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Wavelet-based direct numerical simulations of compressible, single-mode Rayleigh-Taylor
instability (RTI) have been performed in order to study the effects of background stratifi-
cation on instability development. Simulations have been performed for different strengths
of the initial background stratification, as well as for isothermal, isentropic, and isopycnic
conditions. Because interactions of vortical structures play an important role in insta-
bility growth, terms in the vorticity transport equation have been analyzed in order to
better understand the impact of background stratification on RTI development. The cou-
pling between stratification and vortical structures is further examined using simulations
of an analogous case; namely, the evolution of a vortex pair in the presence of background
stratification. Background stratifications, regardless of strength or type (e.g., isothermal,
isentropic, or isopycnic) generally increase the tendency towards asymmetry between bub-
ble and spike growth, compared to the incompressible case with similar density ratio. This
effect is the largest for the isentropic stratification. The simulation with an isothermal
background stratification quickly leads to complete suppression of RTI growth at moderate
and high stratification strengths. The isentropic case causes an inhibition of the growth
and it is unclear under what conditions the growth fully stops. The isopycnic stratification
has the least suppressive effect on the instability growth and, at higher strengths, it seems
to even have the opposite effect and leads to accelerated growth. These situations can be
replicated using arguments based on vortex pair simulations.

I. Introduction

Rayleigh-Tayor instability (RTI) arises when there is a mean density gradient in the direction opposite
that of an acceleration. This acceleration can be gravitational or the result of an accelerating front, and

the RTI will only appear when there is a perturbed interface in the pathway.1,2 RTI can be observed in a
huge range of systems, from large astrophysical flows to flows at the molecular level, and plays a large part in
many engineering systems of interest such as inertial confinement fusion (ICF). A significant portion of these
systems, including ICF,3 supernovae ignition fronts,4–6 x-ray bursts,7 and more, involve highly compressible
fluid flow effects. Between the acoustic effects, material properties, and various stratifications, it becomes
clear that there is not one single parameter that can capture the entirety of compressibility effects on the
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growth of the instability.8,9 As the instability continues growing into late times, the characteristics become
more nonlinear, chaotic, and unpredictable. It is thus only logical that more of these complex compressible
interactions will occur. In short, little is known about these effects on RTI and there is a need to better
understand them.8,10

Historically, the incompressible case has been the main subject of RTI studies.11,12 Even in instances
where a compressible solver has been used, simulations were carried out in the nearly incompressible regime
and, in many cases, additional numerics were added to dampen out what few effects of compressibility are
left.13 In very rare cases, compressibility and background stratification effects have been examined, but none
have been robust and complete in their analysis of different stratifications and strengths, leaving knowledge
gaps and unanswered questions.10,14 This has led to the complete picture of compressibility effects on RTI
growth not being well understood and thusly, a full investigation using direct numerical simulation (DNS)
is needed to uncover any previously unseen physics and to develop better models.

In order to fully resolve all time and length scales associated with compressible RTI, the computational
cost is quite high. Between the thin interfaces leading to high gradients, acoustic waves, and even shock
waves generated by RTI itself, a very high resolution is needed. In order to reach self-similar or asymptotic
states, the simulations require domains that are much longer than the initial perturbation wavelength. Also,
the nature of the stratification leads to a range of scales that spans many orders of magnitude in density,
pressure, or temperature. In order to satisfy stability requirements, the time step must also be kept quite
small. When all of these factors are brought together, it becomes clear that a complex and advanced
computational method is needed in order to actually complete the simulations.15,16

RTI growth is heavily dominated and influenced by the vorticity dynamics of the problem, through the
generation and propagation of vortical structures.17 For single-mode RTI, the Kelvin-Helmholtz instability
on the sides of the moving bubble and spike leads to the generation of vortex pairs in two dimensions and
vortex rings in three dimensions. In both cases, the symmetry of the single mode problem results in vortical
structures moving both upwards and downwards in the domain. Thus, to better understand the effects of
background stratification on the growth of the RTI, simulations of vortex pairs and rings can be carried out
in the same stratified medium with no interface present. To be complete, there must be two simulations
carried out, one with the induced velocity upwards in the domain and one downwards, in order to capture all
of the physics. Analysis of the interactions between the stratified media and the vortical representations can
give us insights into the vorticity dynamics of the RTI problem, but at a significantly reduced computational
cost.

The rest of this paper discusses the following. First, Section 2 has a discussion of the problem setup and
the various background stratifications that will be used in the simulations. Then, in Section 3, there is a
brief discussion of the numerical method used to perform these simulations. Section 4 then presents results
of RTI simulations for all background stratifications. This is then followed with an analysis of the vorticity
dynamics and transport that are responsible for the growth. To complete this discussion, another analysis
is performed in which the simplified vortex configurations are investigated and used to further elaborate on
the results seen in the RTI problem. Section 5 then finishes the paper with the conclusions.

II. Problem Setup

RTI occurs when a heavier fluid rests on top of a lighter fluid, the interface is perturbed, and there is an
accelerative body force such as gravity. As the perturbation begins to grow, the heavy fluid falls into the
light fluid to create spike-like structures as the light fluid rises to create bubble-like structures. Initially, if
the perturbation amplitude is small, the growth is described by the linearized equations, but as the growth
continues, it becomes more and more complex.1,2 In the early nonlinear stages, vorticity appears at the
interface between the two fluids, and potential flow theory can be used to predict a stage of constant velocity
growth. Due to the continuing addition of vorticity from the Kelvin-Helmholtz instability on the sides of the
bubbles and spikes, the vorticity dynamics quickly become too complex to predict with a simplified model
such as potential flow (i.e., the vorticity distribution cannot be understood from simple vortex sheets or
point vortices).8 The interactions lead to a re-acceleration of the bubble/spike growth and late time chaotic
development in the classical incompressible case.17 How these regions are affected by compressibility and
stratification is unknown, and the complexity of the problem requires that full DNS be carried out in order
to ensure the preservation of all physics in the flow.

Simulations have been performed using the standard multi-species compressible fluid dynamics equations.
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The full system of equations is8,18

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
− ρgi +

∂τij
∂xj

, (2)

∂(ρe)

∂t
+
∂(ρeuj)

∂xj
= −∂(pui)

∂xi
− ρuigi +

∂(τijui)

∂xj
− ∂qj
∂xj

+
∂cplTsjl
∂xj

, (3)

∂(ρYl)

∂t
+
∂(ρYluj)

∂xj
=
∂sjl
∂xj

, (4)

where ρ is density, p is pressure, T is temperature, ui is the velocity in the xi direction, Y1 is the mass
fraction for the bottom fluid, Y2 is the mass fraction for the top fluid, R is the gas constant, and the ideal
gas law p = ρRT is enforced. Repeated indices imply summation. The specific total energy is

e =
1

2
uiui + cpT −

p

ρ
, (5)

the viscous stress is assumed to be Newtonian and is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (6)

the heat flux is written as

qj = −k ∂T
∂xj

, (7)

and the species mass flux is defined as

sjl = ρD
∂Yl
∂xj

. (8)

The initialization is discussed next. The upper fluid occupies the space where x1 is greater than 0, and
the lower fluid occupies the space where it is less than zero. This puts the interface at x1 = 0 where the
species mass fraction is smoothed using the error function since it is the exact solution to the diffusion
equation between the species. For RTI to be present, it is required that the density be greater in the upper
fluid than in the lower fluid. The normalized difference between the two densities is typically measured by a
non-dimensional parameter called the Atwood number. For the compressible case, the density is not uniform
in the two fluids. To avoid additional complications due to thermodynamic effects, we uniquely define the
Atwood number as

A =
W2 −W1

W2 +W1
. (9)

where Wl denotes the molecular weight of the fluid l, with W1 < W2.
For this study, the majority of fluid properties were taken to be the same between the two species. This

includes the dynamic viscosity, µ, the heat conduction coefficient, k, the mass diffusion coefficient, D, and
the gravitational acceleration, gi, which is taken to only act in the vertical, x1, direction. Finally, the gas
constants are found based on the molecular weights as

R = R Yl
Wl

, (10)

where R is the universal gas constant. Following from this, the mixture specific heat at constant pressure,
cp , is calculated as a mass weighted average as well (i.e., cp = cplYl).

Compressibility can be characterized by several parameters.8,9 Here, we are mainly concerned with
flow compressibility. In this case, the corresponding incompressible limit can be obtained by increasing the
speed of sound through increasing the background pressure (or temperature), such that the densities are not
affected. The Mach number associated with this compressibility is defined as the ratio of the gravity wave
speed,

√
gλ, and the isothermal speed of sound, a0 =

√
PI/ρI , at the interface. This gives the definition of

M as

M =

√
ρIgλ

PI
, (11)
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where the subscript I implies ”interfacial”. The interface density, ρI , is found using

ρI =
PI
RTI

(
W1 +W2

2

)
. (12)

Since the background state needs to be in hydrostatic equilibrium away from the interface, the Mach number
defined above also characterizes the background stratification. The simulations presented here have the same
ρI , Wl (which fixes the Atwood number), perturbation wavelength λ, and g, so that varying M results in a
change of PI and, subsequently, TI .

For this study, three different sets of stratifications were used to initialize the simulations, namely isother-
mal, isentropic, and isopycnic. For the isothermal stratification, the density and pressure fields are

P (x1) = PIexp

(
− gx1
RlTI

)
, (13)

ρ(x1) =
PI
RlTI

exp

(
− gx1
RlTI

)
, (14)

where, in this case, TI is not only the temperature for the interface, but is constant in the whole domain.
For the isentropic case, the background stratification results from

P (x1) = PI

(
1− γ

γ − 1

gx1
RlTI

)( 1
γ−1 )

, (15)

ρ(x1) = ρl

(
1− γ

γ − 1

ρlgx1
PI

)( 1
γ−1 )

, (16)

and the temperature field is set to satisfy the equation of state. Finally, for the isopycnic case, ρ is set to be
constant above and below the interface and the pressure field is set as

P (x1) = −ρlgx1 + PI , (17)

where PI is added to ensure the correct interface pressure and T is again set to satisfy the equation of state.
An example of the different stratifications can be seen in Figure 1.

Figure 1. Density and pressure stratifications for M = 0.3
and A = 0.04 for the three different stratification types.

Finally, to begin the RTI simulations, a
small amplitude velocity perturbation is ap-
plied directly at the interface and the simu-
lation is carried out from that state.16 For the
analogous vortex simulations, the same initial
conditions are used with the discontinuity re-
moved (i.e., A = 0) and an imposed velocity
field.

III. Numerical Method

The compact spatial localization of RTI de-
velopment, at least during the early stages of
growth, naturally lends itself to using state-
of-the-art adaptive grid methods. The nature
of the instability means that it will require a
very long domain so that the late time growth
can be fully captured, but also a very small
grid spacing is required so that sharp gradients
along the interfaces are well resolved. How-
ever, within the majority of the simulation do-
main, there is no flow development occurring far away from the interface. As a result, high grid resolution is
initially only needed in the center of the domain. In order to minimize computational cost, a highly adaptive
method is utilized so that high grid resolution is localized to only the areas in which there are important
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flow features present. It has already been successfully shown that wavelet-based methods work very well to
accomplish exactly this task.15,16

The Parallel Adaptive Wavelet Collocation Method (PAWCM) adapts on physical features to take advan-
tage of this localization. PAWCM utilizes the inherent properties of wavelets to adapt the grid to physical
quantities in areas of high variation. This leads to PAWCM automatically being able to add more resolution
to areas in which important flow physics occur. PAWCM is already parallelized, has adaptive mesh refine-
ment, direct error control, arbitrary dynamic domain decompositions for load balancing, and a tree-like data
structure for efficient message passing. Any of the extra computational cost added by the wavelet transfor-
mation is inherently made up for by the large amounts of compression in the grid for a localized system such
as the RTI problem examined here.19–21 Using PAWCM for the RTI problem allows the simulation to run
using only about 1-10% of the effective grid resolution.

PAWCM essentially works by taking the wavelet transform of the flow field variable of interest. The
resulting wavelet basis functions are localized in both wave number and physical space. From there, the
adaptation and compression of the field happens through thresholding. Essentially, a threshold parameter,
ε, is defined and coefficients greater than that parameter are kept while coefficients less than are ignored.
This results in the decomposition

u≥(x) =
∑
k

c0kφ
0
k(x) +

∞∑
j=0

2n−1∑
µ=1

∑
l

|dµ,jl |≥ε||u||

dµ,jl ψµ,jl (x), (18)

where u is a variable of interest, φ are the scaling functions on the coarsest level, ψ are the scaling interpolating
functions on any arbitrary level, l and k represent physical grid points, and µ and j represent the wavelet
family and level of resolution, respectively.19,21

As mentioned above, the wavelet thresholding technique results in any d below the threshold ε being
effectively set to 0 and removed along with the wavelet it is associated with, resulting in the removal of
the grid point. It is in the regions of high variability that d is also high, and so in smooth regions, d
is low with respect to the j level of resolution and is most likely deemed insignificant. In the end, this
results in a reduced-size grid with only these significant points, while still maintaining an error that is of the
order of ε. In addition to these significant points, in order to ensure accuracy in time stepping, the points
adjacent to any significant point on the the same j level are also retained. Finally, finite differences are used
to approximate derivatives with the addition of ghost points to ensure that the order of accuracy of the
simulation is maintained. To do this finite differencing, second generation wavelets are used so that many
different orders of accuracy are easily accessible.19,21

For boundary conditions, all of the faces besides the top and the bottom are taken as periodic. This allows
for the symmetry of the simulation to be maintained while only needing to simulate a single wavelength. For
the top and bottom of the domain, however, the boundary conditions are much more difficult. The hope
is to maintain the illusion of a near-infinite domain, but due to the generation of pressure and shock waves
from the application of the perturbation and the growth of the RTI, it must be ensured that there are little
to no reflections of waves back into the domain, while also not affecting the background stratification. For
this, the top and bottom boundary conditions have been set to shear-free slip boundaries with numerical
diffusion buffer zones before them. This ensures that as a pressure wave is sent towards the top or bottom
boundaries, the diffusion zone dissipates and dampens the wave causing there to be no need to fully resolve
the wave as it hits the boundary. This approach also eliminates most of the wave energy before it can reflect.
Any reflections that may be left over are weakened enough to have no consequence on the instability, and
the domain is chosen to be large enough so that the instability does not reach these diffusion zones.16

IV. Results

A total of nine two-dimensional (2D) DNS simulations have been carried out for this investigation.
These include the three stratification types (i.e., isothermal, isentropic, and isopycnic) along with three
stratification strengths for each (i.e., M = 0.3, 0.6, and 0.9). This selection of simulation parameters allows
us to capture phenomena from the near-incompressible limit to high strength stratifications. Above M = 1.0,
the isentropic case provides solutions that become imaginary before the domain is large enough to capture
the entire flow, thus limiting the stratification strengths we are able to simulate. The domain size is taken
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to be [0, 1] × [−4,+4] with A = 0.04. For the analogous vortex simulations, the domain size is taken to be
[−1, 1]× [−4,+4], and have been performed for the same stratifications as for the RTI case, for both bubbles
propagating upwards and spikes downwards with the effective Atwood number taken to be zero. All of these
simulations have been carried out at a Reynolds perturbation number of 5,000 for this study. This Reynolds
number is defined as

Rep =

√
Agλ3

(1 +A)ν2
, (19)

and is a measure of the potential of the perturbation growth to the viscous forces. It also sets the mini-
mum vortex scales achievable on the mesh.17 Here, Rep is kept constant between the RTI and vortex pair
simulations.

A. Rayleigh-Taylor Instability simulations

All of the RTI simulations have been studied to understand how different stratifications affect the growth rate
of the instability. As mentioned before, the effects of these various compressible stratifications are not fully
understood. Figure 2 on page 8 shows a comparison of the growth corresponding to all of the stratifications
at the same time for all of the different Mach numbers. It is quite clear that increasing the strength of
the background stratification for the isothermal case has a large effect on the growth of the instability. As
the Mach number increases, the growth is suppressed more and more, causing the instability to reach a
quasi-steady, diffusion-dominated mixing state. The higher the strength, the quicker this state is reached.
When the stratification is strong enough, vortical structures that would normally cause the instability to
continue growing16,17 are actually broken apart shortly after they form. Figure 3 on page 9 further shows
the distance travelled by the tips of the bubble and spike, revealing that the stronger the stratification, the
shorter the heights of the bubble and spike. For all the cases besides the near incompressible limit, the
distances travelled seem to asymptote to some finite values. The difference between the asymptotic bubble
and spike limiting height values is the maximum width that the stratification will allow the instability to
grow before being completely suppressed.

The other stratifications, however, reveal very different trends, as shown in Figures 2 on page 8 and 3
on page 9 for the isentropic and isopycnic cases, respectively. These figures show that stratification effects
are much less drastic in the isentropic and isopycnic cases as compared to the isothermal case. Firstly, the
isentropic case shows a very similar trend to the isothermal case during the initial stages. As the Mach number
increases, the stronger stratifications cause an initial suppression that increases with the Mach number.
By approximately 4 units of time into the simulation, the differences start presenting themselves. In the
isothermal case, the background stratification continues to suppress the generation of vorticity and at higher
Mach numbers continues growing at decreased rates. For the isentropic case, however, higher stratifications
are able to overcome their suppressive nature and generate enough vorticity to increase their growth rates.
This leads to an increased growth rate at later times, and the higher Mach number stratifications are able
to catch up to the the nearly incompressible case. Also in the isentropic case, these effects have a much
greater impact on the growth of the spike, as compared to their impact on the growth of the bubble. This
leads to large asymmetries developing between the bubble and spike shapes. The narrower spike shape, in
turn, leads to a greater induced velocity on the tip since the vortical structures are closer to each other. As
a result, the spike ends up accelerating at an even greater pace.

The isopycnic case initially looks very similar to the isentropic case. Initially, the suppression causes a
delayed growth rate increasing with Mach number. At a similar time, the isopycnic case is able to overcome
the higher Mach numbers and begins accelerating to catch up with the nearly incompressible limit. Shortly
after that, however, the acceleration of the higher Mach number stratifications is actually able to completely
overcome the growth rate of the incompressible limit. This leads to an increasing growth rate with Mach
number, which is contrary to what we have seen in every other scenario. Also in contrast to the isentropic
case, the isopycnic case has a much smaller asymmetry at the later times with respect to the growth of the
bubble versus the spike. The exact reason as to the increased acceleration with the Mach number is still
unknown, but is most likely due to the increasing temperature gradient in the background state.22 In order
to determine this more rigorously, however, additional research must be performed.

An alternative view of the RTI development can be seen in Figure 4 on page 10. This figure shows
the growth rate of the spike over time and is shown with the various stratifications at the same Mach
number presented together. The valuable takeaway from this view is that, with increasing Mach number,
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the effects of background stratification cause an increasing difference in the plots. At a low Mach number,
the effects of the background stratification are at a minimum, which is to be expected because it is a nearly
incompressible state. Even for this weak stratification, the isopycnic case still has an increased growth rate
while the isothermal case is the most suppressed. As the Mach number is increased, this disparity becomes
larger and larger with the isopycnic case growing faster and faster, while the isothermal case is more and
more suppressed.

B. Vortex Analogs

In order to better understand the mechanism of the growth and changes of the RTI, we can examine the
vorticity field and terms in the vorticity equation, namely the compression, baroclinic torque, and viscous
terms. When we investigate the vortical fields from the initial stages, it becomes apparent that the flow
arises from the initial generation of a vortex pair. An image comparing the vorticity field generated by RTI
and the vorticity field of a vortex pair can be seen in Figure 5 on page 11. This makes it apparent that the
flow fields have important similarities. For meaningful comparisons, the total vorticity in the RTI flow is
calculated when the first vortex pair is generated and is used as a parameter to set the strength and intensity
of the vortex pair. From investigating the resulting flow of the matched vortex pair, we are able to gain
deeper insights into the flow of the RTI.

In Figure 6 on page 12, the result for a relatively late-time vortex pair simulation for the isothermal case
at Mach 0.3 is shown. The figure shows the vorticity field along with the compression term and baroclinic
torque generation term from the vorticity equation. There are two separate simulations, one to investigate the
pair propagating upwards as the bubble in the RTI case, and one propagating downwards to mimic the spike
in the RTI case. In the isothermal case, even at the low Mach number of 0.3, the suppression of the vortex
pair by the background stratification is readily apparent. This figure shows that, even though the vortex
pair is strong enough to begin moving through the domain, the movement of fluid causes the generation of
a similar, but opposite, vorticity field around the vortex pair. This happens through the baroclinic torque
production term, and results in the suppression of the vortex pair movement and the eventual destruction
of the pair as a whole. It is evident that this happens in both the bubble and the spike scenarios, and the
full suppression also happens faster as the Mach number is increased.

In order to better understand the interaction of the background stratification with the RTI, the vortex
pair simulations are extended to also investigate the effects of the isopycnic and isentropic stratifications on
the vortex pairs. For the isopycnic case, as expected, the effects are minimal with the vortex pair continuously
moving through the domain until the end wall is reached. This shows that the stratification has little effect
on the pair, which correlates with the fact that the isopycnic stratification has the fastest growth of the RTI
cases. The isentropic case, however, lends itself to a more interesting result. Figure 7 on page 13 shows a
comparison of the results of the vortex pair simulations for the isothermal and isentropic stratifications at
the same time. The results are plotted for Mach numbers of 0.3 and 0.9, and the corresponding density is
shown in the center of the domain.

From these images, differences in the flow become apparent. In both Mach number cases, the isothermal
case is greatly suppressed in comparison to the isentropic case. As discussed before, this effect arises from
the baroclinic torque production term in the vorticity equation. The flow field alters the density field in such
a way that the baroclinic torque term has to adjust to correct the relationship of the density and pressure.
Consequently, the density field is changed at the location of the vortex pair. At the Mach number of 0.9,
the suppression is great enough that at this time, the vortex pair is completely destroyed and the resulting
vorticity field is essentially random noise leading to a mixing regime. In the isentropic case, however, the
baroclinic torque term is never disturbed in a way to lead to the surrounding opposite vorticity field that
appears in the isothermal case, which shows itself in the density field remaining smooth. This allows the
vortex pair to quickly propagate through the fluid unhindered. As the Mach number increases, we do see
an increased dissipation of vorticity resulting in the propagation to be slowed, but the vortex pair is able to
move, unlike in the isothermal case. Finally, the increased background stratification of the isentropic case
results in the vortex pair being pushed closer together. This is another trait that appears in the RTI case
as well. In the vortex pair case, the stratification causes the dissipation of the vorticity field, but in the RTI
case, the potential energy of the instability allows it to keep moving, albeit at a much reduced rate, after
the vorticity is suppressed. By also moving the pair closer together, there should be an increased induced
velocity of the spike tip. This has been shown to be true for RTI, and thus these simulations relate well.

Based on this vorticity analysis, we can predict whether an instability will be fully suppressed or allowed
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(a) Isothermal

(b) Isentropic

(c) Isopycnic

Figure 2. A comparison of the mass fraction contours for all the stratifications considered. The isothermal
case is at the top, followed by the isentropic, and then the isopycnic. Going from left to right, the Mach
number is increasing in each simulation. The leftmost is Mach of 0.3, the center 0.6, and the right 0.9. All of
the simulations are shown at the same time. The heavy fluid is shown in red, and the light fluid is shown in
blue.
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(a) Isothermal

(b) Isentropic

(c) Isopycnic

Figure 3. A comparison of the heights of the spike and bubble tips for the instability growth over time. The
top plot shows the isothermal case, the middle shows the isentropic, and the bottom shows the isopycnic. In
each plot blue represents a Mach number of 0.3, green is 0.6, and red is 0.9. Solid lines show the height of the
spike dropping downwards while dashed lines show the height of the bubble rising.
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(a) M=0.3

(b) M=0.6

(c) M=0.9

Figure 4. An alternative view of the growth rates of the instability in the various stratifications. The top
figure displays all the background stratifications at a Mach number of 0.3, the middle at 0.6, and the bottom
at 0.9. The blue lines show the isothermal case, green is the isentropic case, and red is the isopycnic case.
Each plot displays the growth rate of just the spike over time.
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Figure 5. A comparison of the vorticity field generated by a vortex pair (left), and Rayleigh-Taylor instability
(left).
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(a) Bubble

(b) Spike

Figure 6. A comparison of the vortical structures and their development for a vortex pair propagating up
(top) like a bubble and down (bottom) like a spike in the isothermal stratification of M = 0.3. The left plot
shows the vorticity, center the compression, and the right plot shows the baroclinic torque term.
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(a) M=0.3

(b) M=0.9

Figure 7. A comparison of the vortex pair propagation through stratified media. On the left of each image
are the results for the isothermal stratification, and the right shows the isentropic stratification results. The
main representation is the vorticity field, and to the right of each vortical field is the resulting density along
the centerline of the domain. The top image is for a Mach number of 0.3, and the bottom image for 0.9. Time
is the same for all images.

to continue propagating based on the vortex pair interaction with background stratification. Based on this
knowledge, the vortex pair simulations only predict the complete destruction of the vortical field in the
isothermal scenario, which corroborates our RTI results. From this logic, it can be predicted that given a
longer running time, the isentropic and isopycnic cases should continue growing and evolving and never be
fully suppressed.
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V. Conclusions

Simulations of the Rayleigh Taylor instability have been carried out for isothermal, isentropic, and isopyc-
nic background stratifications. Each stratification was tested at various strengths corresponding to isothermal
Mach numbers of 0.3, 0.6, and 0.9. It was observed that the isothermal stratification leads to the full sup-
pression of the instability for all but the weakest background stratification, but even the weakest background
stratification is significantly suppressed in comparison to the growth with the other stratifications.

For the isentropic stratification, it was found that the initial growth is suppressed in a similar way with
the isothermal stratification, but at late times there is an acceleration of the bubble and spike tips, and the
high Mach number growth approaches that of the lowest Mach number. Also, the isentropic stratification
affects the spike more than the bubble, exaggerating the asymmetry between the two.

Finally, the isopycnic stratification was found to also lead to the initial suppression in the early growth
stages with increasing Mach number. As the instability is allowed to grow in the isopycnic scenario, however,
both the bubble and spike accelerate at greater rates with higher Mach number stratifications. The ultimate
mechanism of this scenario is still under investigation and will be revealed through further research efforts.

These conclusions were tested against vortex pair analogs. The tests showed that the baroclinic torque
vorticity term caused the greatest effect in the isothermal scenario, resulting in greater suppression of the
growth. The vortex pair studies also helped to shed some light on how the isentropic stratification results in
the asymmetry of the bubble and spike and why the spike is able to accelerate as it does. Further research
will involve exploring all of these same effects, but with higher resolution and higher Reynolds number cases.
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