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ABSTRACT

Hybrid turbulence models that can accurately reproduce unsteady three-dimensional flow physics across the entire range of grid scales and
turbulence dynamics from Reynolds-averaged Navier–Stokes (RANS), through large-eddy simulation (LES), down to direct numerical simu-
lations (DNS) are of increasing interest to the turbulence modeling community. However, despite decades of research and development, the
basic tasks of eliminating poor-performing hybrid RANS-LES models and accelerating adoption of superior models through well-designed
validation and verification have yet to occur. As a step in this direction, in this work we evaluate thirteen different hybrid RANS-LES models
via systematic grid refinement of decaying homogeneous isotropic turbulence. We further derive a novel mathematical framework for assess-
ing the energy partitioning dynamics of each Hybrid RANS-LES model, wherein model-to-model variations in energy partitioning can be
interpreted as different feedback mechanisms operating on a low-dimensional nonlinear dynamical system. We found that model forms simi-
lar to the flow simulation methodology—also often termed very-large eddy simulation—are dynamically inconsistent with DNS at all resolu-
tions. Additionally, we found a strong dynamical similarity in the feedback mechanisms of all models related to detached eddy simulation
and partially averaged Navier–Stokes that is inherent to their general model forms.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0228561

I. INTRODUCTION

Modeling turbulent flow phenomena is a critical aspect of under-
standing and predicting a myriad of important engineering and scien-
tific problems (e.g., aerodynamics,1 wind energy,2 nuclear fusion
experiments,3–5 earth system,6 and astrophysics7). In most applica-
tions, turbulent flows are challenging to model computationally due to
non-equilibrium dynamics, significant three-dimensional (3D) inho-
mogeneous features, and very large ranges in characteristic dimen-
sional scales. Reynolds-averaged Navier–Stokes (RANS) models of
turbulence, which are the state-of-the-practice for engineering design,
are capable of capturing flows with very large ranges in characteristic
dimensional scales (e.g., very high Reynolds numbers, Re). However,
unsteady RANS simulations (URANS) perform poorly for simulta-
neously non-stationary and inhomogeneous flows, where there is a
lack of conceptual clarity regarding what properly constitutes an
ensemble-average solution to the Navier–Stokes equations.8 In con-
trast, well-resolved large-eddy simulations (LES), which seek a spatially
filtered solution to the Navier–Stokes equations and are the

state-of-the-art in 3D inhomogeneous turbulence modeling, are com-
putationally inaccessible for flows with very large Re.

For these reasons, a great number of hybrid RANS-LES (HRL)
modeling concepts have appeared in academic and commercial use
over the last few decades. These wide-ranging efforts are united by the
shared objective to combine the best aspects of both RANS and LES in
order to accurately reproduce unsteady 3D flow physics at an afford-
able computational cost. However, there is significant diversity in the
mathematical methods and theoretical or practical justifications under-
pinning these various hybrid models, and much work has been done
simply to catalog and group together similar concepts. (We recom-
mend Fr€ohlich and Von Terzi,9 Sagaut et al.,10 Chaouat,11 and Heinz12

for a comprehensive survey of HRL concepts and their categoriza-
tions.) For instance, HRL concepts are generally categorized by general
traits such as “zonal” methods, which switch between distinct URANS
and LES models based on a user-prescribed location within the
domain (e.g., distance from a wall), “blended” methods, which com-
bine separate RANS and LES model stresses at all grid points, or
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“unified” models, which output a single turbulence stress at all points
from a single set of model equations that exhibit aspects of both the
RANS and LES modeling paradigms. We take care to distinguish
between our use of the very similar terms URANS and RANS. Within
this paper, RANS refers to the general mathematical model form,
which may be potentially utilized in an HRL concept to directly com-
pute LES-like solutions that resolve turbulence fluctuations. In con-
trast, URANS will always refer specifically to computations seeking a
statistical-average solution.

The most widely utilized HRL methods are all unified models
that could be applied to any turbulence flow regime, wall-bounded or
free, and including flows that lack a definable statistical average flow
field. These models are also able to span the entire range of turbulence
scales between URANS and direct numerical simulation (DNS)—
where the full 3D and time-resolved variability of the turbulent fluctua-
tions is computed. Such HRL models are often referred to collectively
as scale-resolving simulations (SRS)13,14 and include the various
detached eddy simulation (DES) models,1,15 the functionally equiva-
lent partially averaged Navier–Stokes (PANS)16,17 and partially inte-
grated transport (PITM)18,19 models, and the loose family of flow
simulation methodology (FSM)20,21 and very large eddy simulation
(VLES) models. These unified SRS models are the main modeling sub-
ject of this work.

A strong motivation for most, if not all, HRL concepts is that
URANS near-wall modeling significantly outperforms resolved LES in
both accuracy and cost for attached boundary layers. Much time and
attention has been paid to the algorithmic and computational-grid
interfaces between URANS-based near-wall approximations and “free-
stream” turbulence closures of all kinds—whether another RANS
model,22 HRL model,15 or LES model.23 However, wall models are
generally interchangeable and can be added as an algorithmic exten-
sion to any underlying turbulence model. Therefore, it would be more
apt to describe practical HRL models as a triple combination of near-
wall, RANS, and LES capabilities. Unfortunately, the potential deficien-
cies of HRL model performance in unbounded flow regimes are
routinely under-emphasized due to a persistent and widespread focus
on testing model performance in wall-bounded industrial and aero-
space flows. This has caused a tendency to conflate the separable
aspects of model performance in near-wall flow regions—where the
specific wall model treatments and variations in grid structure deter-
mine overall accuracy—and model performance far from walls or in
boundary-free flows (e.g., Rayleigh–Taylor or shear driven mixing,
jets, wakes)—where grid resolutions tend to be much coarser, Remuch
higher, and grid structures more uniform and isotropic.

Such a strong focus on boundary-layer-driven, complex flow
cases have limited the development of formal verification and valida-
tion (V&V) procedures for HRL models.13,14 Errors in computations
of these flows are usually dominated by the choice of specific wall func-
tion and near-wall grid structure, with overlapping model-form and
numerical errors propagating from boundary layers into the free-
stream regions of the flow. In these cases, it is impossible to unambigu-
ously evaluate the performance of the underlying HRL model, and the
objective comparison of several models head-to-head within a single
computational code is rarely presented. A systematic comparison of
several HRL models within a single numerical code based on canonical
flow cases free from these near-wall modeling influences can focus on
assessing model-form error while explicitly controlling for errors and

uncertainties due to numerical discretization and the experimental ini-
tial and boundary conditions. Therefore, we address two objectives in
this study: to develop a formal validation methodology for assessing
SRS model-form errors in unbounded flow conditions and to uni-
formly apply this methodology to a wide range of models using a single
computational code with minimal numerical error.

Perhaps the most basic approach to assessing model error is to
determine if an HRL solution is consistent with the true Navier–Stokes
dynamics coarse-grained by a spatiotemporal filter operation. Friess
et al.24 refer to this expectation as an HRL model’s self-consistency with
the resolved turbulence it captures as the notional filter width is sys-
tematically varied between URANS and DNS as part of the V&V pro-
cedure. Furthermore, an HRL model should satisfy this expectation
even if the model is not explicitly based on the filtered Navier–Stokes
equations, as in traditional LES, by enforcing the partition of turbu-
lence kinetic energy between resolved and modeled components that is
dynamically consistent with the implied filtering operation arising
from each unique combination of computational grid widths, time
step sizes, initial and boundary conditions, and scale-determining
model coefficient values.14 Both Chaouat11 and Heinz12 similarly
emphasize the correct partitioning of kinetic energy as both the pri-
mary a priori modeling objective and a posteriori diagnostic criterion
for assessing model dynamics.

In the present study, we choose to evaluate HRL model energy
partitioning dynamics via systematic grid refinement of decaying
homogeneous isotropic turbulence (HIT). Decaying HIT is an excel-
lent minimum working example as all two-equation, linear eddy vis-
cosity RANS models reduce to an equivalent system of ordinary
differential equations. In fact, k–x, k–s, k–L, etc., can all be derived
algebraically from the k–e model for homogeneous turbulence cases,
and the URANS k–e equations can very well model a power-law decay
process in isotropic turbulence. More complicated flow cases should
be considered in a comprehensive V &V plan; however, our choice to
use decaying HIT as the test case allows for a consistent assessment of
modeling error using a single minimal-error numerical implementa-
tion. Additionally, demonstrating self-consistency for HIT improves
overall confidence in SRS-type HRL models.

We evaluate the posterior performance of thirteen distinct SRS-
type HRL models that can be derived from the k–e RANS model. We
classify these as either DES-like, PANS-like, or FSM-like models. The
energy-partitioning dynamics of these HRL models are evaluated
against both the filtered DNS truth as well as the dynamics of two con-
trol models: the standard k–e (SKE) RANS model and a one-equation
subgrid-scale (SGS) LES model, i.e., a constant-coefficient k-SGS
model. The SKE model, tested as an HRL model and not as a URANS,
is the mathematical baseline that each true HRL model directly modi-
fies in some way. The k-SGS LES model, which is essentially the
k-equation of SKE with a simplified algebraic model for e, acts as a per-
formance baseline for assessing the relative accuracy of each HRL
model in comparison with a traditional LES model. We have not cho-
sen to use as a control any of the more common algebraic LES mod-
els,25 such as Dynamic Smagorinsky, since these models do not
provide a solution for the subgrid-scale kinetic energy and are, there-
fore, unsuitable for evaluations of energy partitioning dynamics.

In Sec. II, we first introduce the concept of power-law decay in
HIT and how it can be modeled by k–e URANS. Second, we present a
single set of generalized k–e governing equations that can be used to
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classify HRL models as DES-like, PANS-like, or FSM-like according to
the coefficients they modify. We then introduce each of the thirteen
HRL models to be tested in this study and classify them in the afore-
mentioned three major classes. Finally, we derive a set of non-
dimensional differential equations for the evolution of the power-law
exponents of the resolved and modeled kinetic energies that can be
used to sensibly compare model dynamics of decaying HIT across all
times, filter scales, and energy partitioning levels. In section III, we
describe the minimal-error pseudospectral solution method employed
for every simulation—whether DNS, LES, RANS, or HRL. Following
that, we present detailed results of the energy partitioning dynamics
for each model, and we compare and contrast the differing nonlinear
feedback mechanisms that each major HRL class (i.e., DES, PANS,
and FSM) induces to modify the baseline SKE dynamics. Finally, we
summarize and conclude our important findings.

II. THEORY AND GOVERNING EQUATIONS

In the present simulations, incompressible and isotropic turbu-
lence (HIT) is represented by the Navier–Stokes equations subject to
specific initial and boundary conditions, as given by

@ui
@t

þ uj
@ui
@xj

¼ @

@xj
�pdij þ 2�Sij
� �

; (1)

where ui is the velocity vector, p is the dynamic pressure divided by
the constant fluid density, � is the kinematic viscosity, and Sij
¼ 1

2 ð@ui=@xj þ @uj=@xiÞ is the strain tensor. Decaying HIT has zero
mean velocity, huii ¼ 0 as well as zero mean spatial gradients,
@h�i=@xj ¼ 0, including hSiji, where h�i denotes the spatial (Reynolds)
average of a quantity, and thus, the mean turbulence quantities depend
only on time. In particular, the mean turbulent kinetic energy (TKE),
Kt ¼ 1

2 huiuii, and mean viscous dissipation, Et ¼ 2�hSijSiji, are theo-
rized to conform to a power law solution,26

Kt ¼ Kt;0 1þ t
ns0

� ��n

; (2a)

Et ¼ Et;0 1þ t
ns0

� ��ðnþ1Þ
; (2b)

where s0 ¼ Kt;0=Et;0 is the integral timescale at the start of decay
(t ¼ 0) and n is the exponential decay rate. Dividing Eq. (2a) by (2b)
gives Kt=Et ¼ s0 þ t=n, and so, n can be determined from DNS data
by a simple linear least squares fit.

The power-law decay process can also be described by simple lin-
ear ordinary differential equations (ODEs), which are derived by
substituting the non-dimensional decay time, t0 ¼ 1þ t=ns0, into Eq.
(2), taking the logarithm of both sides, and then differentiating with
respect to ln t0,

d lnKt

d ln t0
¼ �n;

d ln Et

d ln t0
¼ �ðnþ 1Þ: (3)

The standard k–e URANSmodel of HIT is a coupled system of nonlin-
ear ODEs,

dKt

dt
¼ �Et; (4a)

dEt

dt
¼ �Ce2

E2
t

Kt
; (4b)

where Ce2 is a free model constant. Ce2 can be related to n by applying
the chain rule for differentiation,

d ln y
d ln t0

¼ 1
t0
dt0

dt

� ��1
1
y
dy
dt

¼ t þ ns0
y

dy
dt

;

to Eq. (4)

d lnKt

d ln t0
¼ �ðt þ ns0Þ Et

Kt
¼ �n; (5a)

d ln Et

d ln t0
¼ �Ce2ðt þ ns0Þ Et

Kt
¼ �Ce2n: (5b)

and comparing the result to Eq. (3). Equations (5a) and (5b) are clearly
equivalent ODEs, differing only by the constant multiplier
Ce2 ¼ ðnþ 1Þ=n. The various steps required to relate Ce2 to n, when
taken in a different order, can actually be used a priori as a partial deri-
vation of the standard k-e RANS model.

Though mean turbulence quantities in decaying HIT are depen-
dent only on time, the local and instantaneous turbulence fluctuations
remain three-dimensional quantities in space that can be filtered,
resulting in the partition of TKE into resolved and modeled (subgrid-
scale) energies. When a convolutional spatial filter, denoted by , is
applied to Eq. (1), the filtered Navier–Stokes equation is given as

@ui

@t
þ uj

@ui

@xj
¼ @

@xj
�pdij þ 2�Sij � sij
� �

; (6)

where sij ¼ uiuj � uiuj is the turbulence stress, and half its trace is the
modeled kinetic energy km ¼ 1

2 sii. The resolved kinetic energy is
kr ¼ 1

2 uiui, and the average of their sum is total TKE, Kt

¼ Km þKr ¼ hkmi þ hkri. The mean dissipation can be similarly
partitioned as Et ¼ Em þ Er ¼ hemi þ heri, where er ¼ �jSj2,
em ¼ �ðjSj2 � jSj2Þ, and jSj ¼ ð2SijSijÞ1=2. The partition of mean TKE
between resolved and modeled components in decaying HIT is gov-
erned solely by viscous dissipation and the cross-scale energy transfer
termP ¼ �sijSij,

dKr

dt
¼ �hPi � Er; (7a)

dKm

dt
¼ hPi � Em; (7b)

where the sum of Eqs. (7a) and (7b) reduces to Eq. (4a).
The notion that a single turbulence model can be general enough

to be valid for any physical fidelity between URANS and DNS is sup-
ported by several studies. Germano27 introduced the concept of gener-
alized central moments, demonstrating that the filtered Navier–Stokes
equations have the same mathematical form as their Reynolds-
averaged counterparts. Saenz et al.28 further extended Germano’s
formalism to two-point, positive-definite filter kernels applied to
variable-density turbulence and demonstrated that various central
moments for the filtered variable-density NS equations and their real-
izability conditions converge to the corresponding URANS equations
and realizability conditions, in the limit of large filter widths along
directions of homogeneity. Therefore, the spatial filter operator, �,
could be interchanged with the Reynolds average operator, h�i, without
altering the form of Eq. (6). The principal differences between LES and
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RANS models lie in the physical interpretation and modeling con-
straints placed on the turbulence stress, sij. In practice, LES models are
functionally distinct from RANS models only in that the former are
dependent on a user-defined spatial filter scale (e.g., the local computa-
tional grid width).

LES models of turbulence are largely concerned with finding
model forms that give the correct average cross-scale energy transfer,
hPmi ¼ �hsmij Siji � hPi, where Pm and smij denote the modeled val-
ues while the true P value can be determined from DNS data. Most
typical LES models, like their RANS counterparts, are linear eddy vis-
cosity models that prescribe the form smij ¼ �2�mSij þ 2

3 kmdij, where
�m is the model’s eddy viscosity. For example, the one-equation k-SGS
model—a very useful baseline LES model to compare against DES
modeling—sets �m ¼ CmD

ffiffiffiffiffiffi
km

p
and solves a transport equation

for km,

@km
@t

þ uj
@km
@xj

¼ Pm � em þ @

@xj
� þ �m

rk

� �
@km
@xj

" #
; (8)

which is closed by Pm ¼ �mjSj2 and em ¼ Cek3=2m =D, where D is the
uniform grid scale. The model coefficients Cm, Ce, and rk are constants
that can be determined empirically from a reference DNS simulation
or using a dynamic procedure. A complete accounting of the historical
development, theoretical justification, and possible alternative dynamic
coefficients for the k-SGS model can be found in Sagaut.25

In contrast, the two-equation SKE RANS model removes any
dependence on D (or any other resolution-like parameter) from the
one-equation LES model by setting �m ¼ Clk2m=em and prescribing a
full differential transport equation for em,

@em
@t

þ uj
@em
@xj

¼ em
km

Ce1Pm � Ce2emð Þ þ @

@xj
� þ �m

re

� �
@em
@xj

" #
:

(9)

The complete SKE model consists of both Eqs. (8) and (9), together
with the constant coefficients Cl, rk, re, Ce1, and Ce2. The values of
these constants can be set either by theoretical considerations (e.g.,
requiring that Ce2 give a specific power-law decay rate of TKE, as
above) or by empirical calibration to a reference experiment. The par-
ticular values of the SKE and k-SGS constants used here are shown in
Table I. The inclusion of a CD constant as a part of the definition for
the k-SGS model constants is explained in Subsection IIB, while the
nonstandard value for Ce2 is explained in the methods section,
Subsection IIIA.

To perform a URANS simulation with the SKE model, Eq. (6)
would need to be solved in addition to Eqs. (8) and (9), but with all fil-
tered quantities (e.g., ui, km, em) conceptually re-interpreted as mean
quantities for consistency (e.g., huii, Kt, Et). However, no change in
the mathematical form is required for the SKE model to be employed
directly as a crude SRS-type HRL model. This is why, in practice, simu-
lations intended to be URANS can easily produce local and

instantaneous turbulence fluctuations,8 and why we present the model
using the same coarse-graining notation as for LES.

As a basis for comparison, all of the HRL models tested in this
study will be presented using a single set of generalized k–e transport
equations,

@km
@t

þ uj
@km
@xj

¼ Pm � C�
k2em þ @

@xj
� þ �m

rk

� �
@km
@xj

" #
; (10a)

@em
@t

þ uj
@em
@xj

¼ em
km

C�
e1Pm � C�

e2em
� �þ @

@xj
� þ �m

re

� �
@em
@xj

" #
;

(10b)

where in �m ¼ C�
lk

2
m=em, and one or more of the SKE model constant

coefficients is replaced with a resolution-sensitive, non-dimensional
function (denoted as C�). The coefficient C�

k2 (named by analogy to
Ce2) is added to Eq. (10a) in comparison with Eq. (8) and, therefore,
must be equal to one for SKE or wherever an HRL is meant to produce
a strictly URANS solution. Wherever C�

k2 is non-unity, we take special
care to note that em must be regarded as a generalized scale-
determining variable and not the actual quantitative rate of dissipation
of km, which becomes C�

k2em.
In the following subsections, we present thirteen distinct HRL

models divided into three categories as PANS-like (models using only
a nonstandard C�

e2 coefficient), DES-like (i.e., models that include a
non-unity C�

k2 coefficient, among others), or FSM-like (models using
only a nonstandard C�

l coefficient). Three models, collectively known
as continuous eddy simulation (CES) models, are categorized simulta-
neously as both DES and PANS-like—despite utilizing different sets of
hybridized coefficients—due to their shared theoretical development
and posterior performance. A concise listing of each HRL model to be
presented is given in Table II.

A. PANS-like models

The partially averaged Navier–Stokes (PANS) modeling strategy,
also known as the partially integrated transport model (PITM) strat-
egy, is the modification of the Ce2 coefficient in the em transport equa-
tion by a resolution control parameter, R 2 ½0; 1�, such that

C�
e2 ¼ Ce1 þ RðCe2 � Ce1Þ; (11)

where Ce1 and Ce2 are the baseline SKE model constants. The PANS
model of Girimaji17 is derived in physical space by making some broad
assumptions about the relationship between the URANS transport
equations for Kt–Et and the average of the modeled transport equa-
tions for km–em, resulting in Rpans ¼ Fk=Fe, where Fk ¼ Km=Kt and
Fe ¼ Em=Et. The derivation requires the assumption that Fk and Fe
are constant in time. Additionally, in practice, it is assumed that the
Reynolds number is high enough that Fe � 1 for all desired grid resolu-
tions. Furthermore, since Fk may be difficult to compute in complex flow
geometries lacking homogeneity or stationarity, Girimaji and Abdol-
Hamid16 used simple dimensional analysis to determine a lower bound
for Fk and recommend that the user manually pick a temporally constant
“target” resolution, Rc, for the simulation, with the recommendation that

Rc � ðD=LtÞ2=3, whereLt ¼ K3=2
t =Et is the integral length scale.

The PITM18,29 formulation is derived in spectral space by assum-
ing homogeneous turbulence, equilibrium inertial range dynamics,

TABLE I. Standard k–e (SKE) and k-SGS model coefficients.

Cl rk re Ce1 Ce2 CD Cm Ce

0.09 1.0 1.3 1.44 1.714 0.61 ClCD 1=CD
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and high Reynolds number (i.e., Fe � 1) from the start, resulting in
Rpitm ¼ Fk. In practice, Chaouat and Schiestel19 derive a target resolu-
tion parameter from a von K�arm�an type energy spectrum. While the
von K�arm�an spectrum is a continuous class of spectra depending on
the choice of a free exponent parameter, the standard choice (see
source) results in

RvK ¼ 1þ C9=2
0 p

Lt

D

� �3
" #�2=9

; (12)

where C0 ¼ 2
3C

�1
K and CK � 1:6 is the Kolmogorov constant.

B. DES-like models

Detached eddy simulation (DES), as a modeling strategy, is the
modification of one or more RANS model terms by substituting an
LES model length scale in place of the RANS model length scale in
order to achieve LES-like behavior from the model wherever the LES
scale is smaller than the RANS scale.10,15 While DES was initially
developed to address wall-bounded flows, as stated in Sec. I, this is still
a unified model that is applicable to any turbulence flow configuration,
wall-bounded or free, and including flows that lack a definable statisti-
cal average flow field. Since DES-type models have seen numerous
applications in all types of practical turbulent flows, these are consid-
ered in our comprehensive model comparisons.

The standard form of DES—by far the most commonly used
HRL model—modifies the implicit length scale in the destruction term
of km (two-equation DES30) or �m (one-equation DES1) and nowhere
else,

DES: C�
k2 ¼ f �1

D ; fD ¼ min 1;
CDD
‘m

� �
; (13)

where CD ¼ 0:61, ‘m ¼ k3=2m =em, and all other SKE coefficients remain
unmodified. For homogeneous turbulence with uniform structured
grids, there is no difference between standard DES and any of its more
sophisticated versions, such as delayed DES (DDES) and improved
delayed DES (IDDES). When CDD=‘m > 1, fD is limited down to 1,
and DES reverts to the SKE RANS model at that grid point (though
the simulation as a whole may not be considered a URANS).
Wherever fD < 1, the model gives C�

k2em ¼ k3=2m =ðCDDÞ, which would
be the same as the k-SGS LES model, except DES still uses em to scale
�m, and therefore, the simulation never actually reduces to k-SGS LES
at any time or location.

In contrast, extra-large eddy simulation (XLES) does provide a
complete reduction of a two-equation hybrid RANS form to k-SGS
LES, in the limit where fD < 1 at all grid points, by modifying both
C�
l and C�

k2. XLES was first proposed by Bush and Mani,31 more
widely popularized (and named) by Kok et al.,32 and re-derived
from basic principles by Heinz,33 in which the model is referred to
as Unified LES-RANS, or Uni-LES, for short. For homogeneous tur-
bulence simulated using k–e, the XLES model can be given simply
as

XLES: C�
l ¼ fDCl; C�

k2 ¼ f �1
D ; (14)

where CD ¼ 0:61, as in standard DES, and Cl is the baseline SKE
model constant.

A conceptually similar model that modifies all four C� coeffi-
cients given in Eq. (10) is the approximate renormalization group
(RG) derivation from De Langhe et al.34 and De Langhe et al.,35 which
results in the alteration of the RANS timescale in both the km and em
equations, while �m is modified with a D4=3 scaling, consistent with
Kolmogorov scaling arguments. The authors never named their model,
so we label it RG-s,

TABLE II. Summary of turbulence models to be tested, including abbreviated nomenclature, citations for model origins, and a basic definition of nonstandard model coefficients.

Type Short name Nonstandard C� Description

LES k-SGS N/A One-equation model with constant coefficients25

RANS SKE N/A Standard k–e with Ce2 tuned to decay rate26.

DES-like
DES C�

k2 [Eq. (13)] “Standard” detached-Eddy simulation30

XLES C�
k2, C

�
l [Eq. (14)] extra-Large-Eddy simulation32 or “Uni-LES”33

RG-s C�
k2, C

�
l, C

�
e1, and C�

e2 [Eq. (15)] Approximate renormalization-group model34

PANS-like

PANS-Rc C�
e2 [Eq. (11); Rc ¼ Fk;0] Standard-practice PANS16

PANS-Fk=Fe C�
e2 [Eq. (11); R ¼ Fk=Fe] Theory-based PANS17

PITM C�
e2 [Eqs. (11) and (12); R ¼ RvK] Standard-practice PITM19

DES- & PANS-like
CES-K C�

k2 [Eqs. (18) and (12)] DES-like CES36

CES-Xa C�
k2, C

�
l [Eqs. 12 and (20)] XLES-like CES

CES-S C�
e2 [Eqs. (12) and (17)] Standard-practice PANS-like CES36

FSM-like

FSM-Speziale C�
l [Eq. (21)] Standard-practice FSM due to Speziale20

FSM-Dynamica C�
l [Eq. (22)] Dynamic coefficient via Germano–Lilly procedure40

FSM-RvK
a C�

l [Eq. (12); Fl ¼ RvK] Tests Fl ¼ Fk
38,39 using RvK estimate

FSM-fD C�
l [Eq. (13)] Tests C�

l component of XLES41

aSpecific model form is novel to this study.
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RG-s : C�
l ¼ f 4=3D Cl; C�

k2 ¼
C�
e1

Ce1
¼ C�

e2

Ce2
¼ f �2=3

D ; (15)

where Cl, Ce1, and Ce2 are the baseline SKEmodel constants. The deri-
vation does not recover the k-SGS model in the LES limit, instead RG-
s recovers a unique one-equation LES model based on the modified em
transport equation,

@em
@t

þ uj
@em
@xj

¼ C�
1e

2=3
m � C�

2e
4=3
m þ @

@xj
� þ �m

re

� �
@em
@xj

" #
; (16)

where �m ¼ ClðCDDÞ4=3e1=3m , C�
1 ¼ Ce1ClðCDDÞ2=3, and C�

2
¼ Ce2ðCDDÞ�2=3. It should be noted that even though RG-s does not
require km in the LES limit, the transported km solution using Eqs.
(10a) and (15) remains a consistent model form for the SGS kinetic
energy.

The critical similarity of these three DES-like models is that they
render the modeled viscous dissipation distinct from the scale-
determining variable via a non-unity C�

k2 and behave distinctly as
either RANS or LES in different regions of a homogeneous flow based
on a local and instantaneous turbulence resolution parameter, fD. In
contrast, two additional DES-like models, which are described later in
Sec. II C, use an averaged bridging-model style C�

k2 coefficient to simi-
lar effect without having a distinct LES mode.

C. PANS-like and DES-like CES models

The continuous eddy simulation (CES) paradigm of Heinz36 is to
take an existing hybridization approach, specifically DES, Uni-LES (a.
k.a. XLES), and PITM, and then determine new global model coeffi-
cient(s) by a variational analysis to form a variable-resolution bridging
model alternative in the case of DES and Uni-LES, and an improved
resolution coefficient in the case of PITM. All CES models forms are
meant to provide superior scale-resolving self-consistency24 in the con-
trol of energy partitioning. The end result for PITM, which Heinz36

classifies as “CES modification of the k-e equations via the scale-
determining equation,” or CES-KES, and which we shorten to CES-S,
finds that the resolution control parameter of Eq. (11) should be
F2
L ¼ F3

k=F
2
e , where FL ¼ Lm=Lt and Lm ¼ K3=2

m =Em. However, the
analysis presumes a high Re and coarse resolution where Fe � 1.
Moreover, Fk should always approach zero faster than Fe as the resolu-
tion is increased. Therefore, in practice, F2

L is replaced by the approxi-
mate target value Rces ¼ R3

vK, consistent with the approximation made
in PITM such that the CES-S model is given as

CES-S : C�
e2 ¼ Ce1 þ R3

vKðCe2 � Ce1Þ: (17)

The CES version of DES, which was originally named CES-KEK
and we label as CES-K, was found by variational analysis to be

CES-K : C�
k2 ¼ c� R3

vKðc� 1Þ; c ¼ Ce2

Ce1
; (18)

while the CES version of XLES (aka Uni-LES), originally named CES-
KEKU and we label as CES-U, was found to be

CES-U : C�
k2 ¼ c� R3

vKðc� 1Þ� �1=2
; C�

l ¼ Cl

C�
k2

: (19)

These definitions imply that CES-K and CES-U differ by a power of
two in their respective C�

k2 formulas, which is different than the rela-
tionship between DES and XLES. It will be shown later in Appendix A
that CES-U has noticeably lower accuracy at intermediate filter widths
as compared to CES-K or CES-S. As such, we instead adopt a straight-
forward alternative form, which does have the same accuracy as CES-
K and CES-S, which we label as CES-X,

CES-X : C�
k2 ¼ c� R3

vKðc� 1Þ; C�
l ¼ Cl

C�
k2

: (20)

D. FSM-like models

The original FSM variant is due to Speziale20 and seeks to reduce
the eddy viscosity by setting C�

l ¼ FlCl, where Fl is an ad hoc func-
tion based on the filter scale, D, and Kolmogorov scale, g ¼ ð�3=EtÞ,

Fl ¼ 1� exp �b
D
g

� �	 
a
: (21)

Typically a ¼ 1 and here we set b ¼ 0:008. Speziale’s original concept,
which he termed VLES, was to solve for the RANS stress by averaging
the resolved velocity field, but follow-on work from his collaborators,21

which coined the name FSM, re-interpreted the model to use the un-
averaged velocity field in the model equations. Many variations on the
definition of Fl exist in the literature, often with their own unique
names, such as limited numerical scales (LNS)37 or partially resolved
Navier–Stokes (PRNS).38,39

It is also possible to formulate dynamic coefficient forms of FSM,
as various dynamic-coefficient concepts are common in previous deri-
vations of various HRL model types including both FSM42 and
blended RANS-LES.43,44 For FSM, it is possible to compute a dynamic
coefficient via the Germano–Lilly procedure,40

C�
l ¼ hLijMiji

2hMpqMpqi ; (22)

where a test filter is used to compute

Lij ¼ guiuj � eu ieu j; Mij ¼ fTm
ij � T test

ij ;

Tm
ij ¼ k2m

em
Sij; T test

ij ¼ k2test
etest

eS ij;

ktest ¼ fkm þ 1
2
Lii; etest ¼ fem þ � gjSj2 � jeS j2� �

:

A more straightforward alternate choice to Speziale’s exponential form
is Fl ¼ Fk, which is found by comparing the trace of the modeled SGS
stress tensor to the trace of the total Reynolds stress. This is the logic
followed by the PRNS models, where rather idiosyncratic target esti-
mates for Fk are formulated. Since one form of PITM and all forms of
CES already use the same von K�arm�an spectrum estimate for Fk, a use-
ful comparison can be made by setting Fl ¼ RvK. Another straightfor-
ward alternative uses Fl ¼ fD, as in Johansen et al.,41 but also LNS37

when the chosen RANS and LES models are SKE and k-SGS. This
choice provides a useful counter-examples to DES and XLES and is
also an example of using a localized resolution parameter instead of a
global parameter.
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E. Nonlinear feedback analysis of energy partitioning

Because of the power-law decay rate, the mean resolved and
modeled energy can decrease by multiple orders of magnitude over
time, depending on the filter scale. As such, there is a strong potential
for large relative errors to accumulate at later times compared to the
filtered DNS ground truth, even though these errors would be very
small in absolute terms. Nevertheless, we need to be able to accurately
evaluate the energy partitioning dynamics of each HRL model at all
times and filter scales, irrespective of the differences in absolute magni-
tude. Therefore, we derive spatially averaged, non-dimensional equa-
tions for the generalized k-e system in the same manner as Eq. (5). The
result is a set of nonlinear ODEs governing the instantaneous power-
law decay rates ofKr,Km, and Em,

d lnKr

d ln t0
¼ � ðt þ ns0Þ

Kr
hPmi þ Erð Þ; (23a)

d lnKm

d ln t0
¼ ðt þ ns0Þ

Km
C�
l
k2m
em

jSj2
 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PK

� ðt þ ns0Þ
Km

hC�
k2 emi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

DK

; (23b)

d ln Em

d ln t0
¼ ðt þ ns0Þ

Em
hC�

e1C
�
lkmjSj2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PE

� ðt þ ns0Þ
Em

C�
e2
e2m
km

 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DE

: (23c)

The right-hand side of each equation above can be set equal to a
power-law exponent, as in Eq. (5), but one that is allowed to vary with
time. In this way, the production P and destruction D terms of the
modeled energy and dissipation represent strictly positive or negative
contributions, respectively, to the slope of Km and Em plotted on log-
log axes.

We can conveniently decompose DK by defining a dissipation-
weighted mean C�

k2 coefficient, fC�
k2g ¼ hC�

k2emi=Em and approxi-
mate the remaining production and destruction terms by their
leading-order Taylor-series expansions to remove statistical cross-
correlations,

PK � ðt þ ns0ÞhC�
lihjSj2i

Km

Em
; (24a)

PE � ðt þ ns0ÞhC�
e1ihC�

lihjSj2i
Km

Em
; (24b)

DK ¼ ðt þ ns0ÞfC�
k2g

Em

Km
; (24c)

DE � ðt þ ns0ÞhC�
e2i

Em

Km
: (24d)

From these expansions, we can see clearly that Eqs. (23b) and
(23c) are likely to be dynamically similar, with differences in partition-
ing dynamics largely driven by the specific definitions of each HRL
model’s generalized k–e coefficients, C�. We also recall that
Er ¼ �hjSj2i and note that

ðt þ ns0Þ
Kr

hPmi ¼ Km

Kr
PK:

As such, we can interpret model-to-model variations in energy parti-
tioning as different feedback mechanisms operating on the same low-
dimensional dynamical system. Each model starts from the same initial

state but follows a different trajectory through the space of instanta-
neous power-law decay rates for Kr, Km, and Em. This framework is
similar to the dynamical system fixed-point analysis utilized by Israel8

and references therein. The primary difference here is that we do not
approximate the full high-dimensional dynamics [i.e., Eqs. (6) and
(10)] with a closed set of ODEs that form a solvable low-dimensional
system. Instead, we directly solve the high-dimensional system (i.e.,
perform 3D simulations) and then rely on an unclosed set of ODEs
that approximate a low-dimensional dynamical system to simplify our
interpretation and understanding of the high-dimensional results.

III. NUMERICAL METHODS

The physical configuration of the simulations is a triply-periodic
cubic domain of size 2p� 2p� 2p and kinematic viscosity
� ¼ 2:4414� 10�4. Equation (1) (DNS) or Eq. (6) with the relevant
additional model transport equations (LES, SKE, and HRL) is solved
on a uniform mesh using a pseudo-spectral solver. The solver is based
on the open-source python package shenfun45 and a simplified
Navier–Stokes solver provided as part of the spectralDNS pro-
ject.46 We chose to use a pseudo-spectral solver for all simulations,
including HRL simulations, in order to have explicit, spectral-space
control over all numerical errors that might influence model behavior.
All simulations utilized 2=3 rds truncation dealiasing, classical fourth-
order Runge–Kutta explicit time integration, and dynamic time step-
sizing based on the Courant–Freidrichs–Lewy (CFL) condition. Details
of the code development can be found in Appendix B.

A. Details of the direct numerical simulation

Conducting DNS of decaying HIT requires special consideration
to achieve a power-law decay process,47,48 which is not a guaranteed
outcome at early times due to the nature of performing simulations on
a triply-periodic cube. Additionally, since a relatively long time series
of DNS data are required for analysis, and as the turbulence decays it
becomes increasingly well-resolved on a fixedmesh, we took advantage
of the extreme simplicity of truncating and padding spectral-space
checkpoint solution fields using shenfun in order to perform the
DNS at different mesh resolutions over time, which decreased overall
computational cost significantly.

The DNS run was initialized using a random initial velocity field
with a prescribed isotropic energy spectrum on a 7683 physical-
domain mesh (giving a dealiasing cutoff wavenumber of jc ¼ 256).
Turbulence was sustained using bandpass linear forcing49 of wave-
number shells 4 	 j 	 6 with a constant rate of energy injection
einj ¼ 1:0 untilKt and Et reached a statistically stationary state. At this
point, the simulation was restarted on a 15363 physical-domain mesh
(jc ¼ 512) and evolved for an additional two integral time scales. The
simulation was then restarted again at a final resolution of 20483

(jc ¼ 682) and evolved until statistical stationarity was recovered
(roughly one additional integral time), where the Kolmogorov scale
resolution was jcg ¼ 1:33. This point in the simulation is referred to
as the equilibrium condition for the forced turbulence, which defines
the (equilibrium) integral timescale of the forced turbulence,
seq ¼ Kt;eq=Et;eq ¼ 1:125. Forcing was then turned off, and the turbu-
lence was allowed to decay for two full equilibrium integral time scales
in order to asymptotically relax to a power-law decay process, at which
point jcg ¼ 2:48, providing extremely well-resolved viscous dissipa-
tion statistics.50
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The full 3D solution field output at this time we designate as
t ¼ 0, which is equivalent to t0 ¼ 1. This output was subsequently
used to generate filtered and sub-sampled solution fields to be used as
initial conditions for the HRL simulations. In order to continue collect-
ing long-time statistics and 3D snapshots for post-processing, the DNS
run was once again restarted, now at a lower mesh resolution of 15363,
and allowed to evolve for approximately seven seq, at which point the
DNS run was restarted one final time, at a resolution of 7683, and con-
tinued until t ¼ 38seq.

Table III lists all the relevant numerical and dynamical parame-
ters of the DNS data, including Taylor-scale Reynolds numbers Rek at
the forced turbulence equilibrium state, and the initial and final decay
states. Figure 1 shows the evolution of the Kolmogorov-scale resolu-
tion, jcgðtÞ, starting from before the final mesh refinement and show-
ing both mesh coarsenings, as well as the kinetic energy spectra, bEðjÞ,
at the final equilibrium point of the forced turbulence and before each
mesh coarsening during decay. Figure 2 shows the linear least squares
fit of the decay exponent n to the DNS data starting from t ¼ 0 as well
as the analytical URANS solutions of Eqs. (2). This results in
n ¼ 1:401 and Ce2 ¼ 1:714.

B. Details of the hybrid RANS-LES simulations

Our choice to use a pseudospectral method required solving the
transport equations of the LES, SKE, and HRL models [Eq. (8) or Eqs.
(10a) and (10b)] using logarithmic solution variables (that is, ln km
and ln em) to enforce strict non-negativity and improve stability.51 An
additional growth/decay time step limiter based on the transported
model variables is also included in the dynamic time step update, in
addition to advection and diffusion limiters,

dtnew ¼ minð2dtold; dtadv; dtdiff ; dtkeÞ; (25a)

dtadv ¼ Cadv
dx

maxðju1j þ ju2j þ ju3jÞ ; (25b)

dtdiff ¼ Cdiff
dx2

2 � þmaxð�mÞ½ � ; (25c)

dtke ¼ Ckemin

���� y
@y=@t

����; 8y 2 fkm; emg; (25d)

where the min/max functions in Eq. (25) refer to finding the spatial
minimum or maximum over the entire 3D domain, and the effect of

dtke is to prevent km or em from growing (or shrinking) by more than
the multiple Cke at any point in the domain. That is, if Cke ¼ 0:1, then
km and em cannot change by more than 10% at any mesh point in a
single time step. For all simulations, Cadv ¼ 0:9 and Cdiff ¼ 0:33, while
we set Cke ¼ minð0:9; 0:01jf Þ. This limited URANS (jf ¼ 1) to

TABLE III. DNS configuration and decaying HIT parameters.

Nx 2048 Maximum physical mesh size
jc 682 Maximum spectral resolution
� 2:441� 10�4 Kinematic viscosity
seq 1.125 Integral timescale at t ¼ �2seq
s0 1.693 Integral timescale at t ¼ 0

t ¼ �2seq t ¼ 0 (t0 ¼ 1) t ¼ 38seq (t0 ¼ 19)

jcg 1.33 2.48 5.44 Kolmogorov-scale resolution
Rek 186 80 45 Taylor-scale Reynolds number
Kt 1.127 0.1383 2:295� 10�3 Total kinetic energy
Et 1.002 0.081 71 7:138� 10�5 Total dissipation

FIG. 1. Evolution of the DNS, (a) time series of the Kolmogorov-scale resolution,
and (b) kinetic energy spectra at t ¼ �2seq (end of forcing), t ¼ 0, t ¼ 7seq
(mesh coarsening), and t ¼ 38seq (final output).
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changes of 1% or less in km and em, while allowing those variables to
change by as much as 90% per time step at quasi-DNS resolution
(jf ¼ 128). The initial time step is set to a very small fixed number
(10�8) for all simulations, and the overall dynamic time step is allowed
to double, at most, from one step to the next.

Convergence studies of the filter-to-grid width ratio, D=dx, as
well as tests of explicit right-hand side (RHS) Gaussian filtering were
carried out for a subset of HRL models and filter wavenumbers,
jf ¼ p=D, to determine the accuracy and computational cost of carry-
ing out a systematic comparison of all of the HRL model variants,
SKE, and LES. In addition, all models were run with standard 2=3 rds
sharp spectral dealiasing at a resolution of D=dx ¼ 3:0 (jc=jf ¼ 2:0)
for jf 	 64 without any additional stability enhancements. At
jf ¼ 128, simulations were run at a resolution of D=dx ¼ 2:0 with the
additional stability provided by a secondary Gaussian filtering of the
initial km and em fields and explicit Gaussian filtering of both the eddy
viscosity �m field and the non-conservative RHS terms. Further details
of the switch to logarithmic solution variables, dealiasing, and the vari-
ous configuration tests are provided in Appendix B.

Initial conditions for the LES, SKE, and HRL simulations were
computed from the DNS data output at the snapshot designated t ¼ 0

using a Gaussian filter to compute the resolved velocity ui, as well as
km, and em. These fields were then sub-sampled to form the coarse-
grained initial conditions. Table IV provides a summary of the mesh
sizes and initial Fk and Fe values at t ¼ 0 for each filter width of
coarse-grained simulations. Figure 3 shows filtered kinetic energy spec-
tra of the DNS data at t ¼ 0, as well as the time series of Fk and Fe
from filtered DNS data for each filter wavenumber 1 	 jf 	 128.

The CES-K and CES-X models, having global non-unity C�
k2 val-

ues, can utilize two different initial conditions, based on the DNS-
derived dissipation, to slightly different behavior. Denoting the correct
initial subgrid-scale dissipation rate as e0sgs, the default condition (IC1)
initializes e0m ¼ e0sgs, leading the initial modeled dissipation of km in
Eq. (10a) to be greater than the filtered DNS field at all points,
C�
k2e

0
m > e0sgs. The second initial condition (IC2) sets e0m ¼ e0sgs=C

�
k2

such that the modeled dissipation of km is identical to the filtered DNS
field at all points, C�

k2e
0
m 
 e0sgs. It will be shown in Sec. IV that IC1

allows CES-K and CES-X to behave as DES-like while IC2 allows these
models to behave as PANS-like, without any modification to the model
forms themselves. To summarize, test results for all models except
CES-K and CES-X are presented using only IC1, while test results for
CES-K and CES-X are presented twice: once using IC1 to produce
their expected DES-like behavior, and once using IC2 to produce a
PANS-like behavior. DES-like models employing a spatially localized
C�
k2 function—namely, standard DES, XLES, and RG-s—produce

essentially identical results using either IC1 or IC2 and cannot produce
PANS-like behavior with a change in initial conditions, which we
explain in detail in Appendix C.

IV. RESULTS AND DISCUSSION

In this section, we present detailed results of the energy partition-
ing dynamics for each HRL model. Wherever DNS data are presented
alongside SKE, HRL, and LES dynamics, it has been post-processed
from fully resolved simulation outputs via Gaussian spatial filtering
and constitutes the true SGS dynamics. That is, we directly compute
the true turbulence stress sij, cross-scale energy transferP, SGS kinetic
energy km, and SGS viscous dissipation em, for each filter scale jf , and
at each DNS time output. However, we do not compute the true pro-
duction and destruction terms for the temporal evolution of em and,
therefore, present DNS truth data for PK and DK, but not for PE and
DE . Similarly, since the k-SGS model uses an algebraic formula for em,
we also do not model or computePE andDE for the LES baseline.

FIG. 2. Time series of (a) the integral timescale and (b) the total energy and dissi-
pation showing a linear least squares fit of the decay exponent, n, and the URANS
solution using the associated Ce2.

TABLE IV. Coarse-grained physical-space mesh size, initial energy fraction, and ini-
tial dissipation fraction for the HRL simulations.

jf Nx Fk;0 Fe;0

1 6 0.990 0.999 99
2 12 0.946 0.9998
4 24 0.825 0.998
8 48 0.642 0.991
16 96 0.451 0.965
32 192 0.273 0.877
64 384 0.131 0.660
128 512 0.0476 0.360
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Figure 4 provides an overview of how the standard-practice
forms of PITM, DES, CES-S, and FSM perform in comparison
with the SKE and k-SGS LES baselines and the filtered DNS
ground truth, in time series of the spatially averaged resolved
energy, Kr, and modeled energy, Km, at every filter width. This
provides a basic visualization of both how kinetic energy is parti-
tioned, and how each partition decays in time, while comparing a
representative variant of each model category. It can be seen in

Fig. 4(a) that all of the HRL models, but not SKE, achieve a very
accurate evolution of Kr as resolution increases toward DNS.
PITM, in particular, has excellent accuracy in Kr across all scales
jf � 4. In contrast, Speziale’s FSM is clearly the worst performing
model for jf 	 8, though no model compares well to DNS for
jf 	 2, except for the LES at jf ¼ 2 by coincidence (we note that
the LES dramatically undershoots the DNS truth for jf ¼ 1 and
then overshoots DNS for jf ¼ 4).

FIG. 3. (a) Filtered kinetic energy spectra at t ¼ 0 from DNS, and time series of (b) Fk and (c) Fe from filtered DNS data for each filter wavenumber 1 	 jf 	 128.

FIG. 4. Time series of (a) mean modeled kinetic energy, Km, and (b) mean resolved kinetic energy, Kr for filtered DNS, k-SGS LES, SKE RANS, DES, PITM, CES-S, and
FSM-Speziale. Values are normalized by the corresponding filtered DNS value at t0 ¼ 1 and then offset by a different fixed multiple for each jf to show each subplot on a sin-
gle log-scaled vertical axis.
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Turning to Fig. 4(b), only the LES and DES (which have a close
mathematical relationship) show a high degree of accuracy in Km at
fine resolutions (jf � 16) and later times (t0 > 3). However, PITM
and CES-S clearly outperform FSM for most filter scales
(2 	 jf 	 32) and at early times at the finest filter scales (jf � 64). In
fact, FSM notably performs worse than even SKE at late times (t0 > 5)
at the intermediate scale jf ¼ 8, which, with Fk;0 � 2=3 and Fe;0 � 1,
is precisely the kind of intermediate resolution at which an HRL model
is most necessary as an alternative to RANS and LES. In contrast,
PITM and CES-S both demonstrate highly inaccurate decay rates for
Km at near-DNS resolution (jf ¼ 128) and late times.

While these quantitative performance comparisons between
models are an important aspect of the verification and validation
(V&V) process, they do not provide any insight into why each model
behaves as it does. For that, we turn to the novel nonlinear feedback
analysis we derived in Sec. II E. Critical to this novel framework is
whether or not the first-order truncations in Eqs. (24a), (24b), and
(24d) can explain the relationship between each HRL’s initial perturba-
tion to, and subsequent deviations from, the baseline SKE dynamics.
As previously stated, we did not attempt to derive a fully closed
reduced-order approximation that could be used in place of full 3D
CFD simulations, and therefore, it is sufficient that these approxima-
tions have low a priori error. We computed the root mean square
(RMS) relative errors between PK, PE , and DE as defined in Eq. (23),
and post-processed calculations of their approximations at each time
from the simulation outputs of hC �i, hjSj2i,Km, and Em.

The SKE model, having no localized model coefficients (i.e.,
hC �i ¼ C), generally had a lower relative error than any HRL model,
with an RMS error ranging from 0:017% for DE at jf ¼ 1, through
intermediate errors such as 5:83% for PK at jf ¼ 16, up to 14:9%
for PE at jf ¼ 128. In contrast, the RG-s model—which has four
localized general coefficients contributing to increased cross-
correlations in higher-order terms—generally had the worst error
rates, roughly 1.5 times higher than SKE, with its highest RMS error
being 32:7%, also for PE at jf ¼ 128. However, the most substantial
differences between RG-s (and indeed any model with a localized
coefficient) and lower-error models with global coefficients are dur-
ing a short window of time near t0 ¼ 1, which will be addressed later
in this section. These results indicate that Eq. (24) can be employed
to provide a plausible explanation of the nonlinear energy partition-
ing behavior.

In the following subsections, we evaluate the PANS-like models
in fine detail first, as their uniform use of a single, global-valued, gener-
alized coefficient to modify SKE is the simplest to analyze as a feedback
mechanism operating on the simplified dynamical system implied by
Eq. (24). We then evaluate the FSM-like models, which all use the sin-
gle generalized C �

l coefficient. Three of these variants use a global-
valued coefficient, which provides a counterexample to the PANS-like
feedback mechanism. The fourth FSM model, FSM-fD, uses the same
local-valued C �

l coefficient as employed by k-SGS and XLES, providing
a necessary foundation for the subsequent detailed evaluation of the
DES-like models.

A. PANS-like models

In order to thoroughly test the dynamical behavior of the PANS-
like model form, we evaluate six different variants, including the stan-
dard PANS practice of choosing a constant resolution control

parameter (RCP), Rc, the standard PITM RCP, RvK, and a time-
varying version of the theoretical RCP for PANS, R ¼ Fk=Fe (in which
Fk and Fe represent the observed values of the HRL and not the filtered
DNS), as well as the all three CES variants using R3

vK. Here, CES-K and
CES-X start from initial condition option #2 (IC2) to induce PANS-
like behavior.

Figure 5 shows the time evolution of the mean model dynamics
of the six PANS-like models at jf ¼ 2, 16, and 128. While there is a
quantitative difference between PANS/PITM (shown in shades of pur-
ple) and CES (shades of orange), all six variants exhibit the same quali-
tative behavior at each filter scale. This is in spite of the fact that
CES-K and CES-X use different generalized coefficients and a different
initial condition for em, which is highlighted in the zoom inset plot of
Fig. 5(c). In fact, there is a very high degree of quantitative agreement
between the three CES variants (see also Appendix A).

Figure 6 shows the detailed time evolution of the nonlinear
power-law dynamics, as defined by Eq. (23), at jf ¼ 16. Results at this
filter width, which lies halfway between URANS and DNS, are demon-
strative of PANS-like energy partitioning behavior at all jf . There are
two important observations to be made from these data. The first is
that there is a strong correlation between the two production terms,
PK and PE [Figs. 16(e) and 16(h)], and between the two destruction
terms, DK and DE [Figs. 16(f) and 16(i)], for all PANS-like models,
lending additional credence to the approximations given in Eq. (24).
The second is that all six PANS-like models exhibit the same feedback
mechanism, with time series of each individual panel generally rising
and falling together, even if by varying degrees. Indeed, there is signifi-
cantly greater quantitative variation within the PANS/PITM models
than between the CES models, with PANS-Rc showing the least devia-
tion from the SKE baseline.

We recall that in four of the six variants (the two PANS, PITM,
and CES-S), only C �

e2 is modified with respect to the SKE model, while
the non-conforming CES-K and CES-X produce results very similar to
CES-S at all times. Therefore, we conduct the following feedback anal-
ysis for all PANS-like variants using just the C �

e2 mechanism. The anal-
ysis starts with the perturbation to the initial value ofDE , shown in the
inset of Fig. 6(i), due to smaller values for C�

e2 as compared to SKE.
This perturbation is also reflected as an initial increase in the logarith-
mic slope of Em in Fig. 6(g) compared to the SKE baseline (i.e., a
slower decay rate).

The slower decay of Em in turn induces substantially more posi-
tive trends inDK andDE [panels (f) and (i)], which vary in proportion
with Em, and, therefore, more negative trends in the logarithmic deriv-
atives of Km and Em [panels (d) and (g)]. These trends lead to lower
values for Km after t0 ¼ 1, while limiting the extent to which Em

becomes inflated compared to SKE. The initial perturbation also indu-
ces a substantially more negative trend in hPmi=Kr [panel (b)], which
approximately varies inversely with Em. This is equivalently seen as a
more positive trend in the derivative of Kr [panel (a)] and, thus, larger
Kr after t0 ¼ 1.

By the same approximation, PK and PE should show the same
decreasing trend as hPmi=Kr. Yet, these terms become only slightly
more negative at early times. This difference at t0 ¼ 1 cannot be
explained by our reduced-order system but would only have served to
reinforce the changes to the power-law trends in panels (d) and (g).
Once the feedback is established (i.e., for times t0 > 1), however, we
can attribute some of the difference between hPmi=Kr and the P
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terms to the fact that the leading-order approximation of the former is
proportional toK2

m=Kr, while the latter are only proportional toKm.
In any case, the increased magnitude ofKr directly alters the ratio

Er=Kr and likely indirectly inflates Er, as the power-law exponents of
the resolved-scale energy and dissipation should be linearly dependent
in the same manner as their subgrid-scale counterparts. This expected
increase in Er=Kr can be seen to occur in panel (c) in less than one
decay time (i.e., t0 < 2). The increasing trend in Er is directly equiva-
lent to an increasing trend in hjSj2i, which should reinforce the posi-
tive trends in DK and DE , while counteracting the negative trends in
PK, PE , and hPmi=Kr. Indeed, we see in panels (e) and (h) an imme-
diate and strong reversal in PK and PE toward positive growth at this
time, while hPmi=Kr begins to flatten out.DK and DE show an accel-
eration in their positive feedback slightly later, just before t0 ¼ 3, while
d lnKr=d ln t0 peaks at roughly the same time.

Over the long-term, the trends in each right-hand-side term of
Eq. (23), except hPmi=Kr, remain essentially constant after t0 ¼ 3,
and heading in the same direction as the DNS truth. On the other
hand, the trends in the power-law exponents, as well as hPmi=Kr,
slowly oscillate around more-or-less DNS-like trends over time. The
overall net effect of this feedback mechanism is to cause PANS-like
HRL models to rapidly deviate from their SKE starting point at early
times and behave qualitatively similarly to the DNS truth over medium
and long time scales, even while no individual PANS-like model quan-
titatively matches DNS for all quantities of interest.

The nonlinear feedback mechanism of the PANS-like models is
essentially the same as that outlined above for all jf , though there are
quantitative differences, which we elaborate at the near-URANS filter
scale, jf ¼ 2, and at the near-DNS filter scale, jf ¼ 128. Starting with
the near-URANS limit, Fig. 7 shows the detailed time evolution of the

nonlinear power-law dynamics for the PANS-like variants at jf ¼ 2.
Because of the strong dynamical similarity between production and
destruction terms demonstrated previously, we show only the Km

dynamics for brevity, and not the Em dynamics, which approximately
match theKm results.

The same feedback mechanism is active at jf ¼ 2 as at jf ¼ 16,
with the exception that the progression of the feedback is much slower,
and quantitatively much less pronounced. Subsequent to the initial
perturbation in DE and Em (which is not shown), we can follow the
feedback mechanism starting from the more positive trend in DK
[panel (f)] and a less positive trend in hPmi=Kr immediately after
t0 ¼ 1. These changes are equivalently seen as a less positive trend in
the logarithmic derivative of Km [panel (d)] and a less negative trend
in the derivative ofKr [panel (a)].

As before, there are no substantive changes to PK [panel (e)] and
PE (not shown) in comparison to SKE at early times. However, the
positive trend in the logarithmic derivative of Kr, which is only a very
tiny change in the magnitude of Kr (see Fig. 5), begins to induce a
noticeable increase in Er=Kr (and therefore hjSj2i) after roughly
t0 ¼ 5. Once this occurs, PK increases relative to SKE, while the
already enhanced growth in DK accelerates further, and the reduced
growth in hPmi=Kr is partially counteracted. These trends remain in
place for all later times, with the very-low-frequency oscillations seen
in the power-law exponents at jf ¼ 16 not directly apparent at
jf ¼ 2, likely due to the slower feedback progression and chosen cut-
off time of the simulations.

In contrast, the feedback mechanism at jf ¼ 128 proceeds much
more quickly, as shown in Fig. 8, resulting in an extended period of
late-time asymptotic behavior in the net decay rate of Km (and also
Em) that is substantially different from SKE. The net decay rate of Kr

FIG. 5. Comparing the mean model dynamics of six PANS-like HRL variants at filter wavenumbers jf ¼ 2, 16, and 128. Initial condition option #2 (IC2) is used in the cases of
CES-K and CES-X. Shown are time serious of (a) mean resolved kinetic energy, Kr , (b) mean modeled kinetic energy, Km, and (c) mean modeled dissipation, Em. Time series
for all turbulence models are normalized by the corresponding filtered DNS value at t0 ¼ 1 and then offset by a different fixed multiple for each jf to show each subplot on a
single log-scaled vertical axis.
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and the individual production and destruction terms closely match the
DNS truth at late times. However, the net decay rates of Km and Em

undershoot the DNS truth, leading to the large discrepancies seen in
Fig. 5 and in the hPmi=Kr evolution [Fig. 8(b)].

These changes in behavior from jf ¼ 2 to jf ¼ 128 are a consis-
tent trend across all jf . Quantitatively, there is also a clear trend that at
coarser resolutions (jf 	 16), the CES variants are more accurate than
any PANS/PITM model, while at finer resolutions (jf > 16), the
PANS-R ¼ Fk=Fe variant notably outperforms the other five variants.
This should not be a surprise, since the CES, PANS-Rc, and PITM for-
mulas were derived under the assumption of high Reynolds number
and coarse resolution (i.e., where Fe � 1), neither of which is true in
these cases, while the original PANS derivation does not make this
assumption.

B. FSM-like models

The primary purposes in testing the FSM-like model form are to
provide an alternate example of variable-resolution bridging from the
PANS-like form and to discern the dynamical relevance of the

hybridized C �
l coefficient in the XLES, RG-s, and CES-K models in

comparison with DES and CES-X. As such, we analyze four different
formulas for computing the eddy-viscosity reduction factor Fl: (i) the
original formula due to Speziale, (ii) a global Germano–Lilly dynamic
procedure, (iii) the PITM/CES resolution parameter Fl ¼ RvK, and
(iv) the XLES/k-SGS reduction factor fD. Of these, the Speziale coeffi-
cient and RvK monotonically decrease from Fl ¼ 1 (RANS) to Fl ¼ 0
(DNS) as jf and time increase. In contrast, neither fD nor the dynamic
coefficient decrease monotonically with filter scale or time. In the latter
case, the Germano-Lilly procedure is based on the assumption of jf
being in a region of extended scale similarity, which does not exist for
our DNS, as evidenced by Figs. 1(b) and 3(a). The behavior of fD will
be analyzed in detail in the next subsection. By testing both global and
local coefficients, as well as bridging (i.e., monotonically decreasing)
and non-bridging formulas, our evaluation of the FSM model form is
quite robust.

Figure 9 shows the time evolution of the mean model dynamics
of the FSM-like models, at jf ¼ 2, 16, and 128. It can be seen that all
four FSM variants demonstrate the same qualitative behavior as FSM-
Speziale. In particular, all four variants show an increase in resolved

FIG. 6. Comparing the energy partitioning dynamics of six PANS-like HRL variants at filter wavenumber jf ¼ 16. Initial condition option #2 (IC2) is used in the case of CES-K.
Shown are time serious of (first row) (a) the instantaneous power-law exponent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of
Kr due to Er ; (second row) (d) the instantaneous power-law exponent of Km, (e) non-dimensional production rate of Km, PK, (f) non-dimensional destruction rate of Km, DK;
(third row) (g) the instantaneous power-law exponent of Em, (h) non-dimensional production rate of Em, PE , and (i) non-dimensional destruction rate of Em, DE .
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FIG. 7. Energy partitioning dynamics of standard-practice PANS, PITM, and CES-K, and theory-based CES-S at the near-URANS limit of jf ¼ 2. Initial condition option #2
(IC2) is used in the case of CES-K. Shown are time serious of (first row) (a) the instantaneous power-law exponent of Kr , (b) non-dimensional destruction of Kr due to hPmi,
(c) non-dimensional destruction of Kr due to Er ; (second row) (d) the instantaneous power-law exponent of Km, and (e) non-dimensional production rate of Km, PK .

FIG. 8. Energy partitioning dynamics of the theory-based PANS, PITM, and CES-S, along with standard CES-K using IC2 at the near-DNS limit of jf ¼ 128. Shown are time
serious of (first row) (a) the instantaneous power-law exponent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of Kr due to Er ;
(second row) (d) the instantaneous power-law exponent of Km, (e) non-dimensional production rate of Km, PK.
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energy levels compared to SKE at all three resolutions [Fig. 9(a)], with
a close agreement with DNS at the near-DNS resolution. If only these
results were known, one might conclude that FSM significantly
improves the ability of SKE to perform scale-resolving simulations
beyond URANS. However, it is also immediately clear from panels (b)
and (c) that the FSM models in fact do not show any improved self-
consistency in modeling the subgrid-scale dynamics as compared to
SKE. In fact, all four variants closely agree with SKE at jf ¼ 2 and 16,
and demonstrate the same qualitative trends as SKE at jf ¼ 128. To
understand how FSM can behave so much differently than the PANS-
like models or k-SGS LES, even while converging to DNS in the
resolved energy, we turn to the detailed nonlinear power-law
dynamics.

Figure 10 shows the detailed time evolution of these dynamics for
the FSM-like variants at jf ¼ 16. It can be clearly seen that all four
variants have a qualitatively similar dynamic behavior which is much
different than the PANS feedback mechanism. Here, the FSM models
start by reducing the initial values of hPmi=Kr, PK, and PE [panels
(b), (e), and (h)]. These perturbations induce an immediate relative
increase in hjSj2i, as given by Er=Kr [panel (c)] for essentially all times,
and relative decreases in DK and DE [panels (f) and (i)] at the earliest
times. The initial offsets in PK and PE and the initial decreased trends
in DK and DE at very early times are revealed to induce nothing more
than a damped oscillation about the SKE baseline over the full time of
the simulations, and not a permanent alteration in the nonlinear
dynamics, unlike the PANS feedback mechanism. As such, the FSM
variants show little improvement in error over SKE in the evolution of
Km and Em. However, all four FSM-like variants still demonstrate a
reasonable agreement with the approximate dynamical system of
Eq. (24), especially the simple global-coefficient FSM-Speziale and
FSM-RvK models.

The FSM-like models show considerably more variation in the
expression of their underlying feedback mechanism as a function of jf

than does the PANS mechanism, as shown in Figs. 11 and 12. Here
again, we show only the Km dynamics, and not the Em dynamics, for
the sake of brevity. First, it can be seen that at jf ¼ 2, the dynamic-
coefficient and fD variants are initially identical to SKE RANS [Fig. 11,
panels (b) and (e)], while the Speziale and RvK-based models perturb
the SKE dynamics from the initial conditions. FSM-fD transitions to an
LES-like C �

l mode around t0 ¼ 4, while the dynamic coefficient model
remains locked to the SKE model until very late times (i.e., t0 > 10).
Regardless, all four models show almost no feedback inDK, which fol-
lows the SKE dynamics closely at all times [panel (f)].

In contrast, at jf ¼ 128, the hPmi=Kr and PK terms of most
variants experience very large initial perturbations compared to SKE
[Fig. 12, panels (b) and (e)], with the exception being FSM-fD, which
starts from the same smaller offsets as the k-SGS LES model for these
terms. These perturbations, in turn, still lead to a permanent increase
in Er=Kr [panel (c)] and initial decrease inDK, followed by an asymp-
totic return of the production and destruction dynamics to the SKE
RANS baseline [panels (e) and (f)]. However, the widely varying frac-
tional reductions in hPmi are sufficient to enable each variant to
achieve DNS-like behavior in the resolved turbulence dynamics [panel
(a)]. If the only metric of whether an HRL model improved upon
RANS was if it enhanced resolved turbulence fluctuations, it would
appear that FSM-like models are successful. This result is often
reported in tests of HRL models using complex wall-bounded flows at
high Reynolds numbers, but is clearly an insufficient test of model
performance.

C. DES-like models

Figure 13 shows the time evolution of the mean model dynamics
of all five DES-like models, which includes CES-K and CES-X utilizing
initial condition option #1 (IC1), at jf ¼ 2, 16, and 128. It can be seen
that the three traditional DES-like variants (shades of purple) are

FIG. 9. Comparing the mean model dynamics of the four FSM-like variants at filter wavenumbers jf ¼ 2, 16, and 128. Shown are time serious of (a) mean resolved kinetic
energy, Kr , (b) mean modeled kinetic energy, Km, and (c) mean modeled dissipation, Em. Time series for all turbulence models are normalized by the corresponding filtered
DNS value at t ¼ 0 and then offset by a different fixed multiple for each jf and quantity of interest to show each subplot on a single vertical axis.
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quantitatively very similar to each other at all three filter scales, as well
as to the LES (blue) at the two finer scales, despite the fact that only
XLES becomes mathematically equivalent to the k-SGS model when
C�
k2 > 1. Conversely, these three variants are only similar to the two

CES variants (shades of orange) at jf ¼ 2, where the three traditional
variants are mathematically equivalent to SKE (red) at t0 ¼ 1, and the
two CES variants are very nearly equivalent (C�

k2 � 1). Despite this,
the CES variants do behave qualitatively similar to LES and the other
DES-like variants at jf ¼ 16.

Overall, the traditional DES-like variants performs nearly identi-
cally to k-SGS LES for all jf > 2. The reason for this is made clear by
inspection of the probability distributions of the length-scale ratio
CDD=‘m for the standard DESmodel, shown in Fig. 14, which is repre-
sentative of the behavior of all three variants and k-SGS. Distributions
are plotted for every filter wavelength at three times, corresponding to
the initial conditions, half a decay timescale later, and at the final con-
ditions. For all resolutions jf > 2, the DES model initially behaves as a
pointwise LES-RANS hybrid [Fig. 14(a)], with CDD=‘m < 0 (C�

k2 > 1)
at some points, while CDD=‘m > 0 (C�

k2 ¼ 1) at other points.
However, the DES model rapidly suppresses these spatial fluctuations,

and, by t0 ¼ 1:5 [Fig. 14(b)], the PDFs of CDD=‘m collapse for resolu-
tions jf > 2, indicating that it is operating as a two-equation LES
model at nearly every point in the domain. For resolutions jf 	 2, the
DES starts in a purely SKE RANS mode at all points, but, at jf ¼ 2,
does make a slow transition to LES almost everywhere at later times
[Fig. 14(c)].

This transition from RANS to LES at jf ¼ 2 can be more clearly
seen in Fig. 15, which shows time series of the dissipation-weighted
average C�

k2 coefficient for DES, RG-s, and CES-K. Both DES and RG-
s at jf ¼ 2 begin the transition from RANS to hybrid RANS-LES
starting at roughly t0 � 4. In contrast, the simulation using CES-K,
which utilizes a global coefficient to bridge between RANS and DNS,
starts immediately as a hybrid model with C�

k2 > 1 at t0 ¼ 1 for
jf ¼ 2 and smoothly varies in time toward a similar final value of C�

k2
as in the simulations at jf ¼ 16 and 128. Not shown are the fC�

k2g
time series for XLES, which are very close to standard DES, and the
C�
k2 time series for CES-X, which are essentially identical to CES-K.

To compare and contrast these models further, we must inspect
their nonlinear power-law dynamics as defined by Eq. (23). Figure 16
shows the details of the nonlinear power-law dynamics of all five

FIG. 10. Comparing the energy partitioning dynamics of the four FSM variants at filter wavenumber jf ¼ 16. Shown are time serious of (first row) (a) the instantaneous power-
law exponent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of Kr due to Er ; (second row) (d) the instantaneous power-law expo-
nent of Km, (e) non-dimensional production rate of Km, PK, (f) non-dimensional destruction rate of Km, DK; (third row) (g) the instantaneous power-law exponent of Em, (h)
non-dimensional production rate of Em, PE , (i) non-dimensional destruction rate of Em, DE .
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FIG. 11. Energy partitioning dynamics of the four FSM variants at the near-URANS limit of jf ¼ 2. Shown are time serious of (first row) (a) the instantaneous power-law expo-
nent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of Kr due to Er ; (second row) (d) the instantaneous power-law exponent of
Km, (e) non-dimensional production rate of Km, PK, (f) non-dimensional destruction rate of Km, DK.

FIG. 12. Energy partitioning dynamics of the four FSM variants at the near-DNS limit of jf ¼ 128. Shown are time serious of (first row) (a) the instantaneous power-law expo-
nent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of Kr due to Er ; (second row) (d) the instantaneous power-law exponent of
Km, (e) non-dimensional production rate of Km, PK, (f) non-dimensional destruction rate of Km, DK.
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DES-like models at jf ¼ 16. As with the PANS-like results, dynamics
at this filter width are demonstrative of DES-like model behavior at all
jf > 2. Once again, all five variants demonstrate a reasonable agree-
ment with the approximate dynamical system of Eq. (24), with the
global-coefficient CES variants having the highest degree of similarity,
and RG-s showing the weakest agreement.

Despite the large quantitative differences between the CES and
traditional DES-like variants—as well as the more subtle differences
between RG-s and the closely aligned DES, XLES, and LES models—
all five DES-like models prove to be qualitatively quite similar to each
other, while behaving both quantitatively and qualitatively far different
than SKE. The one commonality in all five HRL model forms is that
they employ a C�

k2 coefficient and, by comparison to the FSM-like
feedback, it is clear that the feedback mechanism driving all five mod-
els away from the baseline SKE dynamics must stem from this single
shared aspect. Moreover, it is clear that the CES variants using the
default IC1 initial condition behave essentially the same as they did
when started with the PANS-like IC2 initial condition, except for the
obvious difference in the starting values of their destruction terms. In
contrast, the traditional DES-like models show some deviation from
the PANS-like feedback mechanism at early times.

The reasons for these similarities and differences are made imme-
diately obvious by inspection of Eq. (24). For global-valued coeffi-
cients, the perturbation made by an initial C�

k2 > 1 is to immediately
make the temporal log-derivative of Km more negative (i.e., decay
faster), thus decreasing Km relative to SKE, and making the ratio
Em=Km larger. While PANS-like models initially perturb Em in the
opposite direction, the effect on the ratio Em=Km, as well asK2

m=Em, is
the same, and thus both perturbations feedthrough the nonlinear sys-
tem of equations by the same functional mechanism. That is, the
destruction terms both instantly trend upward relative to SKE while
the cross-filter transfer hPmi=Kr instantly trends lower than SKE.
These changes then lead to an increase in hjSj2i, followed by increases

in the production terms, and a permanent shift in the temporal deriva-
tives away from SKE and toward DNS.

The principal difference between the global-coefficient CES mod-
els and the local-coefficient traditional DES-like variants comes at very
early times (t0 < 2), where DK shows a negative, rather than positive,
initial slope. The reason for this is simply due to the rapid decrease in
fC�

k2g from its initial value due to the suppression of the initial vari-
ance in the filtered-DNS distribution of fD (see Figs. 14 and 15). Once
this process is finished, the trend in DK for the traditional DES-like
variants reverses and subsequently matches the behavior of the global-
coefficient DES-like and PANS-like models.

While C�
k2 > 1 is the only initial perturbation made by the DES

and CES-K variants, the XLES, RG-s, and CES-X variants also modify
C�
l and, therefore, perturb the initial values of hPmi, PK, and PE as

well. Additionally, RG-s perturbs both PE and DE via nonstandard
C�
e1 and C

�
e2. In the cases of XLES and RG-s, this results in hPmi start-

ing at a much lower initial value than SKE rather than experiencing a
rapid decrease away from the high SKE initial state. Similarly, PK and
PE start low and only ever trend upward for k-SGS, XLES, and RG-s.
Finally, for the RG-s model only, the initial rapid change in the distri-
bution of fD affectsDE in the same manner asDK.

Despite these initial differences, by t0 ¼ 2 DES, XLES and RG-s
are all roughly converged with the k-SGS LES net decay rates.
Conversely, CES-K and CES-X are quantitatively close to each other
for almost all time, due to the much smaller initial perturbations, but
never converge with the LES trends. Add, the RG-smodel differs from
DES and XLES by also perturbing the initial value of DE . Therefore,
none of the additional nonstandard coefficients beyond C�

k2 in these
DES-like variants has a medium or long-term impact on the feedback
mechanism induced by C�

k2 alone.
The nonlinear feedback mechanism of each DES-like model is

qualitatively similar to that outlined above for all jf and t0 where
C�
k2 > 1, though there are quantitative differences. Most notably, for

FIG. 13. Comparing the mean model dynamics of the five DES-like HRL variants at filter wavenumbers jf ¼ 2, 16, and 128. Shown are time serious of (a) mean resolved
kinetic energy, Kr , (b) mean modeled kinetic energy, Km, and (c) mean modeled dissipation, Em. Time series for all turbulence models are normalized by the corresponding fil-
tered DNS value at t ¼ 0 and then offset by a different fixed multiple for each jf and quantity of interest to show each subplot on a single vertical axis.
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jf ¼ 2, DES, XLES, and RG-s are all initially identical to the baseline
SKE, with C�

k2 ¼ 1 at all points, and these dynamics are shown in
Fig. 17. Because of the strong dynamical similarity between production
and destruction terms demonstrated previously, we show only the Km

dynamics, and not those of Em.
The nonlinear feedback mechanism for standard DES starts as a

positive perturbation in the trend of DK after t0 ¼ 4 [panel (f)], rather
than as an instantaneous offset at t0 ¼ 1. However, increasing values
of DK kick off the same feedback sequence for standard DES, starting
with a less positive trend in hPmi=Kr [panel (b)] and a more positive
trend inDE (not shown) about t0 ¼ 5. This in turn induces more posi-
tive trends in Er=Kr [panel (c)], PK [panel (e)], and PE (not shown)
just before t0 ¼ 10.

As before, XLES and RG-s differ from standard DES by also
inducing negative changes at t0 ¼ 4 in hPmi=Kr, PK, and PE with
respect to SKE, due to the decreasing value of C�

l as fD drops below

unity, though the initial perturbation in the production terms is much
more subtle than for hPmi=Kr. From there a more positive trend is
induced in Er=Kr (and therefore hjSj2i), which allows PK and PE to
continue to increase, even as SKE stops increasing at late times. In con-
trast, CES-K and CES-X are not exactly equivalent to the baseline SKE
at t0 ¼ 1 and increasingly diverge from SKE from the beginning of the
simulations. Therefore, the CES variants generally follow all of the
same trends as in Fig. 16 at jf ¼ 16.

To demonstrate that these same nonlinear feedback mechanisms
continues through to DNS, we also show the dynamics of the DES-like
models at jf ¼ 128 in Fig. 18, which differ from those shown in
Fig. 16 in two ways: (i) due to the near-DNS resolution of the resolved
turbulence dynamics, there is substantially reduced error in Kr and Er

[panels (a) and (c)], and (ii) the nonlinear feedback progresses through
the dynamics much faster than for jf ¼ 16, such that there is a much
shorter intermediate time range, and a protracted late-time behavior.
In the case of DES, XLES, and RG-s, the late-time behavior matches
that of the filtered DNS truth nearly exactly, while CES-K and
CES-X both overshoot the DNS decay rates, resulting in
excess destruction of Km and Em. The qualitative differences between
jf ¼ 16 and jf ¼ 128 for all five models represent a consistent trend
as jf is varied from 4 to 128.

V. SUMMARY AND CONCLUSIONS

Hybrid RANS-LES models that can accurately reproduce
unsteady 3D flow physics across the entire range of grid scales and tur-
bulence dynamics between URANS and DNS, but especially at resolu-
tions coarser than typical LES, are important subjects of continued
research and development. Recent examinations of HRL modeling
concepts have outlined potential drawbacks to using traditional models
like DES and FSM that are not shared by more modern variable-
resolution bridging models, such as the PANS, PITM, and CES mod-
els, which seek to analytically derive a resolution-sensitive RANS
model form that can span between URANS and DNS without transi-
tioning through a distinct LES mode of operation. Unfortunately, these
deficiencies are routinely under-emphasized due to a persistent and
widespread focus on testing model performance in wall-bounded
industrial and aerospace flows. This has limited the development of
formal V&V procedures for HRL models, and, to our knowledge, no

FIG. 14. Probability density functions of CDD=‘m, for standard DES with
CD ¼ 0:61, at (a) the initial condition, t0 ¼ 1, (b) one-half decay time later,
t0 ¼ 1:5, and (c) t0 ¼ 20, and for each filter wavenumber 1 	 jf 	 128. Line
styles and colors are the same as in Fig. 3.

FIG. 15. Time series of the dissipation-weighted average C�
k2 coefficient,

fC�
k2g ¼ hC�

k2emi=hemi, for DES, RG-s, and CES-K, at jf ¼ 2, 16, and 128.
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systematic or comprehensive comparisons between a wide range of
HRL model forms have ever been published.

In the present study, we chose to evaluate thirteen distinct HRL
models via systematic grid refinement of decaying HIT using a single
minimal-error numerical implementation. We formulated each of the
thirteen models as unique realizations of a generalized form of the
standard k-e (SKE) RANS model, namely Eqs. (10a) and (10b). Thus,
each HRL model is a direct modification of the SKE model, and we
can think of the SKE model as a mathematical baseline that each
model attempts to improve upon. Each model was also classified as
DES-like, PANS-like, or FSM-like, depending on which coefficients of
Eqs. (10a) and (10b) were modified from the SKE baseline. Among the
DES-like models, DES itself, XLES, and RG-s all behave more or less
like one-equation differential LES models at fine resolutions.
Therefore, all thirteen HRL models were evaluated against the one-
equation k-SGS LES model in addition to the SKE model, as a perfor-
mance baseline that each HRL should improve upon.

Because of the approximate power-law decay in all dynamical
and kinematic quantities of interest over time, and the rapid accumula-
tion of potentially large errors compared to the filtered DNS ground
truth, we assessed the energy partitioning dynamics of each HRL
model by performing an analysis of the non-dimensional logarithmic-
time governing equations of Kr, Km, and Em that represent the evolu-
tion of the instantaneous power-law decay exponents of each quantity.
Moreover, we can interpret model-to-model variations in the energy
partitioning, as dictated by the three decay exponents, as different non-
linear feedback mechanisms operating on a low-dimensional dynami-
cal system. This analysis is similar to the dynamical system fixed-point
analysis utilized in some previous works assessing URANS and bridg-
ing HRL models. The primary difference here is that we do not
approximate the full high-dimensional dynamics with a closed set of
ODEs that form a solvable low-dimensional system. Instead, we
directly solve the high-dimensional system (i.e., perform 3D simula-
tions) and then rely on an unclosed set of ODEs that approximate a
low-dimensional dynamical system to simplify our interpretation and
understanding of the high-dimensional results.

We found that every kind of HRL model, compared to the SKE
baseline, can achieve a very accurate evolution of Kr as resolution
increases toward DNS. Despite this, the FSM-like models were shown
to have dynamically inconsistent evolutions of Km and Em for all scale-
resolving filter sizes. In contrast, the traditional DES-like models (DES,
XLES, and RG-s) show a high degree of accuracy in all metrics at
jf � 16, where they all perform essentially identically to k-SGS LES,
despite having unique theoretical derivations and significant mathemat-
ical differences in their underlying LES model forms. As predicted by
Chaouat,11 the PANS-like models perform the best at very coarse reso-
lutions 1 < jf < 16, with the CES variants (operating as PANS-like
models, based on initial conditions) being especially accurate. However,
the CES variants become increasingly inaccurate relative to PANS and
PITM as the filter resolution approaches DNS. CES was formulated
assuming very high Re or coarse grids where Fe � 1. This is typical of
aerospace flows, but not necessarily all engineering turbulence flows of
interest (such as inertial confinement fusion); therefore, it is not surpris-
ing that CES behaves poorly at fine resolutions where Fe < 1.

A particularly interesting result is that the initial increase in DK
by DES-like models and decrease in DE by PANS-like models are
dynamically similar interventions, as they both act to increase Em=Km,

which stimulates the same subsequent nonlinear feedback mechanism.
This qualitative dynamical equivalence is inherent to the model forms
and does not require constructing quantitatively equivalent models via
variational analysis to demonstrate a connection between DES and
PANS. Indeed, we showed that the DES-like, CES-K, and CES-X mod-
els can be induced to give nearly identical results to the PANS-like
CES-S model simply by changing the initial values of em by a constant
multiple. A graphical depiction of the nonlinear feedback mechanisms,
which result from our analysis for standard DES (which is the domi-
nant mechanism for all three of the traditional DES-like models),
PANS-like models, and FSM-like models is shown in Fig. 19 for a
visual side-by-side comparison of the qualitative similarities and differ-
ences in how each model type functions.

Since in this study, we used carefully-implemented decaying HIT
that follows a power-law trend, we know that URANS is highly accu-
rate at capturing the spatially-averaged trends, and we know that
k-SGS LES will be highly accurate so long as the peak in the energy
spectrum is resolved. This should not be a challenging test for any
model. Instead, decaying HIT with a power law trend is a test that a
robust model should be expected to pass. In general, these results indi-
cate that variable-resolution bridging based on the C�

e2 coefficient pro-
vide the best HRL capability for two-equation models at the coarse
resolutions that are practical for real-world flows of interest. However,
this HRL model form can only become “universal” or “one-model-fits-
all-cases” (that is, competitive with quality LES models at fine resolu-
tions) with additional development work.

Extending the analysis to flows with one or more directions of
inhomogeneity may result in changes to some feedback mechanisms,
as additional terms would appear in the governing equations of the
decay rates Eqs. (25a)–(25c). Testing models in the context of a well-
charactered canonical flow case with just one direction of inhomoge-
neity, such as 3D Rayleigh–Taylor instability or temporal shear driven
mixing layer, would be a logical next step in a complete V&V process.
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APPENDIX A: ACCURACY OF THE CES-U VARIANT

We showed in Figs. 16–18 that the standard DES and XLES
models had extremely similar dynamics and accuracy over all times

t0 > 2, and that their CES counterparts, CES-K and CES-X, are
equally consistent with each other, indicating the essential impor-
tance of the C�

k2 coefficient compared to C�
l. However, in Heinz,36

the CES-KEKU variation meant to correspond to XLES (also known
as Uni-LES), and which we refer to as CES-U, has a formula for C�

k2
that differs from CES-K and CES-X by a power of two,

CES-K=X : C�
k2 ¼ c� Rcesðc� 1Þ;

CES-U : C�
k2 ¼ c� Rcesðc� 1Þ½ �1=2:

This is a critical difference that, while having the same qualitative
nonlinear feedback mechanism, leads to a large quantitative differ-
ence in accuracy, as demonstrated in Fig. 20. As such, we chose to
present only the results of CES-X, and not CES-U, in Sec. IV.

APPENDIX B: FURTHER DETAILS OF THE NUMERICAL
METHODS AND HRL MODEL STABILITY

The pseudo-spectral CFD was developed in a highly modular
fashion using object-oriented programing principles, starting with
the DNS functionality of the shenfun45 Python package

FIG. 16. Comparing the energy partitioning dynamics of the five DES-like HRL variants at filter wavenumber jf ¼ 16. Shown are time serious of (first row) (a) the instanta-
neous power-law exponent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of Kr due to Er ; (second row) (d) the instantaneous
power-law exponent of Km, (e) non-dimensional production rate of Km, PK , (f) non-dimensional destruction rate of Km, DK; (third row) (g) the instantaneous power-law expo-
nent of Em, (h) non-dimensional production rate of Em, PE , (i) non-dimensional destruction rate of Em, DE .
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FIG. 17. Energy partitioning dynamics of the five DES-like HRL variants at the near-URANS limit of jf ¼ 2. Shown are time serious of (first row) (a) the instantaneous power-
law exponent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of Kr due to Er ; (second row) (d) the instantaneous power-law expo-
nent of Km, (e) non-dimensional production rate of Km, PK , and (f) non-dimensional destruction rate of Km, DK .

FIG. 18. Energy partitioning dynamics of the five DES-like HRL variants at the near-DNS limit of jf ¼ 128. Shown are time serious of (first row) (a) the instantaneous power-
law exponent of Kr , (b) non-dimensional destruction of Kr due to hPmi, (c) non-dimensional destruction of Kr due to Er ; (second row) (d) the instantaneous power-law expo-
nent of Km, (e) non-dimensional production rate of Km, PK , and (f) non-dimensional destruction rate of Km, DK .
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demonstrated using a simple Taylor–Green Vortex (TGV) simula-
tor in the spectralDNS code repository.52 Throughout the code
development, any changes made to the core Navier–Stokes solver
class were verified using the TGV test case, as in the original dem-
onstration code. From there, unit-tested functions for spectral-space

smooth filtering, mesh resizing, bandpass linear turbulence forcing,
and runtime data co-processing, including parallelized statistical
operations such as multi-dimensional histograms, were imple-
mented. These capabilities were collectively validated by DNS of
decaying and forced HIT against our previous DNS codes.48

FIG. 20. Comparing the nonlinear dynamics of CES-U to the other CES variants given in Sec. II C at jf ¼ 16. Here CES variants K, X, and U all use initial condition IC2 for
direct comparison to CES-S. All sub-captions and the lines for filtered DNS, LES, and SKE are the same as in Fig. 16.

FIG. 19. Summary flowcharts of the standard DES (left), PANS-like (center), and FSM-like (right) nonlinear feedback mechanisms, showing (1) the initial perturbation at t0 ¼ 1,
(2) primary (instantaneous) feedback at t0 ¼ 1, (3) secondary (fast) changes at very early times, t0 � 1, (4) tertiary (slow) changes at intermediate times, t0 > 1, and (5) the
end result at very late times, t0 � 1. Arrows indicate changes relative to SKE model baseline.
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The DNS solver base class was then extended sequentially to
algebraic LES, one-equation LES, and two-equation RANS capabili-
ties. The static Smagorinsky model,25 which has very well-described
behavior for forced HIT, was used as the initial algebraic LES valida-
tion case, and then the dynamic Smagorinsky model using the
Germano–Lilly procedure40 was tested, providing verification of the
mathematical functions required for dynamic coefficient computa-
tions. From there the baseline k-SGS one-equation LES model was
added, the correctness of the numerical k transport equation was
verified, and LES solutions were validated against the Smagorinksy
results. Next, the standard k–e two-equation RANS model was
added, the correctness of 3D URANS of decaying HIT was verified
on several different mesh sizes and then resolved SKE simulations
were validated against the k-SGS LES results. Finally, generalized k–
e HRL capability was added by replacing the SKE RANS constants
with 3D variables updated via external function calls, which were
individually verified as each HRL model was implemented.
Validation testing of the decaying HIT case using SKE, XLES, and
PANS coefficient functions revealed sufficient numerical instability
to warrant implementation and testing of higher-order dealiasing
procedures as well as Gaussian filtering of the full right-hand side
calculations. When these procedures proved to be unacceptable in
either computational cost or fidelity, the HRL class was re-
implemented using positivity-preserving ln k-ln e transport
equations.

From Ilinca and Pelletier,51 a change in model solution varia-
bles to v1 ¼ ln km and v2 ¼ ln em gives

@v1
@t

þ uj
@v1
@xj

¼ @

@xj
� þ �m

rk

� �
@v1
@xj

" #
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� �
@v1
@xj

@v1
@xj
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; (B1a)
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þ e�v1 C�
e1Pm � C�

e2e
v2

� �
;

�m ¼ C�
l expðv21 � v2Þ; (B1b)

which are identical except for the r and C� coefficients and include
one additional non-conservative term compared to Eqs. (10a) and
(10b). This change in the solution variable ensures that km and em
remain positive at all times by construction. When using the
pseudo-spectral discretization method with 2=3 rds dealiasing, only
the left hand-side advection terms of Eqs. (B1a) and (B1b), which
have quadratic nonlinearity, are fully dealiased. All right-hand side
(RHS) terms have higher nonlinearities and, therefore, are incom-
pletely dealiased. Nevertheless, the production and destruction
terms, e�v1Pm and ev2�v1 , should be strictly positive quantities.
However, using spectrally sharp dealiasing, the physical-space
reconstruction of these terms, post-dealiasing, can include negative
values. Although these non-positive values are never directly com-
puted when integrating the solution forward in time, this non-
realizability is implicit in the numerical method. It is this combina-
tion of RHS aliasing and non-positivity that gives rise to numerical
instabilities in performing HRL simulations. As such, after initial
verification tests of each model, we comprehensively tested a few
representative models (SKE, XLES, and PITM) at jf 2 ½2; 8; 32; 128�
with various grid resolutions, D=dx 2 ½1; 2; 3; 4�, with and without

initial condition (IC) smoothing, and with and without RHS
smoothing. The IC smoothing procedure reapplies the same
Gaussian filter as used to compute ui to the initial values of km and
em. This does not affect the mean values Km and Em but reduces
their variances before converting the fields to v1 and v2. The RHS
smoothing procedure applies the same Gaussian filter to the com-
puted �m and then filters the sum of the non-conservative RHS
terms prior to dealiasing.

For nearly all jf , we found that using a high resolution mesh
(D=dx ¼ 3) was sufficient to provide an accurate and stable solu-
tion. At jf ¼ 128, D=dx ¼ 3 corresponds to a 7683 physical-space
mesh, and we found solving the HRL equations on this mesh size
to be prohibitively expensive when comparing so many models.
As such we limited the simulations to D=dx ¼ 2 at jf ¼ 128 to
reduce computational cost. For SKE and PITM, there was no sig-
nificant decrease in accuracy. However, for XLES, there was an
increased, though not substantial, impact on numerical stability
and accuracy at early times, before turbulence viscosity smoothed
out most of the spatial variance in the filtered DNS initial condi-
tions (see Fig. 14). Therefore, we activated IC smoothing for all
HRL models at jf ¼ 128. In contrast, we found that RHS smooth-
ing did not significantly improve accuracy of the solutions once
IC smoothing was activated, but did have an additional impact by
allowing for larger dynamic time step sizes, and therefore, pro-
vided additional savings in overall computational cost of the larg-
est simulations.

APPENDIX C: RESPONSE OF THE DES-LIKE MODELS TO
A PANS-LIKE MODIFICATION OF THE INITIAL
CONDITIONS

The CES-K and CES-X models, having global non-unity C�
k2

values, can utilize two different initial conditions, based upon the
DNS-derived dissipation, to slightly alter behavior. Denoting the
correct initial subgrid-scale dissipation rate as e0sgs, the first initial
condition (IC1) initializes e0m ¼ e0sgs, leading the initial modeled dis-
sipation of km in Eq. (10a) to be greater than the correct rate,
C�
k2e

0
m > e0sgs. The second initial condition (IC2) initializes e0m ¼

e0sgs=C
�
k2 such that C�

k2e
0
m 
 e0sgs. It was shown in Sec. IV that IC1

allows CES-K and CES-X to behave as DES-like while IC2 allows
these models to behave as PANS-like, without any modification to
the model forms themselves.

The traditional DES-like models, which have localized C�
k2 val-

ues, cannot utilize IC2 to alter their nonlinear feedback behavior.
When started with IC2, standard DES, XLES, and RG-s simulations
revert almost exactly to the temporal trajectories of their corre-
sponding IC1 simulations within two time steps. The reason for this
behavior is due to the use of a local rather than global C�

k2 and can
be demonstrated a priori by a simple approximation as follows.
First, recall for the standard DES model that C�

k2 ¼ f �1
D and so

wherever fD < 1, C�
k2 ¼ ‘m=ðCDDÞ. Now, if we consider a DES that

is initialized via IC2 and assume that the first time step is vanish-
ingly small (dt � 0), the initialization and first time step of a simu-
lation proceeds as follows:

1. Set ‘0m ¼ ðk0mÞ3=2
e0sgs

for computation of f 0D .

2. Where f 0D < 1, set e0m ¼ f 0De
0
sgs ¼ CDD

ðe0sgsÞ2
ðk0mÞ3=2
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3. Assume dt � 0 such that k1m ¼ k0m and e1m ¼ e0m.

4. Now set ‘1m ¼ ðk1mÞ3=2
e1m

¼ ðk0mÞ3
CDDðe0sgsÞ2

5. This leads to the condition that f 1D ¼ ðf 0DÞ2, and the destruction

of k1m becomes e1sgs ¼ e1m
f 1D
¼ e0sgs

f 0D
which is the IC1 initial state.

Thus, for an infinitesimally-small time step, the IC2 em and C�
k2

values transform exactly into those of IC1. In practice, our choice of
an initial very small time step that is limited from growing more
than two times larger from step-to-step follows this approximation
very closely, if not exactly.

REFERENCES
1P. Spalart, W.-H. Jou, M. Strelets, and S. Allmaras, Advances in DNS/LES,
edited by C. Liu and Z. Liu (Greyden Press, 1997).
2J. N. Sørensen, “Aerodynamic aspects of wind energy conversion,” Annu. Rev.
Fluid Mech. 43, 427 (2011).

3Y. Zhou, “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow,
turbulence, and mixing. I,” Phys. Rep. 720–722, 1–136 (2017).

4Y. Zhou, “Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow,
turbulence, and mixing. II,” Phys. Rep. 723–725, 1–160 (2017).

5D. Livescu, “Turbulence with large thermal and compositional density varia-
tions,” Annu. Rev. Fluid Mech. 52, 309 (2020).

6P. A. Bogenschutz, A. Gettelman, H. Morrison, V. E. Larson, C. Craig, and D.
P. Schanen, “Higher-order turbulence closure and its impact on climate simu-
lations in the community atmosphere model,” J. Clim. 26, 9655–9676 (2013).

7A. G. Nouri, P. Givi, and D. Livescu, “Modeling and simulation of turbulent
nuclear flames in Type Ia supernovae,” Prog. Aerosp. Sci. 108, 156 (2019).

8D. M. Israel, “The myth of URANS,” J. Turbul. 24(8), 367–392, 2023.
9J. Fr€ohlich and D. Von Terzi, “Hybrid LES/RANS methods for the simulation
of turbulent flows,” Prog. Aerosp. Sci. 44, 349 (2008).

10P. Sagaut, M. Terracol, and S. Deck, Multiscale and Multiresolution Approaches
in Turbulence—LES, DES and Hybrid RANS/LES Methods: Applications and
Guidelines (World Scientific, 2013).

11B. Chaouat, “The state of the art of Hybrid RANS/LES modeling for the simula-
tion of turbulent flows,” Flow, Turbul. Combust. 99, 279 (2017).

12S. Heinz, “A review of hybrid RANS-LES methods for turbulent flows:
Concepts and applications,” Prog. Aerosp. Sci. 114, 100597 (2020).

13F. S. Pereira, L. Eça, G. Vaz, and S. S. Girimaji, “Toward predictive RANS and
SRS computations of turbulent external flows of practical interest,” Arch.
Comput. Methods Eng. 28, 3953 (2021).

14F. S. Pereira, F. F. Grinstein, D. M. Israel, and L. Eça, “Verification and valida-
tion: The path to predictive scale-resolving simulations of turbulence,” J. Verif.,
Validation Uncertainty Quantif. 7, 021003 (2022).

15P. R. Spalart, “Detached-eddy simulation,” Annu. Rev. Fluid Mech. 41, 181
(2009).

16S. S. Girimaji and K. Abdol-Hamid, “Partially-averaged Navier Stokes model for tur-
bulence: Implementation and validation,” AIAA Paper No. AIAA 2005-502, 2005.

17S. S. Girimaji, “Partially-averaged Navier-Stokes model for turbulence: A
Reynolds-averaged Navier-Stokes to direct numerical simulation bridging
method,” J. Appl. Mech. 73, 413 (2006).

18B. Chaouat and R. Schiestel, “A new partially integrated transport model for
subgrid-scale stresses and dissipation rate for turbulent developing flows,” Phys.
Fluids 17, 065106 (2005).

19B. Chaouat and R. Schiestel, “Progress in subgrid-scale transport modelling for
continuous hybrid non-zonal RANS/LES simulations,” Int. J. Heat Fluid Flow
30, 602 (2009).

20C. G. Speziale, “Turbulence modeling for time-dependent RANS and VLES: A
review,” AIAA J. 36, 173 (1998).

21H. F. Fasel, J. Seidel, and S. Wernz, “A methodology for simulations of complex
turbulent flows,” J. Fluids Eng. 124, 933 (2002).

22F. R. Menter, “Improved two-equation k-omega turbulence models for aerody-
namic flows,” Technical Memorandum No. NASA-TM-103975 (National
Aeronautics and Space Administration, 1992).

23S. T. Bose and G. I. Park, “Wall-modeled large-eddy simulation for complex
turbulent flows,” Annu. Rev. Fluid Mech. 50, 535 (2018).

24Ch. Friess, R. Manceau, and T. B. Gatski, “Toward an equivalence criterion for
Hybrid RANS/LES methods,” Comput. Fluids 122, 233 (2015).

25P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction
(Springer Science & Business Media, 2006).

26J. B. Perot and S. M. de Bruyn Kops, “Modeling turbulent dissipation at low
and moderate Reynolds numbers,” J. Turbul. 7, N69 (2006).

27M. Germano, “Turbulence: The filtering approach,” J. Fluid Mech. 238, 325
(1992).

28J. A. Saenz, D. Aslangil, and D. Livescu, “Filtering, averaging, and scale depen-
dency in homogeneous variable density turbulence,” Phys. Fluids 33, 025115
(2021).

29R. Schiestel and A. Dejoan, “Towards a new partially integrated transport
model for coarse grid and unsteady turbulent flow simulations,” Theor.
Comput. Fluid Dyn. 18, 443 (2005).

30M. Strelets, “Detached eddy simulation of massively separated flows,” in 39th
Aerospace Sciences Meeting and Exhibit, 2001.

31R. Bush and M. Mani, “A two-equation large eddy stress model for high sub-
grid shear,” AIAA Paper No. AIAA Paper 2001-2561, 2001.

32J. C. Kok, H. S. Dol, B. Oskam, and H. van der Ven, “Extra-large eddy simula-
tion of massively separated flows,” AIAA Paper No. AIAA Paper 2004-264,
2004.

33S. Heinz, “Unified turbulence models for LES and RANS, FDF and PDF simula-
tions,” Theor. Comput. Fluid Dyn. 21, 99 (2007).

34C. De Langhe, B. Merci, and E. Dick, “Hybrid RANS/LES modelling with an
approximate renormalization group. I: Model development,” J. Turbul. 6, N13
(2005).

35C. De Langhe, B. Merci, K. Lodefier, and E. Dick, “Hybrid RANS/LES model-
ling with an approximate renormalization group. II: Applications,” J. Turbul. 6,
N14 (2005b).

36S. Heinz, “The large eddy simulation capability of Reynolds-averaged Navier-
Stokes equations: Analytical results,” Phys. Fluids 31, 021702 (2019).

37P. Batten, U. Goldberg, and S. Chakravarthy, “Interfacing statistical turbulence
closures with large-eddy simulation,” AIAA J. 42, 485 (2004).

38K.-J. Hsieh, F.-S. Lien, and E. Yee, “Towards a unified turbulence simulation
approach for wall-bounded flows,” Flow, Turbul. Combust. 84, 193 (2010).

39X. Han and S. Krajnovi�c, “An efficient very large eddy simulation model for
simulation of turbulent flow,” Int. J. Numer. Methods Fluids 71, 1341 (2013).

40S. Ghosal et al., “A dynamic localization model for large-eddy simulation of
turbulent flows,” J. Fluid Mech. 286, 229 (1995).

41S. T. Johansen, J. Wu, and W. Shyy, “Filter-based unsteady RANS computa-
tions,” Int. J. Heat Fluid Flow 25, 10 (2004).

42F. F. Grinstein, J. A. Saenz, and M. Germano, “Coarse grained simulations of
shock-driven turbulent material mixing,” Phys. Fluids 33, 035131 (2021).

43S. Bhushan and D. K. Walters, “A dynamic hybrid Reynolds-averaged Navier Stokes–
Large eddy simulation modeling framework,” Phys. Fluids 24, 015103 (2012).

44S. Chen, Z. Xia, S. Pei, J. Wang, Y. Yang, Z. Xiao, and Y. Shi, “Reynolds-stress-
constrained large-eddy simulation of wall-bounded turbulent flows,” J. Fluid
Mech. 703, 1–28 (2012).

45M. Mortensen, “Shenfun: High performance spectral Galerkin computing plat-
form,” J. Open Source Software 3, 1071 (2018).

46M. Mortensen and H. P. Langtangen, “High performance Python for direct numeri-
cal simulations of turbulent flows,” Comput. Phys. Commun. 203, 53 (2016).

47S. M. de Bruyn Kops and J. J. Riley, “Direct numerical simulation of laboratory
experiments in isotropic turbulence,” Phys. Fluids 10, 2125 (1998).

48D. Livescu, F. A. Jaberi, and C. K. Madnia, “Passive-scalar wake behind a line
source in grid turbulence,” J. Fluid Mech. 416, 117–149 (2000).

49M. R. Petersen and D. Livescu, “Forcing for statistically stationary compressible
isotropic turbulence,” Phys. Fluids 22, 116101 (2010).

50D. A. Donzis, P. K. Yeung, and K. R. Sreenivasan, “Dissipation and enstrophy
in isotropic turbulence: Resolution effects and scaling in direct numerical simu-
lations,” Phys. Fluids 20, 045108 (2008).

51F. Ilinca and D. Pelletier, “Positivity preservation and adaptive solution for the
k-? model of turbulence,” AIAA J. 36, 44 (1998).

52See https://github.com/spectralDNS/spectralDNS/blob/master/demo/NS_shen
fun.py for information about the Taylor-Green test case.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 105148 (2024); doi: 10.1063/5.0228561 36, 105148-25

VC Author(s) 2024

 07 O
ctober 2024 15:15:00

https://doi.org/10.1146/annurev-fluid-122109-160801
https://doi.org/10.1146/annurev-fluid-122109-160801
https://doi.org/10.1016/j.physrep.2017.07.005
https://doi.org/10.1016/j.physrep.2017.07.008
https://doi.org/10.1146/annurev-fluid-010719-060114
https://doi.org/10.1175/JCLI-D-13-00075.1
https://doi.org/10.1016/j.paerosci.2019.04.004
https://doi.org/10.1080/14685248.2023.2225140
https://doi.org/10.1016/j.paerosci.2008.05.001
https://doi.org/10.1007/s10494-017-9828-8
https://doi.org/10.1016/j.paerosci.2019.100597
https://doi.org/10.1007/s11831-021-09563-0
https://doi.org/10.1007/s11831-021-09563-0
https://doi.org/10.1115/1.4053884
https://doi.org/10.1115/1.4053884
https://doi.org/10.1146/annurev.fluid.010908.165130
https://doi.org/10.1115/1.2151207
https://doi.org/10.1063/1.1928607
https://doi.org/10.1063/1.1928607
https://doi.org/10.1016/j.ijheatfluidflow.2009.02.021
https://doi.org/10.2514/2.7499
https://doi.org/10.1115/1.1517569
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1016/j.compfluid.2015.08.010
https://doi.org/10.1080/14685240600907310
https://doi.org/10.1017/S0022112092001733
https://doi.org/10.1063/5.0040337
https://doi.org/10.1007/s00162-004-0155-z
https://doi.org/10.1007/s00162-004-0155-z
https://doi.org/10.1007/s00162-006-0036-8
https://doi.org/10.1080/14685240500149781
https://doi.org/10.1080/14685240500149765
https://doi.org/10.1063/1.5085435
https://doi.org/10.2514/1.3496
https://doi.org/10.1007/s10494-009-9220-4
https://doi.org/10.1002/fld.3714
https://doi.org/10.1017/S0022112095000711
https://doi.org/10.1016/j.ijheatfluidflow.2003.10.005
https://doi.org/10.1063/5.0039525
https://doi.org/10.1063/1.3676737
https://doi.org/10.1017/jfm.2012.150
https://doi.org/10.1017/jfm.2012.150
https://doi.org/10.21105/joss.01071
https://doi.org/10.1016/j.cpc.2016.02.005
https://doi.org/10.1063/1.869733
https://doi.org/10.1017/S0022112000008910
https://doi.org/10.1063/1.2907227
https://doi.org/10.2514/2.350
https://github.com/spectralDNS/spectralDNS/blob/master/demo/NS_shenfun.py
https://github.com/spectralDNS/spectralDNS/blob/master/demo/NS_shenfun.py
pubs.aip.org/aip/phf

