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Reduced models describing the Lagrangian dynamics of the velocity gradient tensor
(VGT) in homogeneous isotropic turbulence (HIT) are developed under the physics-
informed machine learning (PIML) framework. We consider the VGT at both Kolmogorov
scale and coarse-grained scale within the inertial range of HIT. Building reduced models
requires resolving the pressure Hessian and subfilter contributions, which is accomplished
by constructing them using the integrity bases and invariants of the VGT. The devel-
oped models can be expressed using the extended tensor basis neural network (TBNN)
introduced by Ling et al. [J. Fluid Mech. 807, 155 (2016)]. Physical constraints, such
as Galilean invariance, rotational invariance, and incompressibility condition, are thus
embedded in the models explicitly. Our PIML models are trained on the Lagrangian
data from a high-Reynolds number direct numerical simulation (DNS). To validate the
results, we perform a comprehensive out-of-sample test. We observe that the PIML model
provides an improved representation for the magnitude and orientation of the small-scale
pressure Hessian contributions. Statistics of the flow, as indicated by the joint PDF of
second and third invariants of the VGT, show good agreement with the “ground-truth”
DNS data. A number of other important features describing the structure of HIT are
reproduced by the model successfully. We have also identified challenges in modeling
inertial range dynamics, which indicates that a richer modeling strategy is required. This
helps us identify important directions for future research, in particular towards including
inertial range geometry into the TBNN.
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I. INTRODUCTION

Properties of the velocity gradient tensor (VGT), at both small scale and coarse-grained scale
from the inertial interval, determine many important characteristics of turbulence [1]. The bare VGT
represents the Kolmogorov (viscous) scale of turbulence and statistics of the energy dissipation,
while the VGT coarse grained at a larger scale provides information about respective velocity
increments and energy cascade. The aforementioned statistics are highly intermittent and rich in
information about dynamics and transfer of energy and interaction among turbulent eddies [2,3].
The analysis of the VGT allows one to shed light on the mechanism of energy cascade, which
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can be characterized by the geometrical features and highly nonlinear interactions of vorticity and
strain, via the so-called vortex stretching and strain self-amplification [4–6]. Perry and Chong [7]
and Chong et al. [8] have proposed an approach to classify local flow topology and structure using
invariants of the VGT. The Lagrangian dynamics of the VGT have been studied following the
evolution of the invariants along the conditional mean trajectories (CMTs) of the flow. The analysis
has been performed using data extracted from direct numerical simulation (DNS) corresponding
to various fully developed turbulent flows, such as isotropic turbulence, turbulent boundary layer,
mixing layers, and more complex flows, such as shock-turbulence interaction (e.g., Refs. [9–18]).
To accurately represent Lagrangian dynamics of the VGT, reduced empirical models have been
proposed to capture the important dynamics without solving the full Navier-Stokes equations. The
empirical model reduction approach is justified by our (so far principal) inability to resolve the
nonlocal nature of the turbulence dynamics in a mathematically accurate way, which is true with
regard to both Eulerian and Lagrangian attempts of building reduced models rigorously. Meneveau
[1] provided a comprehensive review of Lagrangian approaches towards building reduced empirical
models of turbulence. The restricted Euler equation (REE) [19,20] is the simplest Lagrangian
model, and has formed a basis for further exploration. It was shown in Cantwell [21] that the REE
allows exact integration, also revealing the model’s significant handicap—an unphysical blow-up
(singularity) in finite time, due to misrepresentation of the pressure Hessian contribution to the
VGT dynamics. A number of models were proposed to resolve the finite-time singularity problem,
such as linear diffusion model [22], stochastic diffusion model [23], Lagrangian tetrad model [24],
Lagrangian linear diffusion model [25], multiscale model [26], and recent fluid deformation (RFD)
approximation [27,28]. More recently, Wilczek and Meneveau [29] have modeled the pressure
Hessian (and viscous contributions which were also omitted in the REE modeling) utilizing a
random Gaussian field, and then the RFD model was extended in Johnson and Meneveau [30],
leading to the recent deformation of Gaussian fields (RDGF) model. Models based on expansion
about tensor bases have been explored in Refs. [31,32], where the scalar coefficients (of the tensor
basis expansion) are learned from DNS data and/or derived from physical constraints [33]. Johnson
and Meneveau [3] and Pereira et al. [34] developed models to describe small-scale intermittency
in HIT at high Reynolds numbers. We emphasize that these models were theoretically motivated
and justified by DNS and experiment verified physical hypotheses, such as local dependence of
the pressure Hessian term on the VGT, which were then subjected to physical constraints, such as
incompressibility, symmetries, etc. This modeling status quo, which seemed to be hard to improve,
got a remarkable new boost from disparate fields of machine learning (ML), artificial intelligence
(AI), and data science. Neural networks (NNs) have gained significant attention due to their
powerful capability in expressing complex nonlinear functions and the ease of parameter training
through the automatic differentiation (AD) functionality provided by open-source ML packages.
Empowered by these NNs, even though they are generally application-agnostic, researchers are
now starting to use them to validate and improve scientific hypotheses and advance the modeling of
complex physics problems.

To the best of our knowledge, there have been surprisingly few attempts to model Lagrangian
dynamics using NNs or other ML methods, despite the rich information Lagrangian statistics can
provide. This is in contrast to the surge of NN activity in recent years in the field of Eulerian
modeling of turbulence. In particular, major efforts were devoted to the development of closure
models for Reynolds averaged Navier-Stokes (RANS) and large eddy simulations (LES) using
innovative NN architectures, e.g., Ling et al. [35], Maulik et al. [36]. A very comprehensive
overview of many contributions to this field can be found in the review paper by Duraisamy et al.
[37]. To mention some of these contributions (which are mostly related to this paper): a tensor
basis neural network (TBNN) embedding physical constraints, such as Galilean invariance and
rotational invariance, into the closure model was developed in Ling et al. [35]; physics-informed
machine learning (PIML) models infusing the NN with known physical constraints were developed
in, e.g., Refs. [38,39]. Other than developing closure models for RANS and LES, researchers
have been experimenting with novel ML approaches to learn turbulence dynamics. In this regard,
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and just to name a few, we mention Mohan et al. [40], where a convolutional long short term
memory (ConvLSTM) NN was developed to learn spatiotemporal turbulence dynamics; studies of
super-resolution allowing to reconstruct turbulence fields using under-resolved data [41]; and neural
ordinary differential equation (neural ODE) for turbulence forecasting [42].

In this paper we combine the body of work in statistical hydrodynamics with ML tools to
develop a physics-informed, interpretable model for Lagrangian dynamics of turbulence at both
fully resolved/unfiltered and coarse-grained/filtered levels. Specifically, we build upon the original
architecture of TBNN [35] and extend TBNN with embedded physical constraints to model the
nonlocal pressure Hessian and subfilter dynamics within the Lagrangian description of the VGT.

The rest of the paper is organized as follows. Section II provides technical background, e.g.,
discussing governing equations for Lagrangian dynamics of the VGT. PIML strategy for modeling
closure terms, including physical interpretation of the underlying parameterization, are described in
Sec. III. Section IV is devoted to the description of the “ground-truth” DNS data used to train and
test the models. The details of training and testing of the constructed PIML model are provided in
Sec. V. Performance of the PIML models for unfiltered and also coarse-grained dynamics is assessed
through a series of comprehensive tests in Secs. VI and VII, respectively. Finally, conclusions and
path forward are discussed in Sec. VIII.

II. GOVERNING EQUATIONS

A. Unfiltered velocity gradient tensor

The Lagrangian dynamics of the VGT in incompressible turbulence can be derived from the
Navier-Stokes (NS) equations:

∂ui

∂t
+ uk

∂ui

∂xk
= − ∂P

∂xi
+ ν

∂2ui

∂xk∂xk
, (1)

where ui, P, and ν denote velocity vector component, pressure, and kinematic viscosity, respectively.
The velocity gradient tensor is defined as

Ai j = ∂ui

∂x j
. (2)

The Lagrangian dynamics of the VGT and the incompressibility-enforcing Poisson equation can
then be derived by applying spatial derivatives to Eq. (1):

dAi j

dt
= ∂Ai j

∂t
+ uk

∂Ai j

∂xk
= −AikAk j − ∂2P

∂xi∂x j
+ ν

∂2Ai j

∂xk∂xk
, (3a)

∂2P

∂xk∂xk
= −AmnAnm. (3b)

Using Eq. (3b), we then rearrange Eq. (3a) into the following traceless form:

dAi j

dt
= Ei j + Hi j + Ti j, (4a)

Ei j = −
(

AikAk j − 1

3
AmnAnmδi j

)
, (4b)

Hi j = −
(

∂2P

∂xi∂x j
− 1

3

∂2P

∂xk∂xk
δi j

)
, (4c)

Ti j = ν
∂2Ai j

∂xk∂xk
, (4d)
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where the matrices/tensors E, H , and T are referred to as restricted Euler (RE), nonlocal pressure
Hessian, and viscous contributions to the Lagrangian dynamics, respectively. The RE equation is
derived from Eq. (4a) by removing the pressure Hessian term and the viscous term. The resulting
RE dynamics is closed. Obviously, the removal of the E and H contributions is not justified and
closing VGT dynamics by modeling these terms, i.e., expressing them via the VGT, A, or related
local characteristics explicitly, is extremely challenging.

B. Coarse-grained velocity gradient tensor

Not only Eq. (4a) is not closed, it is also spatially local, therefore not showing (at least not
explicitly) Lagrangian dynamics (and related statistics) of the VGT at different spatial scales. In
other words, the local description is missing an important aspect of turbulence consisting in the
understanding of how statistics of key characteristics and underlying phenomena, such as energy
cascade and dynamics of particle separation, change with scale.

To address this apparent lack of scale information in Eq. (4a), we apply a spatial filter (in this
study we use a Gaussian filter for extracting the related quantities) to the NS Eq. (1) and derive the
transport equation for the coarse-grained/filtered velocity:

∂ ũi

∂t
+ ũk

∂ ũi

∂xk
= − ∂P̃

∂xi
+ ν

∂2ũi

∂xk∂xk
− ∂τik

∂xk
, (5)

where the tilde symbols, e.g., ũ, identifies filtered variables. The filter is characterized by its
scale and typically selected to be within the inertial range of turbulence, which is bounded from
above by the energy-containing scale and from below by the viscous (Kolmogorov) scale. The
subfilter contributions, i.e., these associated with scales smaller than the filtering scale, are identifed
with a prime symbol e.g., u′, so that u = ũ + u′. τ , entering the filtered Eq. (5), is the so-called
subfilter stress. The subfilter stress contribution on the right-hand side of Eq. (5) originates from the
nonlinearity of the original NS Eq. (1) and makes the resulting filtered equations not closed.

One can also apply the filtering procedure to Eq. (3a), therefore arriving at the following equation
governing Lagrangian dynamics of the coarse-grained VGT:

dMi j

dt
= Ẽi j + H̃i j + T̃i j + �i j, (6a)

Ẽi j = −
(

MikMk j − 1

3
MmnMnmδi j

)
, (6b)

H̃i j = −
(

∂2P̃

∂xi∂x j
− 1

3

∂2P̃

∂xk∂xk
δi j

)
, (6c)

T̃i j = ν
∂2Mi j

∂xk∂xk
, (6d)

�i j = �r
i j + �s

i j = −
(

∂2τik

∂x j∂xk
− 1

3

∂2τik

∂x j∂xk
δi j

)
+ u′

k

∂Mi j

∂xk
, (6e)

�r
i j = −

(
∂2τik

∂x j∂xk
− 1

3

∂2τik

∂x j∂xk
δi j

)
, (6f)

�s
i j = u′

k

∂Mi j

∂xk
, (6g)

where M is our notation for the filtered component of A. Notice the appearance of a new (if
compared with the original, unfiltered equation) subgrid contribution, �, on the right-hand side
of Eq. (6a). Furthermore, taking the divergence of the filtered version of the momentum equations
and using commutation of the filtering operation with respect to spatial derivative, one arrives at the
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following filtered version of the Poisson equation:

∂2P̃

∂xk∂xk
= −MmnMnm − ∂2τik

∂xi∂xk
. (7)

This equation has additional terms on the right-hand side compared to Eq. (3b). To make the
Lagrangian dynamics of the coarse-grained VGT closed, i.e., expressed via M, one obviously needs
to model functional dependence of the pressure Hessian, viscous, and subfilter contributions on M.

III. PIML STRATEGY

In this section, we describe our approach to modeling the generally unclosed unfiltered and
coarse-grained Lagrangian dynamics, described by Eqs. (4a) and (6a), via a combination of NNs
and physical constraints.

A. Physical foundation of PIML model

1. Nonlocal pressure Hessian

Formal solution for nonlocal pressure Hessian, expressed as a convolution of the second invariant
of the VGT, can be obtained by solving Eq. (3b) with the Green’s function of the Laplacian operator
[43]:

Hi j (x) =
∫∫∫

δi j − r̂i r̂ j

2πr3
Q(x + r) dr, (8a)

Q = −1

2
AmnAnm, (8b)

where r indicates the displacement vector with respect to the point of interest x, and r̂ = r/r is the
unit displacement vector. Equations (8) show that the nonlocal pressure Hessian depends on the
spatial distribution of the second invariant of the velocity gradient tensor, Q(x + r).

In this work, we model the nonlocal pressure Hessian term by a surrogate parameterized
expression for the spatial distribution of the second invariant Q. We substitute Q(x + r), similar
to the approach used in Ref. [31], by a function of A. Assuming locality of the relation, which is
admittedly a bold hypothesis, the most general form of Q(x + r) is the Taylor series expansion:

Q(x + r) = a(r) + bi j (r)Ai j + ci jkl (r)Ai jAkl + · · · . (9)

Next, and following Lawson and Dawson [31], we enforce in Eq. (9) rotational invariance, i.e.,
Q(x + r|A) = Q(x + V r|VAV T ), and then arrive at

Q(x + r) = b1τ
−2
0 + b2(r̂T Ar̂) + b3Tr(A2) + b4Tr(AAT ) + b5(r̂T A2r̂)

+ b6(r̂T AAT r̂) + b7(r̂T AT Ar̂) + b8(r̂T Ar̂)2 + · · · , (10)

where τ0 is the reference timescale and bi for i = 1, . . . , are scalar functions of r, assumed related to
the two-point correlation functions of Q with different moments of the VGT. In the models analyzed
so far, the expansion in Eq. (10) is usually truncated at the second level; see, e.g., [29,31]. In this
study, we take advantage of the ML approach and consider full expansion, then extracting functional
forms of the coefficients through training.

Equation (10) could be combined with Eq. (8) to perform the integration over r. We use the strain
rate tensor S and rotation tensor W to denote the symmetric and skew-symmetric parts of the VGT,
where A = S + W and AT = S − W . Our final model for the nonlocal pressure Hessian becomes

H =
∞∑

m,n=0

amnSmW n. (11)
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This expression coincides with the model for effective viscosity proposed in Pope [44] to represent
the anisotropy tensor of Reynolds stresses in the RANS Eulerian approach. The coefficients in
Eq. (11) represent weighted integrals of the two-point correlation function of Q with different
moments of the VGT [31]. Originally, i.e., in Ref. [44], the equation was further transformed
utilizing the symmetric integrity bases and invariants of the S and R tensors and then using the
Caley-Hamilton theorem to reduce the high-order products of the tensor to linear combinations of
the integrity bases:

H =
10∑

n=1

g(n)
s (λ1, . . . , λ5)T (n)

s , (12)

where g(n)
s are scalar functions of the invariants. In total, there are five independent invariants and

10 integrity bases [44]:

λ1 = Tr(S2), λ2 = Tr(W 2), λ3 = Tr(S3),

λ4 = Tr(W 2S), λ5 = Tr(W 2S2) (13)

T (1)
s = S, T (2)

s = SW − W S,

T (3)
s = S2 − 1

3 ITr(S2), T (4)
s = W 2 − 1

3 ITr(W 2),

T (5)
s = W S2 − S2W , T (6)

s = W 2S + SW 2 − 2
3 Tr(SW 2), (14)

T (7)
s = W SW 2 − W 2SW , T (8)

s = SW S2 − S2W S,

T (9)
s = W 2S2 + S2W 2 − 2

3 ITr(S2W 2), T (10)
s = W S2W 2 − W 2S2W .

We emphasize that in all the previous studies known to the authors, the functional form of g(n) was
greatly simplified and the integrity bases considered were typically limited to second-order [29,31],
i.e., the first four bases T (1)

s , . . . , T (4)
s . Then, g(n)

s (λ1, . . . , λ5) was either derived from a modeled
two-point correlation function or reconstructed from experimental or numerical data. In this work,
we use a ML model, or more specifically a NN, to learn the functional form of g(n)

s .

2. Subfilter contribution

The subfilter contribution � in the coarse-grained dynamics of the VGT can be divided into two
parts: subfilter stress �r and subfilter fluctuations �s. We take different approaches to model the
two terms.

The subfilter stress contribution is nonlocal and asymmetric in nature, and we use an approach
similar to the one proposed in Ref. [44] to model the term. We expand the integrity bases to account
for the skew-symmetric part and thus consider

�r =
10∑

n=1

g(n)
s (λ1, . . . , λ5)T (n)

s +
6∑

n=1

g(n)
a (λ1, . . . , λ5)T (n)

a . (15)

There are six skew-symmetric bases, and they can be derived following Ref. [45]:

T (1)
a = W , T (2)

a = SW + W S,

T (3)
a = S2W + W S2, T (4)

a = W 2S − SW 2, (16)

T (5)
a = W 2S2 − S2W 2, T (6)

a = SW 2S2 − S2W 2S.

The subfilter fluctuations come from the spatiotemporal scales that are smaller than the filter
size. Specifically, the subfilter contribution to the coarse-grained dynamics is associated with the
effects of backscatering, i.e., transfer of energy from scales smaller than the filter scale upscales,
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which goes against the average transfer of energy towards smaller scales. We choose to model these
backscattering contributions by a stochastic Langevin process:

�s
i j = Ci jkl dWkl , (17)

where dW stands for the Wiener process. The covariance matrix C is fixed and expected to be
learned from the “ground-truth” data.

B. Neural network architecture

It is well known since at least the 1990s (see, e.g., Ref. [46]) that NNs are capable of representing
an arbitrary smooth function. This theoretical concept received a tremendous boost empirically
during the last decade with the so-called deep learning, which made the approach practically
feasible, and moreover a powerful tool applicable to a great variety of applications. In this work,
we take advantage of the modern deep learning approach to model different contributions to the
Lagrangian dynamics of the VGT. We also test the benefits of injecting known physics/constraints
into NNs, by comparing the proposed physics-informed machine learning (PIML) strategy to an
application ignorant NN approach, which we refer to as physics-blind (PB).

1. Extended tensor basis neural network

To learn the functions contributing to Eq. (11), we follow the approach of Ling et al. [35], where
a tensor basis neural network (TBNN) was developed. The TBNN maps functions of invariants and
integrity bases to another target tensor. The method was used in Ling et al. [35] and in a number
of follow-up papers to develop ML models for RANS and LES. In this work, we use an extended
TBNN approach to learn our physics-informed Lagrangian dynamics of the VGT.

The architecture of the extended TBNN we use in this study is shown in Fig. 1. Inputs of the
multilayer deep NN are the five invariants λi introduced above. The input layer is connected to
a series of hidden layers via the rectified linear unit (ReLU) activation function, which is used
to introduce nonlinearities into the ML model. The first output layer is the scalar output with
two branches, each representing scalar functions g(n)

s and g(n)
a . The scalar output is then combined

with the corresponding symmetric and skew-symmetric integrity bases to produce the final tensor
output. The extended TBNN expands the tensor bases where the output tensor is residing. While
retaining the classical features of TBNN, such as Galilean invariance and rotational invariance, we
also guarantee in this architecture enforcement of the incompressibility constraint by modeling the
deviatoric/traceless part of the dynamics.

The choice of the hyper parameters of the deep NN, such as the number of layers and number of
nodes per layer, is proven to be critical. The NN needs to be deep enough to represent a sufficiently
wide class of functions, however also not too deep to avoid overfitting. We have established, by trial
and error, that a NN with eight layers and 40 nodes per layer in the hidden layer achieves a good
balance. The scalar output layer has either 10 or 16 nodes depending on the types of integrity bases
used. The last layer is a “physical” layer with no trainable parameters. The training is performed
using the “Adam” optimization method [47] with a standard (quadratic) loss function. We use a
varying learning rate, which decreases from 10−3 to 10−6 throughout the process of training.

2. Physics-blind deep neural network

In order to demonstrate advantages of the proposed PIML model, we construct a naive PB model
which does not assume any prior physics input. A natural choice of the NN structure for the PB
model is the out-of-the-box deep NN, which is a multi-layer, densely connected, feed-forward
neural network. This deep NN gets nine components of the nondimensionalized velocity gradient
tensor as input and it outputs nine components of the nonlocal pressure Hessian. In terms of the
hyperparameters, we choose to use a NN with eight layers and 40 nodes within each layer, resulting
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FIG. 1. Architecture of the extended tensor basis neural network used in this work, which is based on the
TBNN structure used in Ling et al. [35] and extended to include skew-symmetric tensor bases.

in the number of parameters comparable to the number of trainable parameters within the PIML
model. The learning rates of the PB model and the PIML model are the same.

IV. “GROUND-TRUTH” DATA

The “ground-truth” data are generated from the Eulerian DNS solution of the incompressible NS
equations. Isotropic turbulence is generated on a 10243 grid using the pseudospectral method. A
large-scale linear forcing term is applied to prevent turbulence from decaying. Time advancement
is achieved through Adam-Bashforth-Moulton method. The Taylor Reynolds number when the
turbulence reaches a statistically steady state is approximately 250. See Refs. [48,49] for more
details on the numerical method. The coarse-grained statistics are obtained by applying a Gaussian
filter to the Eulerian data with a chosen filter size l	.

Only Eulerian data are required for the training purpose. In this work, we have sampled up to
4 million data points randomly spanned over space and time, but no improvement is observed when
the training set is larger than 0.5 million. Then, turbulence statistics of interest, including statistics
of the coarse-grained VGT, pressure Hessian, viscous term, and subfilter term, are calculated using
sixth-order Lagrange interpolation from the Eulerian grid to the random locations. The data are
then nondimensionalized using the corresponding timescales of the resolved VGT (i.e., Kolmogorov
time scale for unfiltered VGT). The invariants and the tensor bases, which are inputs of the extended
TBNN, are then calculated using the dimensionless VGT. The train-to-test split ratio is chosen to be
80%:20%.

The Lagrangian data following trajectories of fluid particles are also evaluated and used for
diagnostics. The fluid particles are treated as noninertial particles and their velocity is assumed
to equal the local flow velocity. The velocity of the fluid particle is interpolated from the Eulerian
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FIG. 2. The decay of both the training and testing loss for the (a) PIML model and (b) PB model.

grid using cubic splines [50]. Trajectories of the fluid particles and the temporal evolution of various
statistics are recorded and stored to be used later for training and validation.

V. TRAINING AND TESTING OF THE ML MODELS

We implement and train the PIML model and the PB model using TensorFlow [51] and Keras
[52] open-source ML library. The parameters (weights and biases of the NN layers) in both models
are randomly initialized using the Glorot normal initialization method. The data set is randomly
divided into minibatches of size 4096, therefore, each training epoch takes about 122 iterations. The
parameters of the NN are updated by minimizing the quadratic loss function:

Loss = 1

ntrain

ntrain∑
i=1

‖H i,model − H i,DNS‖2
F , (18)

using the Adam optimization method. Here in Eq. (18), ‖ · ‖F denotes the Frobenius norm of tensors.
The initial learning rate is set to 10−3 and it is then reduced gradually to 10−6 throughout the
training process. Training is terminated when both training and testing losses are saturated. Figure 2
shows the training and testing losses for both PIML and PB models as a function of the number
of epochs. We observe that the initial loss for the PIML model is much larger than one observed
in the PB model. This is due to the fact that the high-order tensor basis is highly intermittent, and
therefore random initialization of the parameters results in a large loss. Since the initial loss of
the PIML model is orders of magnitude larger than one in the PB model, it takes more epochs for
the PIML model to fully converge. At the final training epoch, the PIML model reaches a similar
training/testing loss of 4.80 × 10−2/4.90 × 10−2. On the other hand, the final testing loss is 5.58 ×
10−2 for the PB model, that is larger than the training loss of PIML. This shows that injecting
the known physical constraints into the NN structure can provide physics-based regularization for
training of the ML models.

Another advantage of the physics-informed approach is that the physical constraints and invari-
ance can be automatically preserved by the build-in NN structure. On the other hand, when working
with the PB model, we blindly rely on the NN to discover the underlying physical constraints and
invariance. In Fig. 3 we provide comparison of the testing errors of the incompressibility constraints
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FIG. 3. The testing error of the incompressibility constraint and rotational invariance of the (a) PIML and
(b) PB models.

(Eincomp) and rotational invariance (Erot) from the PIML and PB models. The errors are calculated
using the following formulas:

Eincomp = 1

ntest

ntest∑
i=1

|Tr(H )|, (19a)

Erot = 1

ntest

ntest∑
i=1

‖� f (A) − f (�A)‖2
F , (19b)

where � denotes a random rotation operator and f denotes the ML models. As expected, the PIML
model conserves both incompressibility constraints and rotational invariance throughout the training
and respective errors are around the machine precision. On the other hand, the PB model is unable
to fully capture the underlying invariance.

VI. UNFILTERED VELOCITY GRADIENT TENSOR

The PIML model described in Sec. III is trained using fully resolved data for the VGT and the
pressure Hessian statistics. In this section, the performance of the trained PIML Lagrangian model
is analyzed from a number of perspectives. The unclosed nonlocal pressure Hessian is in the prime
focus of the analysis. A stochastic ODE is then constructed using the newly learned model to check
if the statistics is reproducible.

A. A priori results

Aside from the Frobenius norm of the tensor, which is used as the loss function in training,
an important diagnostic of the predicted pressure Hessian is associated with the alignment of its
eigenvectors and magnitudes of its eigenvalues with respect to characteristics extracted from the
“ground-truth” data. Directions of the eigenvectors are known to play an important role in the
dynamics of the VGT, which are related to flow topology, vortex stretching mechanism, dissipation,
etc. In this section, the PIML model of the nonlocal pressure Hessian is developed using the
extended TBNN. It is then compared with a number of prior attempts to model the nonlocal pressure
Hessian. Specifically, we juxtapose our model to the empirical models developed in Refs. [29–31],
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FIG. 4. PDFs of the angle (in radians) between the predicted e1 eigenvector and DNS data. The PDF
peaks at 0 when the predicted e1 eigenvector is aligned with the DNS data and it peaks at π/2 in the case
of misalignment.

which rely on the aforementioned arguments for the pressure Hessian and subgrid terms locality, but
do not use a NN to represent functional dependence of the modeled terms on the VGT. To emphasize
the role of higher-order functions in our local modeling, we also introduce hierarchy of models by
constructing two simplified ML models: model A, for which g(n)

s are set to constants (rather than
functions of λi), and model B, for which g(n)

s are set to linear functions of λi.
Symmetries of the nonlocal pressure Hessian allow us to reduce the discussion to an analysis of

its three distinct real eigenvalues (denoted as e1 < e2 < e3) and respective eigenvectors. Figure 4
shows the PDF of the angle between predicted and “ground-truth” directions of the e1 eigenvector,
corresponding to the most negative eigenvalue. If the PDF peaks at (π/2) rad, it indicates that the
model predictions are mostly misaligned with the “ground-truth” data. If the PDF peaks at 0 rad,
the model eigenvector is likely to be aligned with the “ground-truth” data. Perfect alignment with a
single-valued PDF of 0 rad is impossible because of the approximate nature of the empirical model
(we approximate a clearly nonlocal problem with a local model). Figure 4 shows that the only
model that can capture the alignment is our PIML model. Second in performance is the simplified
ML model B (with g(n)

s assumed to be linear in λi). Even though the performance of the linearized
PIML models (both ML model A and ML model B) are somehow better than that of other non-ML
models, the improvement is limited. We relate the poor performance of the non-ML models in the
alignment test to the fact that the models ignore high-order functions of the invariants and bases.
Simplified ML models A and B improve the representation of the functional space; however, in only
a limited way as the coefficients are restricted to being constants or linear functions. The ability of
our basic PIML model to learn sufficiently many higher-order functions makes it significantly better
in performance than other models. The limitations of the non-ML based models were foreshadowed
in Lawson and Dawson [31].

The eigenvalues of the nonlocal pressure Hessian, known to play an important role in explaining
physical details of the energy cascade, type of the fluid element deformation, vorticity-strain
alignment, and vortex stretching are tested next. By construction, the trace of the nonlocal pressure
Hessian tensor is zero, so that the sum of the eigenvalues is also zero, e1 + e2 + e3 = 0. We
denote these eigenvalues such as e3 is largest (mostly positive) eigenvalue, e1, is the smallest
(mostly negative) eigenvalue, and e2 is the intermediate eigenvalue and can be either negative or
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TABLE I. Correlation coefficients of the eigenvalues.

Models corr(e1,model, e1,DNS) corr(e2,model, e2,DNS) corr(e3,model, e3,DNS)

Wilczek and Meneveau [29] 0.69 0.11 0.71
Lawson and Dawson [31] 0.69 0.04 0.72
Johnson and Meneveau [30] 0.13 0.06 0.12
Model A 0.70 −0.07 0.73
Model B 0.61 0.09 0.67
PIML model 0.95 0.79 0.94

positive. Table I shows correlation coefficients between model prediction and DNS (ground truth)
for the three eigenvalues. Evidently, the PIML model shows a significant improvement over all
other models for all the eigenvalues, therefore giving a better prediction of the dynamics. Another
observation is that the correlation coefficients corresponding to e1 and e3 are generally much higher
than those for e2. We relate it to the fact that by construction e2 is smaller in magnitude, and it can
also be positive or negative, therefore making it harder to predict its mean value accurately.

The advantage of the PIML model based on TBNN is that, unlike in the case of the black-box
PB model, it allows to interpret the trained model by extracting the scalar coefficients and compare
them with physics-based models. The general functional form of previous physics-based models
used in the past [29,31,32] can be written as

H = δS + γ (SW − W S) + α
(
S2 − 1

3 ITr(S2)
) + β

(
W 2 − 1

3 ITr(W 2)
)
. (20)

The main tuning parameters for the model are δ, γ , α, and β, which can be viewed as the scalar
coefficients g(1)

s to g(4)
s . In Fig. 5 we compare the PDFs of the four scalar coefficients extracted

from the PIML model and the ML model A, which are computed using the testing set, with the
corresponding tuning parameters taken from previous studies, i.e., based on the Gaussian closure
[29] and on the second-order basis expansion [31]. Note that model A is based on the same TBNN
structure, however with 10 scalar functions g(n)

s set constant. We observe that the learned scalar
coefficients in the model A are very close to the parameters in Lawson and Dawson [31], but the
coefficients are very different from those derived using the Gaussian closure model. This is because
the parameters in Lawson and Dawson [31] are also obtained by matching with DNS data using
second-order basis expansion. In the case of the PIML model, the predicted scalar coefficients are
no longer constant—they are nonlinear functions of the invariants. Figure 5 shows that by expanding
the functional space of the scalar coefficients using a NN, the model is able to capture nontrivial
nonlinear dependence on the invariants originating from the projection of high-order polynomials
to the low-order bases. This nontrivial nonlinear dependence shifts the peak values of the PDFs
away from the constant coefficients in model A. We also note that the PDFs of the learned scalar
coefficients are generally narrow in the center but also showing wide tails. This is likely due to the
high intermittency of the high-order invariants.

We then compare contributions from different integrity bases using the average Frobenius norm
of g(n)

s T (n) for different models. As shown in Fig. 6, the Frobenius norm of contributions from the
first four integrity bases are comparable across the PIML model, model A, and Lawson and Dawson
[31], and they are also larger than those seen in the Gaussian closure model. For high-order bases,
model A is able only to capture nontrivial contributions from T (5), while the PIML model, with
the functional space enriched by a NN, is able to capture all the high-order contributions. Even
though it seems that the average contributions (as measured by the Frobenius norm) are small for
T (n), n ∈ 5, . . . , 10, they are highly intermittent and may play an important role in improving the
orientation of the eigenvectors, as observed in Fig. 4.

This analysis confirms that by expanding the functional space using TBNN, the PIML model is
capable of predicting rather accurately orientation/eigenvectors and magnitude/eigenvalues of the
nonlocal pressure Hessian. Encouraged by these results, let us take a step further and study how the
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FIG. 5. PDFs of the coefficients of the tensor bases from the PIML model, ML model A, Gaussian closure
[29], and Ref. [31].
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FIG. 6. Contributions of the different tensor bases to the prediction of nonlocal pressure Hessian for the
PIML model, ML model A, Gaussian closure [29], and Ref. [31].
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FIG. 7. Lagrangian dynamics projected onto the Q-R phase plane: (a) restricted Euler term, (b) pressure
Hessian term, (c) viscous term, and (d) sum of all the terms. Zero discriminant line, D = 27R2 − 4Q3 = 0,
descriptive of the RE dynamics [19], is shown in blue.

PIML model represents statistics of the VGT second invariant, Q, defined according to Eq. (8b) and
the third invariant, R = − 1

3 AmnAnlAlm. Specifically, we follow the Q-R plane dynamics of the VGT,
widely used to describe the geometry of turbulent flows [9–15,24]. The Lagrangian dynamics, as
described by Eq. (4), can then be projected onto the Q-R plane:

dQ

dt
= −3R + AmnHnm + AmnTnm, (21a)

dR

dt
= 2

3
Q2 + AmnAnlHlm + AmnAnlTlm. (21b)

Dynamics (rate of change) within the Q-R plane is described, naturally, by the vector ( dQ
dt , dR

dt ),
formed from the components on the left-hand sides of the equations. One can also form respective
two-component vectors describing the Q-R plane dynamics associated with the RE, pressure Hes-
sian, and viscous contributions on the right-hand sides of Eqs. (21). Figure 7 shows the dynamics
from different contributions on the Q-R plane using conditional mean vector (CMV).

Let us make a quick detour and comment on the dynamics of different vectors in the Q-R plane,
as extracted from the DNS and shown in Fig. 7. The restricted Euler dynamics is deterministic and,
if no other terms are present, should move the “QR particle” largely along the zero discriminant
line. The RE term extracted from DNS, seen in Fig. 7(a), shows this as a general trend. As shown
in Fig. 7(b), the pressure Hessian term counters the RE effects in some areas and moves the
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FIG. 8. Comparison of pressure Hessian contributions on the Q-R phase plane.

“QR particle” towards the left part of the Q-R plane. The QR vector associated with the viscous
contribution largely points towards the origin, consistent with the fact that it aims to damp the
turbulent fluctuations. The contribution summing up all the three vectors based on the right-hand
side of Eqs. (21) and shown in Fig. 7(d) results in the classical clockwise motion around the zero
discriminant line resulting in the tear-drop shape of the Q-R plane PDF [24].

Returning back to the analysis of the PIML model performance, we now turn to the Q-R plane
comparison of PIML and also non-ML-based empirical model from Ref. [31] with DNS, shown
in Fig. 8. Evidently, the PIML model improves over the non-ML-based model [31] in terms of
representing both magnitude and direction of the CMV, especially in the bottom left and bottom
right quadrants. Substituting predictions of the PIML model for the right-hand side terms in Eq. (21)
one can extract PIML dynamics of the QR vector shown in Fig. 9. We observe that the PIML model
results in a reasonably accurate reproduction of the clockwise dynamics in the Q-R plane.

Summarizing results discussed in this section—we observe that the PIML model performs better
than the reduced empirical models constructed so far, in terms of reproducing reasonably well DNS
results for Kolmogorov scale dynamics of the VGT tensor, expressed via magnitude and orientation
of its eigenvalues and eigenvectors, and dynamics of its second and third invariants.

B. A posteriori analysis

After the a priori analysis of the PIML model, which has revealed its success in representing
the DNS results, it seems natural for the next move to perform a more robust test consisting of
substituting the PIML model for various terms on the right-hand side of the Lagrangian Eqs. (3a).
However, the nonlocal and stochastic nature of the contributions suggest that we should also
augment the deterministic PIML terms with stochastic corrections. This suggests we need to model
the original unclosed Lagrangian ODE [Eq. (3a)] by a closed stochastic ODE (SODE). Inspired by
previous (however, non-ML based) papers advancing this line of thought [24,29,30] we consider the
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FIG. 9. Comparison of Lagrangian dynamics between (a) DNS and (b) PIML model on the Q-R phase
plane.

following stochastic model:

dAi j

dt
= Ei j + Hi j,PIML + Ti j,model + bi jmndWmn, (22)

where the newly introduced b is the covariance matrix of the stochastic (Wiener/Langevin) con-
tribution to the dynamics. We borrow the form of the covariance matrix from Ref. [30], bi jmn =
− 1

3

√
Ds
5 δi jδmn + 1

2 (
√

Ds
5 +

√
Da
3 )δimδ jn + 1

2 (
√

Ds
5 −

√
Da
3 )δinδ jm and learn the tuning parameters Da

and Ds from the residual between “ground-truth” and model prediction. In addition, we use a simple
linear diffusion to model the viscous contributions T , where the coefficients, defined as linear scalar
function of invariants, are learned from the data.

To have a preliminary assessment of the stochastic model validity we perform a posteriori test,
consisting of seeding a large number (one million) of particles initialized with a random Gaussian
VGT and then evolving each particle according to the SODE Eqs. (22). In this experiment, we use
a second-order predictor-corrector method to advance the particles in time. The total integration is
performed for half eddy turnover time, where the eddy turnover time is calculated using the formula
l/u′

rms, where l is the integral length scale of the flow. Figure 10(b) shows the Q-R plane of the PDF

FIG. 10. Q-R plane PDF. (a) Random initialization (Gaussian, traceless VGT), (b) PIML SODE prediction,
and (c) DNS.
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FIG. 11. Standardized PDFs of the longitudinal component: (a) A11 and transverse component; (b): A12 of
the VGT.

which we get for this experiment, as compared with the “ground-truth” data shown in Fig. 10(c) and
the result we get assuming a Gaussian i.i.d. statistics for the components of the VGT. Obviously,
the Gaussian example shown in Fig. 10(a) (which we use to initiate the SODE PIML dynamics)
is completely off in terms of the shape and spread of the joint distribution. However, comparison
of the resulting SODE map of the Gaussian seed, shown in Fig. 10(b), with the “ground-truth”
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FIG. 12. Standardized PDFs of the PIML model error of the longitudinal H11 and transverse H12 compo-
nents of pressure Hessian.
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FIG. 13. CMV of the PIML model prediction on the Q-R phase plane. Both the mean (black arrows) and
skewness (blue arrows) are shown with zoomed-in view of the third and fourth quadrants.

data is satisfactory. The two share the similar tear-drop shape attributed to certain preferred local
configurations associated with vortex stretching, and similar increased spread related to the large
intermittency of small-scale turbulence.

To further quantify the statistical properties of the VGT generated from the a posteriori test, we
compare the standardized PDFs of the longitudinal, A11, and transverse, A12, components directly
with those calculated from the DNS data, as well as their random Gaussian initialization in Fig. 11.
Evidently, our PIML SODE is capable, given the initial Gaussian field, of reproducing non-Gaussian
features of the VGT. In particular, the skewed PDF of the longitudinal component can be captured,
even though the skewness factor is underpredicted (−0.3 for the PIML model and −0.55 for DNS).
For the transverse component, the predicted PDF is symmetric (skewness factor around 0), which is
in full agreement with the DNS data.

Upon further (more detailed) examination of the PIML results, we note that the PIML SODE
predicts a narrower tail along the zero discriminant line compared to the DNS. We also observe
that in the PIML-based experiments there are fewer particles ending in the left-bottom and right-
bottom quadrants of the Q-R plane. As shown in Fig. 7, the contribution from the pressure Hessian
plays a major role in moving QR particles into the left-bottom and left-up quadrant. Besides, it
is known from Tian et al. [15] that the pressure Hessian has the largest magnitude, as compared
with other contributions to the dynamics, and it is also highly non-Gaussian (intermittent). These
observations suggest that even though the stochastic PIML model is capable of predicting rather
accurately the mean value of the nonlocal pressure Hessian, it fails to represent correctly its higher-
order moments, e.g., skewness, kurtosis, and tails of the pressure Hessian distribution. To make this
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FIG. 14. CMV of the coarse-grained VGT dynamics with filter scale selected to be, l	 = π/8. (a) restricted
Euler, (b) pressure Hessian, (c) viscous term, and (d) subfilter contribution.

statement clear, we show standardized error in the SODE-PIML prediction in Fig. 12. The error
is calculated using the residual between pressure Hessian predicted by PIML model and “ground-
truth” DNS, HDNS-HPIML. As expected, the PDF shows tails that are much wider than one would
expect from nonintermittent (Gaussian) statistics. We conclude that SODE-PIML misses rare events
pushing more QR particles into the left quadrants of the QR plane. Misrepresentation of statistics by
SODE-PIML is further quantified in Fig. 13, where we show in addition to the mean vector (black),
the respective vector associated with the skewness (blue) of the Q-R plane vector associated with the
right-hand side of Eqs. (4a). We clearly see here a rather significant mismatch in skewness between
the SODE-PIML and the DNS results observed in the left part of the Q-R plane.

Several factors could contribute to the fact that the PIML model fails to predict these high-order
non-Gaussian statistics: the choice of the loss function and the choice of stochastic terms. By using
the quadratic loss function and a Gaussian stochastic term, the error is essentially assumed to be
Gaussian and therefore high-order statistics cannot be represented. Future work on developing
better loss functions and stochastic term will be discussed in the last section. Another caveat of
the constructed SODE is that the viscous contributions are approximated using a simple linear
diffusion model, which is generally not enough to damp high-order nonlinear contributions from
the ML models. This is a common issue of all the ML models. It is generally difficult to devise a
high-order nonlinear damping term, like the one proposed in Ref. [32], to prevent instability of the
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FIG. 15. PDF of the angle (radian) between the predicted e1 eigenvector and DNS data for various filter
sizes.

Lagrangian particle evolution. We are working on improving stability of the Lagrrangian dynamics
taking advantage of a number of recently developed ML techniques.

VII. A PRIORI ANALYSIS OF COARSE-GRAINED VELOCITY GRADIENT TENSOR

We will start the discussion of the process of coarse graining with a disclaimer. Coarse-
graining/filtering of the Lagrangian dynamics of the VGT adds a “geometrical” complexity to the
problem, in the sense that even if it is spatially isotropic, i.e., filtering is over a ball of a fixed size, the
ball will evolve acquiring a complicated, typically multiscale shape. This is the foundation for some
of the advanced physics-based Lagrangian models [24,30]. Having acknowledged the complexity
of this effect associated with the Lagrangian description, we will not address it here in full. Instead,
we limit the description to only spatial filtering over a static and isotropic volume and focus instead
on extending modeling of the small-scale VGT based on locality to that of the coarse-grained VGT
on a fixed volume.

We start this discussion with an analysis, illustrated in Fig. 14, of what DNS shows for different
terms on the right-hand side of Eqs. (6a) where the scale of coarse graining is selected to be l	 =
π/8, i.e., somewhere within the inertial interval limited by the energy-containing scale, estimated
by π , and the viscous/Kolmogorov scale, estimated by π/512. Note that the velocity forcing used
here, following Refs. [48,49], enforces the Kolmogorov scale at the onset, while energy is added
at wave numbers k � |1.5|. We observe that the QR-flow of the coarse-grained RE term and the
coarse-grained pressure Hessian term are similar to the respective unfiltered terms. We also observe
that the viscous contribution becomes small and its “eddy dissipation” role is taken by the subfilter
term.

Now we turn our attention to the focal point of this section—empirical modeling with a NN of the
pressure Hessian and subfilter contributions. The coarse-grained pressure Hessian is modeled using
the same TBNN with the symmetric integrity bases as used above in the unfiltered (single-point)
case. We consider coarse graining at different scales independently, therefore train the TBNN
models for each scale anew. Figure 15 shows the alignment between model prediction and DNS
for the pressure Hessian coarse-grained at different scales. We note that the predicted alignment
is not as good as that in the unfiltered PIML model. This means that adding a length scale to
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TABLE II. Correlation coefficients of the eigenvalues for different scales of coarse graining.

Filter size corr(e1,model, e1,DNS) corr(e2,model, e2,DNS) corr(e3,model, e3,DNS)

l	 = π 0.17 0.21 0.31
l	 = π/2 0.35 0.07 0.33
l	 = π/4 0.50 0.008 0.51
l	 = π/16 0.61 0.06 0.63
l	 = π/32 0.66 0.12 0.67
l	 = π/64 0.71 0.16 0.72
l	 = π/128 0.72 0.20 0.73

the dynamics makes it harder for predicting the orientation. As expected, the model performance
converges towards the unfiltered model as the filter size decreases. Table II shows correlation
coefficients between eigenvalues resulting from the PIML model and DNS data coarse-grained at
different scales. We note that the performance of the same TBNN architecture becomes worse as the
filter size increases. This analysis suggests that the TBNN architecture is less suitable for learning
coarse-grained dynamics as the scale of coarse graining departs significantly from the viscous scale.

Figure 16 shows PDFs of prediction error for PIML models of different coarse-grained scales.
Interestingly, the error becomes more and more Gaussian-like when the filter size increases. This
indicates that the Langevin type SODE model is better suited for modeling coarse-grained dynamics
than those occurring at small scales.

The subfilter contribution is modeled using the extended TBNN framework with all 16 integrity
bases (10 symmetric and six skew symmetric) included. Figure 17 compares the CMV of subfilter
contribution for coarse-graining size l	 = π/8. The PIML model can generally predict the qualita-
tive behavior of the dynamics, but there still exists a large error in the magnitude, especially in the
third quadrant. On top of that, the lack of explicit length scale information in the model makes it
harder to generalize. This indicates an improved modeling strategy is required for coarse-grained
dynamics.

FIG. 16. PDF of the error of PIML model prediction for various filter sizes. The curves are renormalized
to avoid clustering.
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FIG. 17. Comparison of subfilter CMV between the PIML model prediction and DNS. PIML model
prediction is shown as red and DNS data are shown as black. The chosen coarse-graining size is π/8.

VIII. CONCLUSIONS AND FUTURE WORK

Modeling the velocity gradient tensor (VGT), evaluated locally at a point in the Eulerian and/or
Lagrangian frames, and/or averaged over scales within the inertial range of turbulence, is the focus
of this manuscript. We are not the first to study this interesting object, which is known to be
important for understanding quantitatively and qualitatively many principal features of developed
incompressible turbulence, such as geometry and statistics of energy transfer, vorticity-strain align-
ment, mixing, etc. In this work, we aim at developing a reduced empirical model of a stochastic ODE
type describing the VGT evolution at both small scales and coarse-grained scales. We take advantage
of the emerging Machine Learning techniques/tools and inject them with physics-inspired and
mathematics-based constraints to develop a mixed approach: physics informed machine learning.
This allowed us to go much deeper than before in terms of quality achieved in reproducing
the VGT with a reduced model. We show in this paper that the PIML approach applied to the
Lagrangian evolution of the coarse-grained VGT is advantageous over existing methods. To achieve
this conclusion, it required overcoming a number of obstacles which we find useful to list and
discuss again below.

A major difficulty in modeling dynamics of the VGT in incompressible flow is related to its
nonlocality of pressure contributions inherited from the principal nonlinearity of the microscopic
description. We tackle this problem by proposing an empirical model for the spatial distribution
of the second invariant of the VGT that satisfies Galilean invariance, rotational invariance, and in-
compressibility condition. After utilizing an ansatz for nonlocal pressure Hessian, the PIML model
is reformatted into a combination of functions of invariants and integrity bases. This functional
form falls naturally into the TBNN architecture with physically interpretable parameterization. After
training the model with DNS data, we arrived at an improved representation of the magnitude and
orientation of pressure Hessian eigenvales and eigenvectors. In contrast to physics-blind ML model,
we can interpret such improvement by analyzing the statistical properties of scalar coefficients for
different tensor bases. A stochastic ODE is constructed to model the full evolution of VGT with a
simplified constant covariance matrix for the stochastic term. An a posteriori test is then conducted
by temporally evolving the SODE from a random Gaussian initial field. The classical tear-drop
shape of the Q-R joint distribution is reproduced, but the tail is more elongated compared to the
DNS data. Further diagnostics show that the non-Gaussian statistics of the pressure Hessian cannot
be fully represented by the PIML model.

For the coarse-grained VGT dynamics, a similar approach is adopted using the extended TBNN
framework, which expands the integrity bases for skew-symmetric tensor prediction. The PIML
model is trained using filtered DNS data with different filter sizes. With increasing filter size,
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the dynamics become more Gaussian-like, which makes stochastic modeling more reasonable.
However, the performance of the model, i.e., orientation and magnitude of the eigenvectors and
eigenvalues of the coarse-grained VGT, is worse compared to the unfiltered case. This is likely
because the current extended TBNN is not able to embed length-scale information in the model.

We also acknowledge that our current PIML model simplifies the spatial complexity due to the
single-point modeling strategy. We recognize that better spatial modeling should be Lagrangian,
injecting into consideration the dynamics of the coarse-grained volume.

To correct the problems with the VGT-only reduced modeling encountered in this paper, we
have started to work in Ref. [53] on extending it. In particular, and acting consistently with the
tetrad model approach developed in Ref. [24], we work on including into Lagrangian description
geometrical characteristics, such as the shape of the coarse-graining fluid blob coevolving with
the VGT. When training on high-Reynolds number DNS data, we expect the improved model to
learn the universal inertial-range Lagrangian dynamics. The small-scale VGT dynamics with a high
dependence on Reynolds number can then be modeled using the interscale interaction and energy
transfer. We also work on improving and tuning the ML approaches. Thus, we have developed a
Bayesian learning approach towards constructing SODE by learning (and not postulating as above)
the covariance matrix (possibly dependent on both the coarse-graining shape and scale and on the
coarse-grained VGT). We also envision exploring in the future ways to provide a better representa-
tion for the high-order/non-Gaussian statistics of turbulence. Injecting non-Wiener/non-Langevin
noise and working with a richer family of loss functions (used to describe mismatch between DNS
and empirical results) may help to tackle the problem of better representation of the turbulence and
the inherited intermittency.
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