al. 2017; Troja et al. 2017; Villar
et al. 2017), in concert with the gravitational-wave observation
GW170817 (Abbott et al. 2017a, 2017b), provided an

unprecedented window into the pre- and post-merger phases
of the transient, and by examining the nuclear decay pattern in
the ejecta seemed to confirm neutron star mergers are a source
of r-process elements (Rosswog et al. 2018).
While the basic picture of KNe has remained unchanged for

several decades since the semi-analytic work of Li & Paczyński
(1998; for a review of KN physics, see also Metzger 2019),
simulating KNe at high fidelity is an ever-developing field.
Recent studies have explored detailed radiative transfer, atomic
physics, non–local thermodynamic equilibrium (non-LTE), and
multidimensional spatial ejecta; see, for instance, Fontes et al.
(2020), Tanaka et al. (2020), Fontes et al. (2023) on detailed
LTE opacity, Hotokezaka et al. (2021), Pognan et al. (2022a),
Pognan et al. (2022b, 2023) on detailed non-LTE opacity, and
Heinzel et al. (2021), Korobkin et al. (2021), Bulla (2023), and
Fryer et al. (2024) on spatial distribution and multidimensional
spatial effects (and see references therein). Each of these
aspects brings a level of uncertainty into the simulations that
otherwise might be encapsulated in free parameters (for
example, gray opacity). A large source of uncertainty in
state-of-the-art calculations, particularly at late times as the KN
ejecta becomes nebular, is in modeling the interaction of decay
products (α, β, and γ particles) with the ions forming the ejecta.
In full generality, it is a complicated problem of multiple
particle fields undergoing transfer and interaction with atomic
orbital structure and free electrons. Moreover, the atomic
structure of the elements formed in the r-process can involve
tens of millions of resonances between thousands to millions of
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energy levels (see, for example, the atomic data presented by
Fontes et al. 2020; Tanaka et al. 2020).

The process of β-particle thermalization (the loss of particle
kinetic energy to Coulomb interactions, atomic excitations,
ionizations, etc.) is inefficient compared to thermalization of
the more massive α-particles or fission fragments (Barnes et al.
2016, 2021; Zhu et al. 2021), and hence is nonlocal (β-particles
travel significant length scales relative to the ejecta to deposit
energy). Barnes et al. (2016, 2021) and Zhu et al. (2021) have
demonstrated that this inefficiency significantly impacts the
observable EM KN signal (on the order of a factor of 2 in
luminosity, for instance). The state-of-the-art detailed therma-
lization model for β-particles presented by Barnes et al. (2021)
uses the Bethe stopping potential prescription (Bethe 1930),
which accounts for energy loss over a particle path, due to
multiple small-angle scatters and encapsulates atomic proper-
ties with an average ionization. A question remains as to the
impact of large-angle scatters that induce excitation effects in
the ion background, which in principle requires the so-called
generalized oscillator strengths that were introduced by Bethe
(1930) and elaborated on by Inokuti (1971).

Consequently, having a framework for implementing atomic
data directly into a thermalization calculation, along with a
formulation for particle transfer that can be extended to
different differential cross sections, is useful for making inroads
to improved fidelity. We attempt one such preliminary inroad
using a deterministic spectral plasma solver implemented in the
CPU/GPU-parallel Multiphysics Adaptive Scalable Simulator
for Applications in Plasma Physics (MASS-APP) code base (R.
Chiodi & P. T. Brady et al. 2024, in preparation). Spectral in
this context implies the particle phase space distribution
function is expanded over a complete basis function set in
velocity space. To undertake proof-of-concept simulations, we
implement the nonrelativistic inelastic scattering kernel for
excitation, as described by Inokuti (1971). The inelastic form of
the two-body, or binary, integral collision kernel is given by
Garibotti & Spiga (1994), and has been used before in the
context of spectral Boltzmann methods (see, for instance, the
spectral Lagrangian Boltzmann equation solver by Munafò
et al. 2014). Here, we specifically employ an asymmetrically
weighted Hermite function basis (Armstrong et al. 1970),
which has the beneficial property of bridging macro (fluid)-
micro (kinetic) scales (see, for example, Camporeale et al.
2006; Delzanno 2015; Vencels et al. 2015; Koshkarov et al.
2021). The derivational sequence we present here is similar to
the Hermite expansion of the multispecies collision kernel
presented by Wang & Cai (2019) and Li et al. (2022, 2023), but
we do not expand both distributions into the binary kernel,
instead expanding one and also expanding the cross section
itself in the Hermite basis. We also make approximations to the
kernel that make the integral over the ion species separable
from the integral over β-particle velocity (which generally will
not hold outside the fast-particle approximation). This permits
us to employ an efficient closed form for integrals of products
involving three Hermite polynomials and two Gaussian
weights, which to our knowledge, was not used by Wang &
Cai (2019) or Li et al. (2022, 2023) since their kernel expansion
does not isolate these terms (to be sure, the approaches of these
authors are more general, in being able to solve for multiple
distribution species).

Neglecting internal conversion, β-particle emission has a
smooth continuum (Fermi 1934; Schenter & Vogel 1983;

Alekseev et al. 2020) for a spectrum, lending itself well to
smooth basis functions. Hence, we see this spectral Hermite
basis technique as a possible deterministic supplement to
particle-in-cell or Monte Carlo methods that may be better
suited to treating sharp electron emission lines resulting from
internal conversion. Moreover, deterministic schemes, of
course, do not have stochastic noise, so they may be well
suited to capturing large-angle scattering effects, specifically.
This paper is organized as follows. In Section 2, we write the

governing equation solved with MASS-APP and describe the
derivation of the excitation collision kernel used for β-particles.
In Section 3, we present numerical verification of particular
aspects of the method, comparing closed-form derivations to
direct numerical integration of terms that build the collision
matrix needed for simulation. In Section 4, we describe a trial
β-particle simulation of excitation interactions for a 2D
axisymmetric morphology embedded in 3D Cartesian geome-
try. Finally, in Section 5, we summarize our findings and
discuss future work that would further improve fidelity.

2. Spectral Method and Implementation

In this section, we write down the full spectrally discretized
set of equations. Subsequently, we focus attention on
incorporating the nonrelativistic differential excitation cross
section given by Inokuti (1971) into the spectral basis
framework and discuss the approximations made to simplify
the collision kernel. After deriving the spectral Hermite form of
the fast-particle kernel, we provide an outline summarizing the
calculations of this section, including how the steps may be
extensible to other differential cross sections. Supplementary
detail is provided in Appendix A for the evaluation of the two-
body collision kernel and in Appendix B for the evaluation of
the closed-form of integrals involving three Hermite poly-
nomials and two Gaussian weight functions, referred to
henceforth as compact triple-Hermite products, which are
used to evaluate each term in the spectrally discrete collision
matrix derived in this section.
The Vlasov–Maxwell–Boltzmann system of equations we

consider is

· ( ) · [ ] ( )v E v B
f

t
f

q

m
f f f, , 1as

s
s

s
v s a s

¶
¶

+  + + ´  = 

( )E
B J

t
c 4 , 1bp

¶
¶

=  ´ -

( )B
E

t
c , 1c

¶
¶

= -  ´

( )J v v v vq f d q f d , 1ds s a a
3 3ò ò= +

where t is time, v is velocity, the ∇operator is the gradient with
respect to the spatial coordinate (x), ∇v is the gradient operator
with respect to velocity, subscript s indicates the species (β-
particles here), subscript a indicates the atom/ion background,
qs is the charge, ms is mass, E and B are the electric and
magnetic fields, fs and fa are the β-particle and background
distributions (number density per spatial volume per velocity
volume), J is the current density, and [· ·], is the collision
operator. For the purpose of this work, we set the interacting
distribution of ejecta atom/ions as given within a discrete time
step, thus linearizing the collision term. This approach is
consistent with the practice of computing decay thermalization
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and radiative transfer in separate steps from the update of the
ejecta plasma state but may incur errors where moderate bulk
thermodynamic changes lead to a significant discrepancy in the
electron occupation number for particular atomic states.

The Hermite basis is orthogonal with respect to a Gaussian
weight, and hence is amenable to determining expansion
coefficients via inner products. Following Delzanno (2015), we
expand the distribution as

( ) ( ) ( ) ( )x v xf t C t, , , , 2s
n m p

n m p n m p
, ,

, , , ,å x= Y

where the subscripts n, m, and p are the order of the basis
function in each velocity dimension, Cn,m,p is the expansion
coefficient (for which we solve), and the basis function
Ψn,m,p(ξ) is given by Equation (B3). The ξ argument of the
basis functions is the nondimensional velocity (subscript xyz
indicates the components),
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where u and α are user-provided, constant velocity parameters
corresponding to bulk and thermal velocity in the Gaussian
factor of the basis. The last equality represents ξ with
Hadamard (element-wise) division.

The system of equation resulting from expanding
Equation (1) with Equation (2) and taking inner Hermite
products is (see, for example, Delzanno 2015)
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where Sn m p
n m p
, ,

, ,¢ ¢ ¢ is a collision matrix dependent on the
background ion properties of the KN ejecta, and in
Equation (4c) we have made the approximation that the ion
background does not contribute significant current density. For
brevity, on the left side of Equation (4a), we have omitted a
spatial divergence operator, including the flux and Lorentz
force from E and B, but include them in a version of the
equation in Appendix C.

2.1. Fast-particle, Nonrelativistic, Differential Cross Section

We derive the nonrelativistic form of the scattering matrix
Sn m p

n m p
, ,

, ,¢ ¢ ¢ using the differential cross section in the Bethe–Born
(high-energy) limit, presented by Inokuti (1971) for excitation
from atomic state j¢ to atomic state j,
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( )M
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6e a
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+

is the reduced mass (me and Ma are electron and atomic mass),
e is the electron charge, ÿ is the reduced Planck constant, k (k¢)
is the incoming (outgoing) wavenumber (equivalently momen-
tum =ÿk) of the free electron, K is the magnitude of the
difference between the incoming and outgoing wavenumbers,
R=mee

4/2ÿ2= 13.606 eV is the Rydberg energy, Ejj¢ is the
energy difference between levels j and j¢, a0= ÿ2/(mee

2)=
0.52918× 10−8 cm is the Bohr radius, and ( )f Kjj¢ is the
generalized oscillator strength. The magnitudes of the wave-
number obey the law of cosines,

( ) ( ) ( )K k k k k2 cos , 72 2 2 q= + ¢ - ¢

where θ is the polar angle of deflection in the center-of-mass
frame. If the magnitude of pre- and post-deflection wavenum-
bers is taken to be independent of the polar deflection angle,
then

( ) ( ) ( )d K

d
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2

q
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which is given by Inokuti (1971) to replace the solid angle
differential dΩ with d(K2). Assuming k k¢ = , then

( ( )) ( )K k k2 1 cos 4 sin 22 2 2 2q q= - = , and Equation (5)
becomes
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Supposing an elastic collision, conservation of kinetic energy
and momentum imply
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where the higher root is taken, so that the solution would be
correct if Ma=me. Consequently,

( )k klim , 11
M ma e
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¥

so the condition of k k¢ = , giving Equation (9) is equivalent to
me=Ma for elastic collisions. Also, in this limit, the reduced
mass converges to the electron mass me, and noting ÿk=mev0,
where v0 is the initial electron velocity, Equation (9) becomes
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where the coefficient outside the brackets on the right side is
now the standard nonrelativistic definition of classical
Rutherford scattering (a more general form is noted by
Inokuti 1971 as the coefficient, not making the assumption of
me=Ma). According to Inokuti (1971), the term in the square
brackets is the conditional probability that the atom will excite
from state j¢ to state j, given a magnitude of momentum
exchange from the electron of K.
It is notable that k k= ¢ does not imply that K is small; the

angle θ has to vanish for K to vanish. Using Equation (7) and
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conservation of kinetic energy, balanced with excitation, the
formula for ( )Ka0

2 in terms of initial electron kinetic energy
E mv 2k 0

2= and θ is (Inokuti 1971)
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2 has the following limits, corresponding to θ= 0 or π in

Equation (13) (Inokuti 1971):
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where the square root coefficient of ( )cos q has been Taylor
expanded in ( )m E MEe jj k¢ (Inokuti 1971). The assumption is
that E Ek jj¢ and Ek? R implies the maximum value of

( ) Ka 10 max
2 . However, the Rutherford coefficient of

Equation (12) grows rapidly as θ vanishes. Moreover, the
generalized oscillator strength decreases rapidly for large Ka0
(see Inokuti 1971, Section 3.2). Thus, low Ka0 and small-angle
deflections, i.e., forwarding scattering, are most probable from
the Bethe kernel. If the generalized oscillator strength is
expanded in a Taylor series as a function of Ka0 (Inokuti 1971),
and assuming ( ) ( )Ka Ka0

2
0 min

2~ , due to the dominance of
forward scattering, it becomes reasonable to replace the
generalized oscillator strength with the optical oscillator
strength, ( )f f K 0jj jj» =¢ ¢ , which is the essence of the Bethe
high-energy approximation.

If we take ( )f f K 0jj jj= =¢ ¢ , we may readily use the
oscillator strength data used for photon opacities in
Equation (12). Doing so, and also incorporating
Equation (13) into Equation (12), we have a nonrelativistic
excitation cross section from state j¢ to state j,
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where me=M has been incorporated into Equation (13). The
only quantity with units on the right side is ( )e E4 k

2 2, which
should have units of length squared. In electrostatic cgs units
(used by Inokuti 1971), so
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where Ek,MeV is the initial kinetic energy in MeV and
fm= femtometers.

2.2. Spectral Matrix from a Binary Collision Kernel

We now incorporate Equation (15) into the two-body
inelastic collision kernel (the elastic version is given by

Mihalas & Mihalas 1984, Chapter 1, for example). For our
purpose, we decompose the atomic distribution into sub-
distributions corresponding to each excited state j¢, and expand
the collision kernel as follows:
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and we have subscripted velocities to indicate ion (“a”) or β-
particle (“s”). We note this expression follows Munafò et al.
(2014), where the energy level degeneracy is included as a
coefficient of the product of distributions over post-scatter
velocities. The distribution prime superscript indicates evalua-
tion at the post-collision momentum.
Post-scatter velocities va¢ and vs ¢ can be evaluated from the

conservation of momentum and energy in the nonrelativistic
limit, giving
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where vsa= |vsa|= |va− vs|. Equation (19) shows the post-
scatter velocities as a function of pre-scatter velocity and
energy weight, which must be incorporated into Equation (18)
to evaluate the post-scatter portion of the integral (Garibotti &
Spiga 1994).
Considering only excitation collisions in Equation (1), and

expanding the β-distribution fs with Equation (3),
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where x¢ is the nondimensional form of the post-scatter velocity
vs ¢. Taking the inner basis product, Equation (20) becomes
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The right side of Equation (21) is now in the form of a matrix
product with the spectral solution vector Cn,m,p, as in the right
side of Equation (4). Following Munafò et al. (2014), the
integral in the first summation on the right side of Equation (21)
permits us to use the principle of microreversibility,
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where we have taken dW¢ to be the differential solid angle
about the pre-scatter direction Ŵ, to simplify Equation (21) to
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However, the upper-index basis is still a function of pre-scatter
velocity ξ, which is now a function of the post-scatter velocities
and collision angle (time-inverting Equation (19)).

In order to further simplify Equation (23), we make some
approximations that should be reasonable, at least for the fast-
particle approximation and the conditions of the proper inertial
frame of the KN ejecta. The first approximation is to evaluate
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, , x xY ¢ ¢ W¢ ¢ ¢ at assumed average values of 0 for the
pre-scatter angle


W and the post-scatter ion velocity va, thus

permitting factoring out n m p, ,Y ¢ ¢ ¢ from the first integral, giving
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where use has been made of Equation (19) with the substitution
of the 0-averages to obtain the new argument of n m p, ,Y ¢ ¢ ¢ in the
first integral, and u%α again denotes the element-wise
division of u by α (Hadamard division). The isolated
differential cross sections in the first and second integral have
been integrated over pre- and post-scatter solid angles,
respectively, giving j j,s ¢ , and jjs ¢.

The next approximation we make is to truncate a Hermite
basis expansion of the angularly integrated cross section,
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where we have made use of dependence of Ek on ξ through
Equations (3) and (31). This approximation also implicitly
assumes vsa≈ vs since the argument of the basis function is ξ,
and hence is independent of the ion/atom velocity va. Linearly
factoring fjj¢ in Equation (25) would not be possible if we use
generalized oscillator strengths since fjj¢ would then depend on
the particle momentum transfer, as in Equation (12). As we will
see numerically in Section 3, in the limit of E Ejj k¢ for all
level pairs ( )j j, ¢ , given Equation (15) is inversely proportional
to Ejj¢ to leading order, ( ( ))D Elog n m p jj, ,   ¢ is very close to being
linear in ( )Elog jj¢ . This permits us to store ( )D En m p jj, ,   ¢ as a set
of two-parameter values that fit linear functions in this log
space. Furthermore, the symmetry in the radial velocity of the
original kernel implies that Dn″,m″,p″ is invariant under
permutations of (n″, m″, p″), which permits further savings in
data storage.
Incorporating Equation (25) into the first and second terms

of Equation (24),
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*

where, given the preceding approximation, the integrals over β-
velocity and atom/ion velocity are separable, and hence
factored here. We have also used ( ) ( )E Ej j jj jj jjs s=¢ ¢ ¢ ¢ , under
the assumption that permuting the initial and final energy levels
does not change the cross-section structure (statistical weights
from partition functions factoring in the ion distributions, fa,j,
break the equality for rates, however).
Given me=Ma, the next approximation we might make is
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*

where we have inserted ( ) 10,0,0 xY ¢ = in the integral, in order
to show it is now a special case of the second pre-scatter
integral. For more generality, we could have expanded

(( ) ( ))um M m Mn m p
e a e a

, , x aY ¢ - +¢ ¢ ¢  in terms of the
upper-index form of the basis, but this does not add significant
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formulaic complication (but it does complicate numerical
computation).

The triple-basis integrals in Equation (27) are separable by
dimension in Cartesian velocity space, resulting in three
integrals, where each has an integrand that is a product of
three Hermite basis functions: one upper index and two lower
indexes. For the two upper indexes and one lower-index
Hermite basis, the solution of the integral has been developed
via the use of a three-dimensional generator function by
Andrews et al. (1999). To evaluate the one upper-index and the
two lower-index integrals, we may revisit the generator
function approach given by Andrews et al. (1999) to find a
closed-form finite sum that embeds the two upper-index, one
lower-index version of the function. We provide this derivation
in Appendix B, and using the result, Equation (B21),
Equation (27) becomes
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If we are given the ion distribution fa,j(va) for all j and fitting
coefficients for Dn,m,p, we may evaluate the matrix by summing
over all pairs ( )j j, ¢ to get the spectral formulation of
Equation (17). Moreover, the ion velocity integrals merely
result in the population density for states j and j¢, Na,j and Na j, ¢.
The result is
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Similar to Dn,m,p, the function ( )T n n n, ,c ¢  is symmetric
under permutation of ( )n n n, ,¢  . Furthermore, Dn,m,p and

( )T n n n, ,c ¢  are spatially invariant functions; the ion distribu-
tion ultimately encodes spatial variation in the spectral
scattering matrix. The spatial invariance and symmetry under
index permutation make Dn,m,p and ( )T n n n, ,c ¢  , as well as the
linear fitting representation of Dn,m,p, very memory efficient in
computational storage, compared to the spectral solution Cn,m,p.
For instance, considering the basis symmetry, for (n, m,
p) ä {0, 1, 2, 3, 4}3, the number of Cn,m,p values to store
is 125 per spatial zone, while Tc(n, m, p) results in at most
35 distinct floating point values, and Dn,m,p results in 35
distinct pairs of floating point values (assuming two-parameter
linear fits over atomic transition energy Ejj¢, as discussed). The
Tc(n, m, p) function is also made asymptotically ∼50% sparse

for large (n, m, p), by the (n, m, p) parity selection rules
discussed in Appendix B.
Specifically for Section 4, our final main approximation is to

assume Maxwellian velocity dependence of the ion distribution
fa,j(va) and Boltzmann statistics for excitation energy. This is an
LTE assumption about the relative population of the excitation
states within an ionization stage. While we also restrict our
calculations to a single ion stage, we note that Saha statistics
(hence the Saha–Boltzmann formulation, for instance, as
presented by Mihalas & Mihalas 1984) can be used without
complicating the above matrix formulae. For more detail on the
integrals using the Maxwellian ion distribution, as well as
evaluation of the solid angle integral of the differential cross
section, see Appendix A.

2.3. Outline of a General Derivation

To end this section, we note that the calculation procedure
described above may translate to a more general derivation
sequence applicable to different types of collision kernels.
These general steps are outlined here.

1. Identify the optimal coordinate system of velocity space
to spectrally expand functional forms of the solution
distribution and the differential cross section.

2. Choose one or more spectral bases in the velocity
coordinate system based on physics (for example,
Gaussian weighting function for inner products, for
natural-scale bridging, or relativity-compatible functions
such as the Maxwell–Jüttner distribution) and physical
regime, and expand both the distribution function and
cross section in terms of the basis functions.

3. Determine if parametric fits (for example, in this work
over atomic transition energy) are applicable to the
fundamental cross-section coefficients (Dn,m,p).
(a) Store the spatially invariant form of the parameterized

coefficients if possible (for instance, excluding
integration of the coefficient over the atom/ion
distribution).

(b) Determine any index symmetries to further compress
the Dn,m, p array.

4. Incorporate the expansions into the collision kernel
relating the distribution to the differential cross section.

5. Use the principle of microreversibility to (possibly)
simplify the evaluation of the post-scatter term.

6. Determine if approximations, or an expansion, is possible
to separate kernel integrals by species (for example, the
separation of the integral over ion velocity above).

7. Integrate and use basis orthogonality to arrive at a
spectral matrix equation.

8. If possible, use closed-form expressions for basis
function triple products (Andrews et al. 1999).
(a) If the cross section and distribution use the same basis

functions, it may be possible to find a closed form by
following the generator function procedure given by
Andrews et al. (1999).

(b) If the cross section uses a different basis expansion
(for example, Legendre polynomials), it may be
possible to use a Gram–Schmidt orthonormalization
procedure to express the polynomial factor of one
basis in terms of the polynomial (upper-index) factor
of the other.
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(c) Determine any index symmetries to further compress
the precomputation of the triple product function.

(d) Identify index selection rules that may increase the
sparsity of the triple product function evaluation.

3. Numerical Verification of a Spectral Collision Matrix

In this section, we numerically verify different aspects of the
computation of the spectral collision matrix Sn m p

n n p
, ,

, ,¢ ¢ ¢, in order to
motivate the proof-of-principle 3D KN simulation presented in
Section 4. First, we numerically verify the correctness of the
compact triple-Hermite products involving one upper-index
basis and two lower-index basis functions. Next, we examine
spectral expansions of the uncollided β-particle distribution (or
the emitted β-particle distribution) and the fast-particle
collision kernel. We then verify that the two-parameter
coefficient fits used for the closed-form expansion of the cross
section match the direct calculation over different values of
atomic transition energy. Finally, we compare the numerical
integration of Equation (24) directly with the evaluation of
Equation (28). For all evaluations of the kernel or cross section,
we assume a collision parameter of ò= 10−3 in
Equation (A11), which corresponds to a minimum collision
angle of ∼2°.5. Importantly, in this and the following section,
for expanding the β-particle emission and cross sections, we
initially transform the kinetic energy into radial velocity using

the relativistic formula,

⎜ ⎟
⎛
⎝

⎞
⎠

∣ ∣
( )

( )v c
E m c

1
1

1
, 31

k e
2

2

= -
+

in order to systematically restrict the velocity domain to a more
causal region of velocity space. However, the Hermite basis
still extends beyond |v|= c.
In Table 1, we compare the closed form of the compact

triple-Hermite products (Appendix B, Equation (B21)) to a
direct 1024-point midpoint rule numerical integration over the
nondimensional velocity domain ξ ä (−4, 4). We see very
good agreement for all values, but an increased discrepancy at
higher-order basis functions. This seems to be due to the
integral bounds in ξ not being extended far enough for accuracy
in the direct numerical integration (the bounds are supposed to
be indefinite, ξ ä (−∞,∞)); as the bounds are increased, the
implementation of the midpoint rule comes into closer
agreement with the closed form across modes.
Turning to the spectral reconstruction of the uncollided β-

particle distribution and scatter angle-integrated collision
kernel, some numerical experimentation indicates that
αx= αy= αz= 0.5c and ux= uy= uz= 0 are reasonable basis
parameters for both. Figure 1 shows a plot of the uncollided β-
particle distribution (solid blue), calculated from the β-particle
emission spectrum, and a line out of the spectrally recon-
structed profile (orange-dashed line), using Equation (2) with n,

Figure 1. Left: reference uncollided β-particle distribution (blue line) and line out of corresponding spectral reconstruction over 9 × 9 × 9 velocity basis functions
(orange-dashed line) vs. radial velocity. The original distribution is calculated from 0.2c, and is set to a constant for lower velocity. Right: base-10 log of the
reconstructed uncollided β-particle distribution vs. the xy-plane of velocity space.

Table 1
Numerical Values of Compact Triple-Hermite Products Using the 1024-point Midpoint Rule Over ξ ä (−4, 4; First Row) and the Closed Form Presented in

Appendix B

Tc(0, 0, 0) Tc(1, 1, 1) Tc(1, 2, 3) Tc(3, 1, 2)
Tc(2, 2, 2) Tc(4, 0, 0) Tc(0, 4, 0) Tc(4, 4, 4)

Midpoint rule 0.3989422804014322 0.0 0.043186768679 0.043186768679
0.017630924480 0.0610753139878 0.0610753139878 0.001431449

Closed form 0.3989422804014327 0.0 0.043186768684 0.043186768684
0.017630924486 0.0610753139879 0.0610753139879 0.001431452

Note. The function is symmetric under the permutation of the three index arguments, corresponding to each basis order involved in the inner product.
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m, and p, each ranging from 0–8 in order of Hermite basis. We
see some oscillation in the fit, which resembles the well-known
Gibbs phenomenon (the ringing artifacts are near high
curvature in the profile). The fit is poor for radial velocity
below ∼0.2c, where the original distribution is set to a
constant. This also is a range where the validity of the fast-
particle quantum approximation may start to break
down (Inokuti 1971).

The left panel of Figure 2 shows the original (solid line) and
reconstructed (dashed line) kernel, where the reconstructed
kernel is over the same 9× 9× 9 basis as in Figure 1 (again
with αx= αy= αz= 0.5c and ux= uy= uz= 0). Some oscilla-
tion can be seen in the reconstructed kernel as well, and
coincidentally, the fit is also poor at radial velocity below
∼0.2c, where error from the original kernel approximation may
start to be significant. Furthermore, in the right panel of
Figure 2 is a plot of the base-10 log of the reconstructed kernel
over the xy-plane in velocity space. While the original kernel is
radially symmetric, the reconstructed kernel shows artifacts
from fitting over a Cartesian basis of Hermite functions.

Figure 3 shows Dn,m,p versus a parameterized transition
energy Ejj¢, for a few selected values of (n, m, p), comparing
direct evaluation of the expansion coefficients to linear fits in
log-log space. We observe that the linear fits in log-log space
do well to capture the dependence of each Dn,m,p term for the
range of atomic transition energies considered, ∼0.001–10 eV.
For subsequent calculations involving the construction of the
spectral matrix, we use these fits to Dn,m,p (which are
particularly important for Section 4).
The Hermite basis reconstructions in Figures 1 and 2 suggest

orders of 0–8 in each dimension may furnish reasonable
accuracy, notwithstanding the approximations already made in
the kernel and β-particle emission. We now verify that these
Hermite basis orders are sufficient for accuracy when
incorporated into the pre-scatter portion of Equation (27). To
do so, we compare direct numerical integration of
Equation (24) to the evaluation of Equation (28), for a single
line with oscillator strength f 1jj =¢ and transition energy
E 0.1 eVjj =¢ . Table 2 has numerical values for some entries of
the spectral scattering matrix for direct integration by the
midpoint rule on a 643 point velocity domain and using

Figure 2. Left: reference one-line scatter angle-integrated kernel (solid line) and line out of corresponding spectral reconstruction kernel over 9 × 9 × 9 velocity basis
functions (dashed line), for atomic transition energies of 0.03, 0.1, and 0.3 eV. Right: base-10 log of the reconstructed one-line scatter angle-integrated kernel vs. the
xy-plane of velocity space.

Figure 3. Dn,m,p vs. parameterized atomic energy transition Ejj¢, for a few selected values of (n, m, p), comparing direct evaluation of the expansion coefficients (solid
line) to linear fits in log-log space (dashed line). Left: Dn,m,p vs. log base-10 of Ejj¢ in MeV (0.001–10 eV). Right: log base-10 Dn,m,p vs. log base-10 of Ejj¢.
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Equation (28), with either 5× 5× 5 or 9× 9× 9 Hermite basis
functions. Also in Table 2 is the relative error as a fraction of
the direct numerical integral. The matrix elements that are very
close numerically to 0 have high errors, but these terms will not
contribute to the solution. Otherwise, for the significant entries,
we see that the low-order values are in close agreement but
along rows/columns of the matrix the error increases with
higher disparity between modes, at ∼28% for the S0,0,0

4,0,0 term
using 5× 5× 5 basis functions. However, in using
Equation (28), we do not have to restrict the innermost sum
to 5× 5× 5, even when simulating Cn,m,p modes only up to
5× 5× 5. If we permit this innermost sum to go instead to 9 in
each velocity dimension, we obtain results with systematically

lower error relative to direct integration (10% for nontrivial
modes). These results indicate that a 9× 9× 9 basis truncation
of the innermost sum can accurately integrate the matrix terms,
consistent with the accuracy of the profile of the truncated
kernel expansion shown in Figure 2.
In what follows, we restrict our attention to the pre-scatter

matrix since the post-scatter matrix does not complicate the
analysis. Again, we assume a single line, a pre-scatter ion
population density of 1 (effectively), an atomic transition
energy of 0.1 eV, and an oscillator strength of 1. In Figure 4,
we show the full matrix for a 5× 5× 5 velocity basis function
versus serialized matrix indexes. The left panel has the direct
numerical integral of Equation (24) for each matrix entry, again

Figure 4. Spectral collision matrix elements vs. matrix indexes serialized over Hermite basis order. Left: a direct numerical integration over the velocity space of
Equation (24) using the midpoint rule on a 643 velocity grid. Right: evaluation of Equation (28) for each matrix entry.

Table 2
Numerical Values of the Pre-scatter Portion of the Spectral Collision Matrix, and Relative Errors as a Fraction of the Numerical Integral

S0,0,0
0,0,0 S0,0,0

1,0,0 S0,0,0
2,0,0 S0,0,0

3,0,0 S0,0,0
4,0,0

S2,0,0
0,0,0 S2,0,0

1,0,0 S2,0,0
2,0,0 S2,0,0

3,0,0 S2,0,0
4,0,0

S4,0,0
0,0,0 S4,0,0

1,0,0 S4,0,0
2,0,0 S4,0,0

3,0,0 S4,0,0
4,0,0

Midpoint rule, Equation (24) −1.064612e-06 −2.244660e-24 3.773394e-07 −3.568146e-24 −1.838709e-07
3.773394e-07 1.754513e-24 −4.477249e-07 1.501545e-25 3.166727e-07

−1.838709e-07 2.815265e-25 3.166727e-07 5.027491e-25 −3.093139e-07

Equation (28) (5 × 5 × 5 basis) −1.035940e-06 8.427530e-24 3.404054e-07 −4.664180e-24 −1.332969e-07
3.404054e-07 3.839731e-24 −3.996374e-07 2.175768e-24 2.853456e-07

−1.332969e-07 −4.118894e-24 2.853456e-07 1.544883e-24 −2.920202e-07

Equation (28) (9 × 9 × 9 basis) −1.059921e-06 5.339311e-24 3.688633e-07 −6.485463e-26 −1.696097e-07
3.688633e-07 7.438594e-24 −4.320753e-07 1.294707e-24 2.999444e-07

−1.696097e-07 −5.558943e-24 2.999444e-07 1.526768e-24 −2.977645e-07

Error (5 × 5 × 5 basis) 0.02693188 4.75447952 0.09788005 0.30717185 0.27505168
0.09788005 1.1884882 0.10740412 13.4901951 0.0989258
0.27505168 15.63057297 0.0989258 2.07287074 0.05590987

Error (9 × 9 × 9 basis) 0.0044063 3.37867249 0.0224628 0.981824 0.07756094
0.0224628 3.23969158 0.03495361 7.62249883 0.0528252
0.07756094 20.74571843 0.0528252 2.03683885 0.03733877

Note. The top three rows are from direct numerical integration of Equation (24) over a 643 point velocity domain using the midpoint rule. The next three rows are from
evaluating Equation (28) using compact triple-Hermite products and the fitted data coefficients Dn,m,p, using 5 × 5 × 5 basis functions. The next three rows are again
for Equation (28), but using 9 × 9 × 9 basis functions. The bottom six rows are the relative error between the midpoint rule and Equation (28), as a fraction of the
midpoint rule.
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using a midpoint rule over 643 points in velocity space, and the
right panel uses Equation (28) for each matrix entry (hence
using the closed-form compact triple-Hermite product func-
tions). Even over the coarse velocity space grid, the cost of
directly numerically integrating the pre-scatter matrix is
significantly higher than using the compact triple-Hermite
product functions: 1743 s for the numerical integration and 2.2
(5.1) s for the 5× 5× 5 (9× 9× 9) innermost sum (using
Python/NumPy on a single CPU). This time comparison is, in
fact, for a suboptimal implementation of the compact triple-
Hermite functions, where they are reevaluated for each instance
they are invoked rather than simply precomputed. Moreover,
the structure of the matrix matches between the two methods
(for this kernel, we observe that much of the qualitative
structure comes from the triple products of the Hermite basis
function, which can be seen by setting all the Dn,m,p values to a
constant and comparing to the matrix using detailed
atomic data).

4. Trial Calculation of Simplified 3D KN Ejecta
Thermalization

In Section 3, we verify the important steps of computing the
terms of the spectral matrix Sn m p

n m p
, ,

, ,¢ ¢ ¢, which linearly couple
together modes of the solution Cn,m,p. We now apply the
9× 9× 9 basis functions used in Section 3, with the
parameters α= 0.5 and u= 0, to a proof-of-principle KN
model in 3D Cartesian spatial geometry. We use the MASS-
APP code base, which is a spectral Hermite solver for the
Vlasov–Maxwell–Boltzmann equation. The MASS-APP code
non-dimensionalizes the equation following Equation (C1); we
leverage the reference plasma electron oscillation frequency in
Equation (C1) to match the expansion timescale of the KN,
setting it to 5× 10−5 rad s−1. The physical length scale of KNe
from 1 day to a week is ∼1014–1015 cm, which implies the
reference plasma oscillation frequency furnishes a nondimen-
sional length scale of O(1). Consequently, we set the 3D spatial
domain to a [−1, 1]× [− 1, 1]× [− 1, 1] nondimen-
sional cube.

The KN model has an axisymmetric ejecta with a toroidal
(T) component superimposed with a lobed (P; peanut)
component. The formula for the ion density is derived from
the Cassini oval approach of Korobkin et al. (2021),

⎧
⎨⎩

( ¯ ¯ ¯)
( ¯ ¯ ¯ ) ( )
( ¯ ¯ ¯ ) ( )

( )N x y z N
r z r

r z r
, ,

1 4 2 , T ,

1.5 4 2 , P ,
32a a,0

4 2 2 3

4 2 2 3
=

- + -
- - +

where Na,0 is number density, x̄, ȳ , and z̄ are scaled
nondimensional spatial Cartesian coordinates, and
¯ ¯ ¯ ¯r x y z2 2 2 2= + + . We set the scaling to 2, so ¯ ˜r r2= , where
the components of r̃ range from −1 to 1 and are nondimen-
sional in the form of Equation (C1). Considering the typical
homologous approximation for KN (or supernova) ejecta, we
see that the non-dimensionalization procedure implies,

˜ ˜ ( )x
v

c
t , 33

exp
exp=

where vexp is the bulk expansion velocity of the ejecta, and t̃exp

is the nondimensional time elapsed since the merger event. A
nondimensional expansion time of 5 then corresponds to 105 s
of physical time, or about 1 day, which translates to a physical
expansion velocity of 0.2c for x̃ 1= , ˜ ˜z y 0= = . This

configuration effectively sets the ejecta velocity scale between
the two components to be comparable (Korobkin et al. 2021).
We set the reference number density Na,0 for the profile to

104 cm−3, which is very low, corresponding to an ejecta mass
of 5× 10−5Me. This choice approximates the fraction of mass
of neodymium (Nd) in a more realistic total (see, for instance,
Table 1 of Even et al. 2020); Nd has a significant impact on the
photon opacity (Even et al. 2020). The total density profile is a
sum over the components where each component imposes a
minimum background density of N 10a,min

2= - cm−3,

( ¯ ¯ ¯) ( ( ¯ ¯ ¯ ) )
( ( ¯ ¯ ¯ ) )

( )

N x y z N N r z r

N N r z r

, , max , 1 4 2

max , 1.5 4 2 .
34

a a a

a a

,tot ,min ,0
4 2 2 3

,min ,0
4 2 2 3

= - + -

+ - - +

Figure 5 has isocontour (top panel) and zx-, xy-plane (bottom
left and right panels) plots of the ion density given by
Equation (32), showing the shape of the combined ejecta
components.
The ion temperature is assumed to be isothermal or uniform

in space (consistent with thermal electron temperature at late
time in some LTE two-temperature KN simulations), and we
set it to 0.1 eV. We make an extreme assumption that the entire
ejecta is singly ionized Nd, and use energy levels (Ej),
statistical weights (gj), and oscillator strengths fjj¢ from the
LANL suite of atomic physics codes (Fontes et al. 2015b). We
neglect oscillator strengths below 10−3, leaving a total of 6888
levels connected by 375,026 lines. Within the singly ionized
Nd stage, we determine the excitation levels with the
Boltzmann factor and partition function,

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( ) ( )v vf d N
g e

g e
N , 35a j a a j

j
E T

j
j

E T a,
3

,

j a

j a

0

0ò å
= =

-

¢
¢

- ¢

where Ta is the ion temperature. Equation (35) is an assumption
of LTE in the excitation states of the ion.
We simulate the model with 10 uniform time steps and 643

spatial points over 1 s of physical time, using an initial
condition for the β-particle spectrum from Figure 1, propor-
tionally scaling with ejecta density Na to account for higher β-
emission rates at higher ion densities. The initial EM field is set
to 0 everywhere (E= B= 0). On the AMD Rome EPYC 7H12
CPU partition of the HPC system Chicoma at LANL, the
simulation took 1.4 hr on 256 cores (we recalculate the matrix
entries each time step despite keeping the ion temperature and
density as constant in time).
Figure 6 has the kinetic energy gain fraction at 1 s, relative to

the initial conditions, in the zx (left) and xy (right) spatial
planes. From these plots, we see the kinetic energy loss is
enhanced in regions of high density in the ion field as expected,
but we also observe a thin layer at the edge of the ejecta where
a large fractional gain and loss occur. This effect may be
attributable to a transitional region where the ion density is low
enough that flux between zones begins to dominate over the
collision matrix. We observe in this 1 s timescale that is ∼0.3%
(∼0.13%) of the initial kinetic energy in the β-particle field is
lost in density regions near the peak ion density of the torus
(peanut) component.
The left panel of Figure 7 has fractional kinetic energy max

gain (solid line), max loss (dashed line), and a selected torus/
peanut zone versus time for the zx- and xy-planes. We see that
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the fractional kinetic energy losses and gains near the outer
edges are higher than losses in the torus and peanut lobes by a
factor of a few and an order of magnitude, respectively. It
should be noted that these are spatially local fractional values;
the energy lost in the torus and peanut lobe is orders of
magnitude higher (the fractional metric happens to capture
local behavior better, for instance, exposing the effect at the
ejecta boundary layer). The right panel of Figure 7 has the
corresponding rate of change (time derivative) of the left panel
data. The rate of change in the fraction of kinetic energy lost to
the ions, relative to the original amount in the spatial zone, is
nearly constant over the second for the torus and peanut lobe
zones, at approximately 0.3% s−1 and 0.15% s−1, respectively,
but grows in magnitude for the ejecta boundary layers.
Assuming

( ) ( ) ( ( ) ( )) ( ) f t t f t 0 , 36k k k,therm ,therm» -b b  

where fβ,therm is the thermalization fraction and òk is the kinetic
energy emitted by time t, and given that we assumed an
emissivity for the initial condition, such that ( )tk -

( ) ( ) t0k k=  , the rate of change in the fractions result in
fβ,therm= 0.003 (T) or 0.0015 (P).

We may estimate the magnitude of the effect of excitation
collision scattering angles �2°.5 relative to total β-

thermalization using the semi-analytic formulae of Barnes
et al. (2016), in particular their Equation (20) and (32),
reproduced here for convenience,
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2
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2

,ineff
2

=
+

b
b

b

where tβ,ineff is the timescale to inefficient thermalization,
which happens to be about where the peak of the KN transient
matches the thermalization timescale (Barnes et al. 2016), and
fβ,therm is again the thermalization fraction at time t, which
multiplies the bare emission rate. Using the dimensional values
of our 3D model, with t= 105 s and v c0.1exp = , and obtaining
an average uncollided β-particle energy of 0.3 MeV from
integrating ∫Ekfs(Ek)dEk/∫fs(Ek)dEk, we see the inefficiency
timescale and thermalization fraction for the total β-particle
interaction should be roughly 2.7 days and 0.85, respectively.

Figure 5. Top: isocontour of 2D axisymmetric KN ejecta morphology from Korobkin et al. (2021; TP morphology) embedded in 3D Cartesian space, showing torus
and axial wind components, using Equation (34) with parameters described in Section 4. Bottom: ion number density of the same profile in the zx- (left) and xy- (right)
planes.
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Compared to 0.85, the estimates of 0.003 (T) and 0.0015 (P)
are much lower, corresponding to ∼0.03 day and ∼0.02 day
inefficiency timescales, respectively (using the Newton–
Raphson method on Equation (37b)). This indicates excitation

scattering at a large angle is a subdominant but not a
vanishingly small mechanism for energy transfer to the ions.
Incorporating large-angle ionization and free electron Coulomb
collisions may increase the large-angle contribution to

Figure 6. Fraction of kinetic energy gain (blue) and loss (red) from β-particle field in the zx- (left) and xy- (right) planes for the proof-of-principle KN problem
described in Section 4.

Figure 7. Left: fractional kinetic energy max gain (dashed line), max loss (solid line), and a selected torus/peanut spatial coordinate vs. time for the zx- and xy-planes.
Right: corresponding rate of change in fractional kinetic energy, with inset for torus and lobe rates.

Figure 8. Nondimensional z-component of the magnetic field at 1 s in the zx- (left) and xy- (right) planes, for the proof-of-principle KN problem described in
Section 4.
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thermalization as well (Barnes et al. 2021). As alluded to
earlier, a significant caveat to this numerical evaluation is that
the fast-particle approximation has been built into our
derivation for large-angle scatters, which for lower-energy β-
particles may become invalid.

Given that the Maxwell equation is also being solved, and
we started the simulation with E= B= 0, it may be of interest
to see the structure of the magnetic field after 1 s. Figure 8 has
the z-component of the nondimensional magnetic field in the zx
(left) and xy (right) spatial planes. The nondimensional
magnetic field is very low, and nearly 0 everywhere except
the edges, again indicating a region where particle flux, and
hence current, is important. The nonzero portions show
antisymmetry under reflection through the xy-plane, consistent
with the 0-divergence condition of the magnetic field. The
alternating field in the xy-plane suggests the formation of a very
weak long-wavelength EM wave near the surface of the
toroidal ejecta. We can see that these values of B̃z are
subdominant to the collision matrix by examining C0,1,0, which
corresponds to particle momentum in the y-direction: the time
rate of change of C0,1,0 is proportional to B̃ Cz 1,0,0 through the
Lorentz force (see Equation (C2)), but it is also proportional to

S Cn m p
n m p

n m p, , 0,1,0
, ,

, ,å ¢ ¢ ¢
¢ ¢ ¢

¢ ¢ ¢, where the dominant values of S n m p
0,1,0

, ,¢ ¢ ¢

are ∼14 orders of magnitude larger than B̃z. As a C-coefficient,
the electric field is similarly orders of magnitude lower than the
dominant collision matrix elements, but only by ∼4 orders of
magnitude.

5. Conclusions

We have formulated and implemented a preliminary spectral
evaluation of the fast-particle atomic excitation kernel
presented by Inokuti (1971). The resulting spectral collision
matrix couples basis orders in a spatially local way, and
balances spatial flux and classical EM terms in the equation
governing the time rate of change of the spectral modes. The
formulation is restricted to the nonrelativistic, fast-particle
kernel, consistent with the Bethe–Born approximation
(Bethe 1930), and uses optical oscillator strength data as in
photon-matter opacity calculations. This development has been
done in the MASS-APP spectral solver framework, which uses
Kokkos (Trott et al. 2021) for thread/GPU parallelism and
FleCSI (Bergen et al. 2016) to support MPI or Legion-parallel
task backends, each layer providing portability and perfor-
mance on different HPC systems. The code has a full treatment
of classical E and B fields, thus enabling efficient 3D
calculations of KN ejecta β-particle thermalization along with
EM effects (which we did not explore with the kernel in
this work).

We expand the cross section in terms of the Hermite basis,
and find that the simple leading-order dependence of the cross
section on atomic bound–bound level transition energy
propagates to the expansion coefficients. Moreover, the
symmetry of the kernel in radial velocity (in velocity space)
implies that these expansion coefficients are symmetric under
permutation of the mode/order indexes, and hence, form a
compressible low-cost data structure for computer memory
when fitted to linear functions in log-coefficient–log-transition
energy space. Similarly, the compact triple-Hermite product
functions, which build the elements of the spectral scattering
matrix, are symmetric under permutation of the mode/order
indexes, and obey mode/order parity-based index selection

rules that make them sparse. These compact triple-Hermite
product functions also permit interoperability of the spectral
collision matrix with adaptive basis coefficients, though we do
not test this here.
Numerical results indicate that a reasonable choice of

Hermite basis parameters for β-particles in the KN are a bulk
velocity parameter u= 0, a thermal velocity parameter of
α= 0.5c, and a 9× 9× 9 mode velocity basis set (Hermite
orders 0–8 in each dimension). Section 3 verifies each step in
the computation of the spectral collision matrix by comparing
compact Hermite triple product functions and matrix
elements to the equivalent direct numerical quadrature of
the corresponding integrals. Furthermore, in Section 3 we
demonstrate the ability to fit the coefficients of the fast-
particle cross-section Hermite expansion with linear func-
tions, a property inherited from the leading-order behavior of
the differential cross section for small ratios of excitation
energy to β-particle kinetic energy. With an implementation
of the spectral collision matrix in MASS-APP, we show a
proof-of-principle calculation of β-particle propagation and
excitation interaction in a 3D snapshot simulation of KN
ejecta. Given a lower-bound scattering angle of ∼2°. 5 and the
caveat of the fast-particle approximation (for instance, using
the limit of optical oscillator strengths), this calculation
suggests that large-angle scatters of β-particles may not be
more than 3 orders of magnitude lower as a power source for
the KN luminosity and spectra, not including ionization and
free electron Coulomb contributions.
With some further work, the framework should extend to

generalized oscillator strengths and the relativistic kernel given
by Inokuti (1971), with the caveat that it may be important to
replace the Hermite basis with a causally restricted basis
(bounding velocity by the speed of light), for instance, using
Legendre polynomials as done by Manzini et al. (2017).
Another consideration for velocity space is the coordinate
system over which the basis functions are expressed. The
uncollided β-particle distribution and collision cross section are
spherically symmetric in velocity space (though technically, the
collision cross section is symmetric about the origin of the
center-of-mass frame for each collision), so basis functions in
spherical velocity coordinates (for instance, spherical harmo-
nics) may further reduce the size of the basis expansion
required for accurate solutions.
Another improvement to fidelity would be to use the

homologous expansion velocity of the KN ejecta as the value
of the bulk velocity parameter u in the basis functions, but this
may be generally of negligible effect (Barnes et al. 2016). Since
u is variable in spacetime, this would require a modification to
the standard spectral system to account for the variation in the
equation, but varying the thermal (α) and bulk velocity
parameters is an active topic of research (Bessemoulin-Chatard
& Filbet 2023; Pagliantini et al. 2023). This would capture
some effect of the expansion velocity in the β-particle
simulation, permitting a Galilean frame transformation of the
kernel.
After adding Coulomb and ionization interactions to the

spectral collision matrix, and incorporating both bulk ejecta
and microphysical relativistic effects in the kernel, we
ultimately intend to use MASS-APP to perform detailed
thermalization calculations for β-particles in KN ejecta,
subject to different E and B field seeds, and use the results to
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power photon transfer simulations that synthesize observable
light curves and spectra, following Barnes et al. (2021).

Finally, the efficient representation of the coefficients of the
Hermite expansion of the cross section as linear in log-log
space with respect to atomic transition energy suggests that
other cross-section formulae may conform at least approxi-
mately to an efficient representation over quantum atomic
parameters.
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Appendix A
Evaluation and Approximation of Kernel Integral

A.1. Evaluation of Maxwellian Integral

For completeness, we give details for evaluating the integral
over atom/ion velocity here. We do not assume vsa= vs, but
instead, show how the same result can be obtained after
evaluating the integral over va. Assuming the pre-/post-
collision atom/ion distribution is Maxwellian, and that the
comoving collision integral is independent of ion/atom
velocity, the ion-/atom-dependent velocity integral is
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where η is the cosine of the angle between vectors vsa and vs,
and the integral on the right side is over spherical coordinates.

Integrating first over η,
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Expressing the hyperbolic sine in terms of exponentials, and
completing the squares in the exponents,
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where the rightmost integral can be reexpressed as
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using the substitution v= vsa− vs (v= vsa+ vs) in the integral
over the first (second) term. Using
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Equation (A4) further reduces to
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Incorporating Equation (A6) into Equation (A1) (via
Equation (A2) and (A3)),
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where we have introduced the function ( )v T,a sL , which
represents the atom/ion distribution-weighted average magni-
tude of difference in velocity between the β-particle and the
atom/ions. When v k T Ms B a , Equation (A7) simplifies to
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Thus, we have obtained the inverse of the Maxwellian
normalization factor times the magnitude of the β-particle
velocity, as desired.

A.2. Solid Angle Integral of the Cross Section

In Section 2, we factor the differential cross section out of
the integral over atom/ion velocity, which can be evaluated as
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where minq is a minimum scattering angle, which in general
may depend on Ejj¢ (but we set it to a constant in this work).
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where ( )cosm q= and ( )1 cos mine q- = , Equation (A9)
becomes
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Appendix B
Derivation of Compact Hermite Triple Products

B.1. Kernel Expansion and Standard Hermite Triple Products

Expanding the pre-scatter kernel function, written with
explicit dependence on a transition energy, in the upper-index
basis,
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where ( )Ei i i jj, ,x y z   ¢ depends on transition energy but not on β-
particle speed vs. Incorporating Equation (B1) into the integral
for the spectral matrix elements,
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where q denotes x, y, or z, Hiq is the Hermite polynomial of
order iq, and ξs= (ξx, ξy, ξz). Incorporating Equation (B3) into
the right side of Equation (B2),
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where each 1V integral can be expressed in terms of Hermite
polynomials as
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The triple-Hermite integral on the right side can be simplified
using the result of Andrews et al. (1999; Chapter 6),

This formula for the triple-Hermite integral is symmetric under
permutations of ( )i i i, ,q q q¢  , and the requirement of the
denominator factorial arguments being positive is equivalent to
a discrete triangle inequality for side lengths iq, iq ¢, and iq″.
Moreover, it follows from basic parity arguments that i iq q+ ¢+

∣ ∣i i i i0 2 0 2q q q q º    ¢   º (replacing pluses with
minuses preserves evenness). Incorporating Equation (B6) into
Equation (B5), the powers of 2 and π cancel,
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B.2. Kernel Expansion with Compact Hermite Triple Products

Expanding the pre-scatter kernel function in the lower-index
basis,
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where, as in the preceding section, the ( )Ei i i jj, ,x y z   ¢
coefficients depend on transition energy but not on β-particle
speed vs. The steps for expanding the pre-scatter matrix follow
the upper-index formulation, but each 1V integral is now
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The factor of 2 in the exponent of the integral weight implies
Equation (B6) cannot be applied directly to Equation (B10).
Following Andrews et al. (1999), we may use a three-variable
generator function to evaluate the integral on the right side of
Equation (B10) as coefficients of the expansion of the generator

function,
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where r, s, and t are the formal variables. Interchanging the sums gives

⎛

⎝
⎜

⎞

⎠
⎟

( )
!

( )

!
( )

!
( ) ( )

F r s t
i

H r

i
H s

i
H t e d

, ,
1

1

1
. B12

i q
i q

i

i q
i q

i

i q
i q

i
q

0

0

0

2

q

q
q

q

q
q

q

q
q q

2

å

å

å

ò x

x

x x

=

¢


x

=

¥

¢=

¥

¢
¢

=

¥


 -

From Andrews et al. (1999), the sums in parentheses can be evaluated as exponentials,
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We complete the square in a different way than Andrews et al. (1999), and evaluate the integral as follows:
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In Andrews et al. (1999), only the cross-multiplication terms remained in their equivalent of Equation (B14), which enabled an
expansion of the exponential as a product of three series, hence three series indexes that could be related to ( )i i i, ,q q q¢  . Here, we

introduce six indexes: three for the cross terms and three for the diagonal terms, which makes the system of equation relating
( )i i i, ,q q q¢  underdetermined (unlike Andrews et al. 1999). The resulting form of the generator function is
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We now introduce the following system of equation in order to re-index the sum:

( )i c a b2 , B16aq = + + ¢

( )i a b c2 , B16bq ¢ = + + ¢

( )i b c a2 . B16cq = + + ¢
Solving Equation (B16) for (a, b, c) in terms of ( )i i i a b c, , , , ,q q q¢  ¢ ¢ ¢ ,
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From Equation (B17), we obtain the constraint that i i iq q q+ ¢ +  must be even, as in the upper-index formulation in Andrews et al.

(1999). Furthermore, we notice from Equation (B16) that b i2 q¢  , c i2 q¢ ¢ , and a i2 q¢  . These index relations imply we can re-
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index the sum as follows:
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where ⎢⎣ ⎥⎦( )i i i i i i,2 2q q q q q q
d + ¢+  + ¢+  is the Kronecker delta function that is 0 (1) when i i iq q q+ ¢ +  is odd (even) and Θ(·) is the discrete

step function, which is 0 (1) for negative (positive) argument. We may now unambiguously relate the modified triple integral to
analytic closed-form coefficients,
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The discrete step functions encode the discrete triangle inequality condition discussed in the previous section, but with ( )i i i, ,q q q¢ 
replaced with ( )i b i c i a2 , 2 , 2q q q- ¢ ¢ - ¢  - ¢ . Using Equation (B19), Equation (B10) can be written as
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This argument of the sum can be expressed in terms of the T(·, ·, ·) function defined in Equation (B7) in the preceding section,
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where the Kronecker delta is included effectively in T(·, ·, ·) since the condition for i i iq q q+ ¢ +  to be even is the same as

i b i c i a2 2 2q q q- ¢ + ¢ - ¢ +  - ¢ (though it might be computationally expedient to check the parity of i i iq q q+ ¢ +  prior to any

other calculation step). The pre-scatter matrix is obtained by replacing T(·) with Tc(·) in Equation (B8).
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Appendix C
Full Spectrally Discrete Equation with E and B

The non-dimensionalization of the Maxwell–Boltzmann equation used in MASS-APP is
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where ωpe is a reference plasma electron oscillation frequency, c is the speed of light, N0 is a reference number density, e is electron
charge, me is electron mass, and ε0 is permittivity of free space.

The full equation solved in MASS-APP are (dropping the tilde for nondimensionality)
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