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TIME STABILITY OF STRONG BOUNDARY CONDITIONS IN
FINITE-DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS∗

NEK SHARAN† , PETER T. BRADY‡ , AND DANIEL LIVESCU‡

Abstract. A framework to construct time-stable finite-difference schemes that apply boundary
conditions strongly (or exactly) is presented for hyperbolic systems. A strong time-stability definition
that applies to problems with homogeneous as well as nonhomogeneous boundary data is introduced.
Sufficient conditions for strong time stability and conservation are derived for the linear advection
equation and coupled system of hyperbolic equations using the energy method. Explicit boundary
stencils and norms that satisfy those sufficient conditions are derived for various orders of accuracy.
The discretization uses nonsquare derivative operators to allow stability and conservation conditions
in terms of boundary data at grid points where physical boundary condition is directly injected and
solution values at the rest of the grid points. Various linear and nonlinear numerical tests that verify
the accuracy and stability of the derived stencils are presented.

Key words. time stability, conservation, boundary conditions

AMS subject classifications. 65M06, 65M12, 76M20

DOI. 10.1137/21M1419957

1. Introduction. High-fidelity fluid dynamics simulations require stable bound-
ary closures for long-time calculations typical of practical applications. High-order
centered finite-difference schemes are commonly used for accurate turbulent flow
[25, 20, 26, 30] and aeroacoustics [33, 39, 8, 11] simulations because of their non-
dissipative properties, ease of implementation, and computational efficiency. How-
ever, the nondissipative character of centered schemes also renders them susceptible
to numerical instabilities when the boundary closure for a given interior scheme is not
derived to satisfy stability conditions [5].

Numerical stability proofs require bounding the computational solution in terms
of constants independent of grid spacing [15]. Various stability definitions exist that
impose different solution bounds. The classical (Lax and G-K-S) stability definition
allows nonphysical solution growth in time even though the solution may converge on
successive grid refinements [35, 6], which can be detrimental to long-time integrations
in fluid-flow calculations. In this study, boundary stencils are, therefore, derived
to satisfy the time-stability (also called strict or energy stability) definition, which
provides a uniform bound for the solution in time, preventing nonphysical temporal
growth.
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Commonly used time-stable boundary treatments include the weak imposition of
boundary conditions (BCs) with simultaneous-approximation-term (SAT) [6] as well
as the projection method [21, 22]. The SAT approach imposes BCs using a penalty
term, whereas the projection method uses a projection matrix to incorporate BCs into
the system of ordinary differential equations (ODEs) solved for the discrete solution.
The extent to which the boundary point may satisfy the BC with the SAT approach
depends on the magnitude of the penalty parameter. A higher value may better satisfy
the BC: however, it may make the ODE system stiffer. In cases of nonhomogeneous
boundary data, the projection method may also not satisfy the BC exactly because the
projected ODE system imposes the time-derivative of boundary data, and the time-
integration of the ODE system may not be exact. This work focuses on derivation of
a time-stable method that enforces BCs strongly (or exactly).

Kreiss and Scherer [18] proposed a method to derive first-derivative finite-difference
approximations with centered interior schemes and boundary stencils that satisfy a
summation-by-parts (SBP) property of the differential equation. In general, the SBP
property is not a sufficient condition for time stability with strong BCs [15, 6], but
several SBP operators are time stable for scalar hyperbolic problems with homoge-
neous boundary data. However, as observed by Carpenter, Gottlieb, and Abarbanel
[6], high-order schemes can lead to unphysical solution growth in time for coupled
hyperbolic systems, when solved using strong BCs. In particular, for the 2×2 system
discussed in [6, section 3], and solved here in section 4.2, Carpenter, Gottlieb, and
Abarbanel noted at the time that no central difference scheme of order greater than
two was time stable for this system. To the best of our knowledge, there are still no
central finite-difference scheme of order greater than two that are time stable for this
system with strong BCs. Carpenter, Gottlieb, and Abarbanel [6] proved time stability
of SBP schemes for this system using SAT (weak) BC implementations. In this work,
we derive boundary stencils for centered interior schemes up to sixth-order accurate
that are time stable for this system with strong BCs.

Theoretical time-stability analyses of finite-difference schemes using weak BC im-
plementations are widely available [12, 31]. However, similar analyses for strong BCs
are hindered by the challenge of incorporating exact boundary conditions (EBCs) in
the system of ODEs (following a method-of-lines approach) such that it also ensures
a uniform solution bound (for systems with bounded energy), independent of grid
spacing. An alternative approach that uses nonlinear optimization to numerically
examine the stability of boundary closures with strong BCs is proposed in [4]. The-
oretical stability proofs provide sufficient conditions of stability, so in principle, it is
possible that a numerical optimization may provide time-stable schemes that satisfy
yet unknown necessary conditions of stability but not the sufficient conditions from
theoretical proofs. However, at present this procedure has also not yielded time-stable
schemes for the 2× 2 system mentioned above.

In theoretical stability analyses, application of strong BCs is typically represented
by a projection operator that omits rows in the derivative operator corresponding to
grid points where the physical BCs are applied, e.g., [6, 18]. The row omissions
prevent calculations at the boundary points where exact boundary data is injected.
Row omissions in a derivative operator that was originally designed for calculations
on the whole domain compromise the numerical properties of the full operator [15].
For example, a derivative operator that discretely satisfies the conservation condition
for the scalar convection equation

∂U

∂t
+

∂U

∂x
= 0, 0 ≤ x ≤ 1, t ≥ 0,(1.1)
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given by

d

dt

∫ 1

0

U dx = −
∫ 1

0

∂U

∂x
dx = U(0, t)− U(1, t),(1.2)

is not conservative after row omission, as shown in Lemma A.1. To alleviate these
issues, we consider nonsquare derivative operators that incorporate EBCs to begin
with and derive time-stability and conservation conditions for such operators. This
is in contrast to the traditional approach where stability and conservation conditions
are satisfied for square operators, which may not preserve those properties on row
omission(s) for strong BC implementation.

The paper is organized as follows. Time-stability and conservation constraints
for finite-difference schemes imposing strong BCs are derived in section 2 for a hy-
perbolic scalar equation as well as coupled system of equations. For nonhomogeneous
boundary data, a definition of strong time-stability is introduced, in addition to the
time-stability definition for homogeneous boundary data. Steps in the construction
of boundary stencils to satisfy the time-stability and conservation constraints are
discussed in section 3. The stability and the accuracy of the derived schemes are
evaluated for various linear and nonlinear problems in section 4. Application of the
derived schemes to the Euler equations with characteristic BCs is discussed in section
5 and the conclusions are provided in section 6.

2. Numerical approach and proof of stability. This section derives the
constraints on boundary stencils for time-stable enforcement of strong BCs to solve a
hyperbolic scalar equation (section 2.1) and hyperbolic system of equations (section
2.2). The derived constraints are then used to obtain schemes of various orders of
accuracy in section 3.

2.1. The hyperbolic scalar problem. Consider the scalar hyperbolic equation
(1.1) with the initial and the boundary condition given by

U(x, 0) = f(x), U(0, t) = g(t).(2.1)

On a domain with n + 1 equidistant grid points (x0 = 0, x1, . . . , xn−1, xn = 1), a
semi-discretization of (1.1)–(2.1) using strong BCs can be written as

dũ

dt
= −Du,(2.2)

u(0) = f ,

where u(t) =
[
u0(t) · · · un(t)

]T
, with u0(t) ≡ g(t), is the discrete solution vector.

ũ(t) =
[
u1(t) · · · un(t)

]T
is the solution vector without the first element, which

corresponds to the grid point where the boundary data is injected. D, a matrix of
size n× (n+ 1), denotes the derivative operator. The entries of D are denoted by dij ,
where 1 ≤ i ≤ n and 0 ≤ j ≤ n. Its nonsquare structure prevents computation at the

first grid point, where a physical BC is applied. f =
[
f(x0) · · · f(xn)

]T
denotes

the discrete initial data.
Define a scalar product and norm for discrete real-valued vector functions v =[

v1 · · · vn
]T

and w =
[
w1 · · · wn

]T
by (e.g., [18])

(v,w)H = vTHw =

κ∑
i,j=1

hijviwj∆x+

n−κ∑
i=κ+1

viwi∆x+

n∑
i,j=n−κ+1

hijviwj∆x,(2.3)
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∥v∥H =
√
(v,v)H ,(2.4)

where ∆x denotes the grid spacing, κ represents the depth of boundary stencil, and
hi,j are the coefficients of a symmetric positive definite (norm) matrix H.

Multiplying (2.2) by ũTH, where H is a norm matrix of size n × n, and adding
its transpose yields

d

dt
∥ũ∥2H = −ũTHDu− (Du)

T
Hũ.(2.5)

Using Definition 2.13 of [15], time stability is defined as follows.

Definition 1. The approximation (2.2) is time stable if for g = 0, there is a
unique solution ũ(t) satisfying

∥ũ∥H ≤ K
∥∥∥f̃∥∥∥

H
or

d

dt
∥ũ∥2H ≤ 0,(2.6)

where K is independent of ∆x, f , and t. f̃ denotes the vector f without its first
element, following the definition of ũ.

For g = 0, the first element of vector u is zero, i.e., u0 = 0. Substituting u0 = 0
in (2.5) yields

d

dt
∥ũ∥2H = −ũTHD̃ũ−

(
D̃ũ
)T

Hũ = ũT
[
HM + (HM)

T
]
ũ,(2.7)

where M = −D̃ and D̃ is a square (n×n) matrix containing all columns of D except
the first. If the approximation (2.2) is time stable, i.e., (2.6) is true, then the following
result about the eigenvalues of M can be stated.

Theorem 1. If there exists a positive definite matrix H such that HM +(HM)
T

is negative definite (semidefinite), then the real part of all eigenvalues of M is negative
(nonpositive).

Proof. See [10, Lemma 3.1.1].

(2.6) defines time stability for homogeneous boundary data, i.e., g = 0. For g ̸= 0,
following the Definition 2.12 of [15] for strong stability, we define strong time stability
as follows.

Definition 2. The approximation (2.2) is strongly time stable if there is a unique
solution ũ(t) satisfying

∥ũ∥2H ≤ K

(∥∥∥f̃∥∥∥2
H
+

∫ 1

0

|g (τ)|2 dτ

)
or

d

dt
∥ũ∥2H ≤ K |g|2 ,(2.8)

where K is independent of ∆x, f , g, and t.

Remark. The time-stability definition (2.6) differs from the classical stability
definition [15, Definition 2.11] in requiring a uniform solution bound, independent of
time [35, 6]. The energy estimates derived for the SBP operators in [18] ensure classical
stability (see [18, Theorem 1.1]), but may not ensure time stability [6, 15]. The
diagonal and restricted full-norm SBP first-derivative operators of [32] on omitting
their first row for strong BC implementation with semidiscretization (2.2) satisfy (2.6),
for homogeneous boundary data, but do not guarantee (2.8) for nonzero boundary
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data. Moreover, row omission introduces an O (1) conservation error, as shown in
Lemma A.1.

In the following, we derive the constraints on the entries of the derivative operator,
D, for the solution of (2.2) to satisfy the strong time-stability definition (2.8) and a
discrete conservation condition. To simplify algebra, the nonsquare operator Q = HD
can be decomposed such that

ũTHDu = ũTQu = ũT Q̃ũ+ ũTq0g,(2.9)

where Q̃ is a square (n × n) matrix containing all the columns of Q except the first
and vector q0 is the first column of Q. u0(t) ≡ g(t) is substituted in the second term
of the right-hand side (r.h.s.) of (2.9). The entries of Q, like D, are denoted by qij ,
where 1 ≤ i ≤ n and 0 ≤ j ≤ n. Substituting (2.9) in the r.h.s. of (2.5) provides the
strong time-stability condition that respects (2.8):

−ũTHDu− (Du)
T
Hũ = −ũT

(
Q̃+ Q̃T

)
ũ− 2ũTq0g ≤ K |g|2 .(2.10)

In addition to the above time-stability condition, we seek a discrete conservation
condition. A discrete version of (1.2) is given by

d

dt

∫ 1

0

U dx ≈ d

dt

n∑
i=1

(Hũ)i = −
n∑

i=1

(HDu)i = g(t)− un(t),(2.11)

where the notation (v)i denotes the ith component of a vector v =
[
v1 · · · vn

]T
and the entries of H constitute a quadrature for the domain 0 ≤ x ≤ 1.

In terms of the operators defined in (2.9), condition (2.11) translates to

n∑
i=1

(q0)i = −1,
n∑

i=1

qij =

{
1, j = n,

0 otherwise,
(2.12)

where (q0)i ≡ qi0.
We seek derivative approximations, D, and norm matrices, H, that satisfy the

strong time-stability condition (2.10) and the discrete conservation condition (2.11)
for various orders of accuracy. The derivation proceeds by assuming an extent of
nonzero elements in vector q0, denoted by β, i.e., let

q0 =
[
q10 · · · qβ0 0 · · · 0

]T
.(2.13)

In other words, β > 0 represents the depth of boundary stencils that use the physical
boundary point, where the boundary data is injected, for derivative approximation.
A nonzero (row) entry in q0 requires a corresponding nonzero diagonal entry in Q̃ to
satisfy (2.10), as shown in the following theorem.

Theorem 2. (a) The strong time-stability condition (2.10) is satisfied if, for 1 ≤
i, j ≤ n and β > 0,

qij


= −qji if i ̸= j,

> 0 if i = j ≤ β,

≥ 0 if i = j > β.

(2.14)

(b) The conservation condition (2.12) is concurrently satisfied if the latter two
conditions in (2.14), for the diagonal entries of Q̃, are replaced by the stricter condi-
tions, given by
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qij =


−qji if i ̸= j,

− 1
2qi0 > 0 if i = j ≤ β,

0 if β < i = j < n,
1
2 if i = j = n,

(2.15)

and
∑n

i=1qi0 =
∑β

i=1qi0 = −1.

Proof. Matrix Q̃ with entries satisfying qij = −qji for i ̸= j yields

Q̃+ Q̃T

2
= diag (q11, . . . , qββ , . . . , qnn) ,(2.16)

whose substitution in (2.10), with q0 =
[
q10 · · · qβ0 0 · · · 0

]T
, provides

− ũT
(
Q̃+ Q̃T

)
ũ− 2ũTq0g = −

n∑
i=1

2qiiu
2
i−

β∑
i=1

2qi0uig(2.17)

=

β∑
i=1

[
−2qii

(
ui +

qi0
2qii

g

)2

+
q2i0
2qii

g2

]
−

n∑
i=β+1

2qiiu
2
i ≤ K1g

2,

where the last inequality holds if qii > 0 for 1 ≤ i ≤ β and qii ≥ 0 for β < i ≤ n (the

conditions in (2.14)), and K1 =
∑β

i=1
q2i0
2qii

. This proves the (a) part of the theorem.

For the (b) part of the theorem, note first that conditions in (2.15) satisfy (2.14),
which ensures strong time stability. This can also be seen by substituting (2.15) in

(2.17) and using
∑β

i=1qi0 = −1. It remains to be shown that (2.15) also satisfies the
conservation condition (2.12).

The rows of a derivative approximation, D, sum to zero and, hence, the rows of
Q = HD also sum to zero (for proof, see Lemma A.2 in Appendix A), i.e.,

n∑
j=0

qij = qi0 + qii+

n∑
j=1
j ̸=i

qij = 0 ∀ 1 ≤ i ≤ n,(2.18)

where, from (2.13), qi0 = 0 for i > β. Using qij = −qji for i ̸= j (this structure is
typical of a centered finite-difference scheme in the interior) yields

n∑
j=1
j ̸=i

qij = −
n∑

j=1
j ̸=i

qji ∀ 1 ≤ i ≤ n.(2.19)

Adding −qii to both sides of (2.19) and using (2.18) provides

−
n∑

j=1

qji =

n∑
j=1

qij − 2qii = −qi0 − 2qii ∀ 1 ≤ i ≤ n.(2.20)

(2.12) is then satisfied if qii = − 1
2qi0 for 1 ≤ i < n and qii = 1

2 −
1
2qi0 for i = n.

From (2.13), qi0 = 0 for i > β, which yields qii =
1
2 for i = n and qii = − 1

2qi0 = 0 for
β < i < n (the conditions in (2.15)). This completes the proof.

To summarize the above theorem, a skew-symmetric Q̃ except at the top-left
and the bottom-right corner satisfies the conservation condition (2.12) at the interior
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points and it leads to cancellations of interior point terms in (2.10) for time stability.
The skew-symmetric structure prescribes centered derivative approximations in the
interior. The top-left and the bottom-right corner of Q (that comprises q0 and Q̃; see
(2.9)) determine behavior at the inflow and the outflow boundary, respectively. The
conditions in (2.15) for the outflow boundary, where no physical BC is required, satisfy
the SBP formula [18] and, hence, SBP stencils are used at the outflow boundary in
the proposed scheme. At the inflow boundary, new stencils that satisfy (2.14) are
derived in section 3 for various centered interior schemes.

2.2. The coupled hyperbolic system. This section discusses the time-stability
conditions for the semidiscretization of a one-dimensional (1-D) hyperbolic system
using strong BCs. A hyperbolic system coupled at the boundaries, considered by
Carpenter, Gottlieb, and Abarbanel [6] and by Abarbanel and Chertock [1] to prove
time stability of finite-difference schemes with SAT (weak) BCs, is considered here
with strong BCs.

The system, with domain 0 ≤ x ≤ 1 and t ≥ 0, is given by

∂UI

∂t
+ ΛI ∂U

I

∂x
= 0,(2.21)

∂UII

∂t
+ ΛII ∂U

II

∂x
= 0,(2.22)

where

UI =
[
U1 (x, t) · · · Uk (x, t)

]T
and ΛI = diag (λ1, . . . , λk)

for λ1 > λ2 > · · · > λk > 0 describe a system of right-moving waves and

UII =
[
Uk+1 (x, t) · · · Ur (x, t)

]T
and ΛII = diag (λk+1, . . . , λr)

for 0 > λk+1 > λk+2 > · · · > λr describe a system of left-moving waves. The system
(2.21)–(2.22) is well-posed for BCs given by

UI (0, t) = LUII (0, t) + gI (t) ,(2.23)

UII (1, t) = RUI (1, t) + gII (t) ,(2.24)

where L and R are constant matrices of size k× (r − k) and (r − k)× k, respectively,
and gI and gII are vectors of size k and r− k, respectively. The system (2.21)–(2.24)
has a nongrowing solution in time if gI and gII are zero and (see [6, Theorem 2.1])

∥L∥ ∥R∥ ≤ 1.(2.25)

The matrix norm for real matrices is defined by ∥L∥2 = ρ
(
LTL

)
, where ρ (·) denotes

the spectral radius. For the system (2.21)–(2.22) to be coupled, the norms ∥L∥ and
∥R∥ should be nonzero.

A semidiscretization of (2.21)–(2.24) using strong BCs can be written as

dw

dt
= −Dw + b,(2.26)

where w(t) = [ ũI(t) ũII(t) ]T with ũI(t) =
[
ũ1(t) · · · ũk(t)

]
and ũII(t) =[

ũk+1(t) · · · ũr(t)
]
. The unknowns for each equation in the system are given by
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(assuming a discretization with n+1 grid points, as described in section 2.1) ũϕ(t) =[
uϕ
1 (t) · · · uϕ

n(t)
]T

for 1 ≤ ϕ ≤ k and ũϕ(t) =
[
uϕ
0 (t) · · · uϕ

n−1(t)
]T

for k + 1 ≤
ϕ ≤ r, where ũϕ(t) is the solution vector without the element corresponding to the
grid point where the boundary data is injected. Therefore, the solution vectors for
the first k equations do not contain the element corresponding to the first grid point
and the rest do not contain the element corresponding to the last grid point. The
derivative operator, D, is then given by

D = ΛH−1Q,(2.27)

where Λ = diag (λ1, . . . , λr),

H =

[
H11 0
0 H22

]
, and Q =

[
Q11 Q12

Q21 Q22

]
.

The submatrices are given by

H11 = Ik ⊗H, H22 = Ir−k ⊗H#,

Q11 = Ik ⊗ Q̃, Q12 = L⊗Q0, Q21 = −R⊗Q#
0 , Q22 = −Ir−k ⊗ Q̃#,

(2.28)

where Im denotes an identity matrix of size m × m and ⊗ denotes the Kronecker
product. The superscript # denotes the matrix and vector transformations M# =
J−1MJ and m# = J−1m, respectively, where

J = J−1 =

0 1

. .
.

1 0

 .(2.29)

The transformation yields matrix/vector “rotated” by 180deg, for example,[
a b
c d

]#
=

[
d c
b a

]
and

[
a
b

]#
=

[
b
a

]
.(2.30)

Q0 is an n×n matrix with q0 as the first column and the remaining columns zero. The
vector q0 and matrices H and Q̃ are as described in section 2.1. Vector b incorporates
the boundary data gI and gII and is given by

b = ΛH−1

[
gI ⊗ q0

−gII ⊗ q#
0

]
.(2.31)

Let the discrete energy be defined as (e.g., [6, 1])

E(t) =

k∑
ϕ=1

∥R∥
λϕ

(
ũϕ
)T

Hũϕ+

r∑
ϕ=k+1

∥L∥
|λϕ|

(
ũϕ
)T

H#ũϕ,(2.32)

which provides

dE

dt
=

k∑
ϕ=1

∥R∥
λϕ

d

dt

(
ũϕ
)T

Hũϕ+

r∑
ϕ=k+1

∥L∥
|λϕ|

d

dt

(
ũϕ
)T

H#ũϕ.(2.33)
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The time-stability condition, assuming gI = 0 and gII = 0 in (2.23)–(2.24), is defined
as

dE

dt
≤ 0,(2.34)

and the strong time-stability condition for nonzero gI and gII is defined as

dE

dt
≤ KI

∥∥gI
∥∥2 +KII

∥∥gII
∥∥2 ,(2.35)

where ∥v∥ =
√
vTv for a vector v. The conservation condition for the system (2.21)–

(2.22) is the same as that for the scalar equation (1.1), since the system comprises
scalar advection equations. The conservation condition for the operators used in the
semidiscretization (2.26) is, therefore, given by (2.12). The numerical flux should
“telescope” across the domain to the boundaries without loss, consistent with the
continuous flux behavior.

The following theorem provides sufficient conditions for the semidiscretization
(2.26) to satisfy the strong time-stability and conservation conditions.

Theorem 3. (a) The strong time-stability condition (2.35) is satisfied if, for 1 ≤
i, j ≤ n and β > 0,

qij


= −qji if i ̸= j,

>
q2i0

4qnnai
∥L∥ ∥R∥ if i = j ≤ β,

≥ 0 if β < i = j < n,

> 0 if i = j = n,

(2.36)

where ai > 0 and
∑β

i=1ai = 1.
(b) The conservation condition (2.12) is concurrently satisfied if (2.15) is true

with
∑n

i=1qi0 =
∑β

i=1qi0 = −1.
Proof. The individual terms in summations of (2.33), which denote the contribu-

tion from each equation of the system, are given by

d

dt

(
ũϕ
)T

Hũϕ =
d

dt

∥∥ũϕ
∥∥2
H

= −λϕ

(
ũϕ
)T (

Q̃+ Q̃T
)
ũϕ(2.37)

− 2λϕ

(
ũϕ
)T

q0

(
LũII

0 + gI
)
ϕ
,

for 1 ≤ ϕ ≤ k, and by

d

dt

(
ũϕ
)T

H#ũϕ =
d

dt

∥∥ũϕ
∥∥2
H# = −λϕ

(
ũϕ
)T (

Q̃# +
(
Q̃#
)T)

ũϕ(2.38)

− 2λϕ

(
ũϕ
)T

q#
0

(
RũI

n + gII
)
ϕ
,

for k + 1 ≤ ϕ ≤ r, where ũII
0 =

[
uk+1
0 (t) · · · ur

0(t)
]T

and ũI
n =

[
u1
n(t) · · · uk

n(t)
]T

.

Assuming qij = −qji, for i ̸= j in matrix Q̃, the contribution to (2.33) from the first
term in the r.h.s. of (2.37) and (2.38) can be calculated from, respectively,

k∑
ϕ=1

(
ũϕ
)T (

Q̃+ Q̃T
)
ũϕ = 2

n∑
i=1

qii

k∑
ϕ=1

(
uϕ
i

)2
= 2

n∑
i=1

qii
∥∥ũI

i

∥∥2 ,(2.39)
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r∑
ϕ=k+1

(
ũϕ
)T (

Q̃# +
(
Q̃#
)T)

ũϕ(2.40)

= −2
n∑

i=1

qii

r∑
ϕ=k+1

(
uϕ
n−i

)2
= −2

n∑
i=1

qii
∥∥ũII

n−i

∥∥2 ,
where ∥ũI

i ∥2 =
∑k

ϕ=1(u
ϕ
i )

2 and ∥ũII
n−i∥2 =

∑r
ϕ=k+1(u

ϕ
n−i)

2. Further, assuming q0 =[
q10 · · · qβ0 0 · · · 0

]T
, as in (2.13), the contributions to (2.33) from the second

term in the r.h.s. of (2.37) and (2.38) are, respectively,

k∑
ϕ=1

(
ũϕ
)T

q0

(
LũII

0 + gI
)
ϕ
=

β∑
i=1

qi0

k∑
ϕ=1

uϕ
i

(
LũII

0 + gI
)
ϕ
,(2.41)

r∑
ϕ=k+1

(
ũϕ
)T

q#
0

(
RũI

n + gII
)
ϕ
= −

β∑
i=1

qi0

r∑
ϕ=k+1

uϕ
n−i

(
RũI

n + gII
)
ϕ
.(2.42)

Using the Cauchy–Schwarz inequality,

k∑
ϕ=1

uϕ
i

(
LũII

0

)
ϕ
≤
∥∥ũI

i

∥∥ ∥L∥ ∥∥ũII
0

∥∥ , k∑
ϕ=1

uϕ
i

(
gI
)
ϕ
≤
∥∥ũI

i

∥∥∥∥gI
∥∥ ,(2.43)

and

r∑
ϕ=k+1

uϕ
n−i

(
RũI

n

)
ϕ
≤
∥∥ũII

n−i

∥∥ ∥R∥ ∥∥ũI
n

∥∥ , r∑
ϕ=k+1

uϕ
n−i

(
gII
)
ϕ
≤
∥∥ũII

n−i

∥∥∥∥gII
∥∥ .

(2.44)

Substituting (2.43) and (2.44) in (2.41) and (2.42), respectively, and, in turn, using
(2.37)–(2.38) with (2.39)–(2.42) in (2.33), assuming qii ≥ 0 for β < i < n, yields

dE

dt
≤

{
β∑

i=1

(
−2qii ∥R∥

∥∥ũI
i

∥∥2 + 2 |qi0| ∥L∥ ∥R∥
∥∥ũI

i

∥∥∥∥ũII
0

∥∥)− 2qnn ∥L∥
∥∥ũII

0

∥∥2}
(2.45)

+

{
β∑

i=1

(
−2qii ∥L∥

∥∥ũII
n−i

∥∥2+2 |qi0| ∥L∥ ∥R∥
∥∥ũI

n

∥∥ ∥∥ũII
n−i

∥∥)−2qnn ∥R∥ ∥∥ũI
n

∥∥2}

+

β∑
i=1

(
2 |qi0| ∥R∥

∥∥ũI
i

∥∥∥∥gI
∥∥+ 2 |qi0| ∥L∥

∥∥ũII
n−i

∥∥∥∥gII
∥∥) .

The time-stability condition (2.34), where gI = 0 and gII = 0 is assumed, is satisfied

if both curly brackets in (2.45) are nonpositive. Introducing
∑β

i=1ai = 1, where
ai > 0, the last terms in the curly brackets can be written as

2qnn ∥L∥
∥∥ũII

0

∥∥2 = 2

β∑
i=1

aiqnn ∥L∥
∥∥ũII

0

∥∥2 ,(2.46)

2qnn ∥R∥
∥∥ũI

n

∥∥2 = 2

β∑
i=1

aiqnn ∥R∥
∥∥ũI

n

∥∥2 .(2.47)
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Substituting (2.46)–(2.47) in (2.45), the two curly brackets in (2.45) are nonpositive
if

qii ≥
q2i0

4qnnai
∥L∥ ∥R∥ or qii = s+

q2i0
4qnnai

∥L∥ ∥R∥ , 1 ≤ i ≤ β,(2.48)

where s ≥ 0. Substituting qii from (2.48) in (2.45) ensures that the terms in the curly
brackets are nonpositive and yields for s > 0,

dE

dt
≤

β∑
i=1

(−2s ∥R∥
∥∥ũI

i

∥∥2 + 2 |qi0| ∥R∥
∥∥ũI

i

∥∥∥∥gI
∥∥− 2s ∥L∥

∥∥ũII
n−i

∥∥2
(2.49)

+ 2 |qi0| ∥L∥
∥∥ũII

n−i

∥∥∥∥gII
∥∥ )

=

β∑
i=1

(
− ∥R∥

[√
2s
∥∥ũI

i

∥∥− |qi0|√
2s

∥∥gI
∥∥]2 − ∥L∥ [√2s∥∥ũII

n−i

∥∥− |qi0|√
2s

∥∥gII
∥∥]2

+
|qi0|2

2s

{
∥R∥

∥∥gI
∥∥2 + ∥L∥∥∥gII

∥∥2})

≤

β∑
i=1

|qi0|2

2s

(
∥R∥

∥∥gI
∥∥2 + ∥L∥ ∥∥gII

∥∥2) .
Thus, s > 0 in (2.48) ensures both strong time stability, defined by (2.35), and time
stability, defined by (2.34), while s = 0 ensures time stability but not strong time
stability. This proves the (a) part of the theorem.

Theorem 2(b) shows that (2.15) with
∑n

i=1qi0 = −1, where qi0 ≤ 0, satisfies the
discrete conservation condition (2.12) for the scalar advection equation. As already
mentioned, the discrete conservation condition for the system (2.21)–(2.22) is the
same as that for the scalar advection equation. Therefore, a stencil satisfying (2.15)
provides a conservative scheme for the system (2.21)–(2.22). It remains to be shown
that (2.15) also satisfies the strong time-stability condition (2.35).

Using ai = −qi0 and qnn = 1
2 in (2.36), (2.15) automatically satisfies (2.36) since

−1

2
qi0 =

q2i0
4qnnai

>
q2i0

4qnnai
∥L∥ ∥R∥(2.50)

for ∥L∥ ∥R∥ < 1. This completes the proof.

Remark. The energy estimate (2.49) obtained in terms of the matrix norms
∥L∥ and ∥R∥ is an artifact of the energy definition (2.32) used for the proof. This
definition simplifies the proof of stability, and from the equivalence of norms over a
finite-dimensional vector space, it can be shown that the energy defined simply by the

square of the Euclidean norm, Ẽ(t) =
∑r

ϕ=1

(
ũϕ
)T

ũϕ, is bounded by

c1E(t) ≤ Ẽ(t) ≤ c2E(t),(2.51)

where c1, c2 > 0 are real constants.
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The boundary stencil derivation for various orders of accuracy is discussed in
the next section. The goal is to satisfy the stability and conservation conditions of
Theorems 2 and 3, which follows if a stencil satisfies (2.15) with

∑n
i=1qi0 = −1. In

cases where stencils that satisfy (2.15) could not be found, stencils that ensure (2.36)
are derived, which also ensures (2.14) is satisfied, providing a strongly time-stable
scheme for the scalar problem (1.1)–(2.1) as well as for the hyperbolic system (2.21)–
(2.24). The strong time-stability condition (2.36), however, does not ensure that the
conservation condition (2.11) is satisfied.

The condition (2.11) with an O (∆x) error, given by

d

dt

∫ 1

0

U dx ≈
n∑

i=1

(
d

dt
Hũ

)
i

= −
n∑

i=1

(HDu)i = g(t)− un(t) +O (∆x) ,(2.52)

can be satisfied, concurrently with (2.36), if

qij


= −qji if i ̸= j,

>
q2i0

4qnnai
∥L∥ ∥R∥ if i = j ≤ β,

= 0 if β < i = j < n,

= 1
2 if i = j = n,

(2.53)

and
∑κ

j=0

∑n
i=1qij = −1, where ai is as in Theorem 3 and κ is the depth of the

boundary block in H and Q̃ (as denoted in (2.3) and further described in section 3).
Obviously, condition (2.52) converges to (2.11) as ∆x→ 0.

For brevity, the above-derived conditions will be referred to in the following sec-
tions as

• Condition I if a stencil satisfies (2.15) with
∑n

i=1qi0 = −1,
• Condition II if a stencil satisfies (2.53) with

∑κ
j=0

∑n
i=1qij = −1.

Both conditions ensure strong time stability for the scalar problem (1.1)–(2.1) as well
as for the hyperbolic system (2.21)–(2.24). But while Condition I directly satisfies
the conservation condition (2.11), Condition II satisfies the conservation condition to
within an O (∆x) error, given by (2.52).

Remark. To put the O (∆x) error in context, the commonly used approach of
strong BC implementation [18, 15], using a projection operator that omits rows (cor-
responding to the grid points where the boundary data is injected) in a square de-
rivative operator, introduces an O (1) conservation error, as shown in Lemma A.1 of
Appendix A for the scalar problem (1.1), for example.

3. Stencil construction for various orders of accuracy. The derived
schemes are denoted by pb − pi − pb, where pb and pi are the order of accuracy
of boundary and interior stencils, respectively. If an energy estimate exists, the global
order of accuracy of a pb − pi − pb scheme, where pb < pi, is expected to be pb +1 for
first-order hyperbolic systems [13, 14]. The structure of the operators Q and H that
determine the derivative approximation D are as described in the previous section. Q
is of size n× (n+ 1), as defined in (2.9), and it can be written as

Q =

 q0 Q̃

 , Q̃ =


Bq

u S 0

−ST C
(
ST
)#

0 −S# Bq
l

 ,(3.1)
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where q0 is the first column of Q given by (2.13) and Q̃ is a square (n × n) matrix
with the upper-left and the lower-right boundary blocks given by

Bq
u =


q11 · · · · · · q1κ
...

. . .
. . .

...
...

. . .
. . .

...
qκ1 · · · · · · qκκ

 , Bq
l =


qn−κ+1,n−κ+1 · · · · · · qn−κ+1,n

...
. . .

. . .
...

...
. . .

. . .
...

qn,n−κ+1 · · · · · · qnn

 ,

(3.2)

and the interior blocks given by

C =



0 c1 · · · cw
−c1 0 c1 · · · cw
· · · −c1 0 c1 · · · cw
. . .

. . .
. . .

. . .
. . .

. . .
. . .

−cw · · · −c1 0 c1 · · ·
−cw · · · −c1 0 c1

−cw · · · −c1 0


, S =



0 · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · · · · · · · 0
cw 0 · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

...
c1 · · · cw 0 · · · 0


.

(3.3)

The entries of Bq
u and Bq

l are the unknowns that will be determined to satisfy the
stability and conservation conditions of Theorems 2 and 3. The entries of C and S
are the centered scheme coefficients

ck = − (−1)k (w!)
2

k (w + k)! (w − k)!
for 1 ≤ k ≤ w,(3.4)

with half-stencil width w = pi/2. Theorems 2 and 3 assume a real symmetric positive-
definite matrix H. If the matrix H is diagonal, the corresponding stencil is referred
to as a diagonal-norm stencil, and if H has a block structure at the boundaries, the
stencil is referred to as a full-norm stencil. H can be written as

H = ∆x


Bh

u

1
. . .

1
Bh

l

 ,(3.5)

where Bh
u = diag (h11, . . . , hκκ) and Bh

l = diag (hn−κ+1,n−κ+1, . . . , hnn) for a diag-
onal norm and

Bh
u =


h11 · · · · · · h1κ

...
. . .

. . .
...

...
. . .

. . .
...

h1κ · · · · · · hκκ

 , Bh
l =


hn−κ+1,n−κ+1 · · · · · · hn−κ+1,n

...
. . .

. . .
...

...
. . .

. . .
...

hn−κ+1,n · · · · · · hn,n



(3.6)

for a full norm. The unknowns Bq,h
u and Bq,h

l are determined using Algorithm 3.1 to
satisfy the stability and conservation conditions, described by Conditions I and II in
the previous section.
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Algorithm 3.1. Determine Bq,h
u and Bq,h

l .

input : Boundary and interior order of accuracy (pb, pi)
input : Limiting value of κ (Nκ)

AccuracyConstraint, CondI, CondII ← false

M ← 0
κ← pb
Use κ and pi to construct Q and H as given by (3.1)–(3.6)
while κ ≤ Nκ do

AccuracyConstraint ← Can the free parameters in Q and H satisfy
the order-of-accuracy constraints?

if (AccuracyConstraint) then

Update Bq,h
u and Bq,h

l to satisfy the order-of-accuracy constraints
CondI ← Can the remaining free parameters satisfy Condition I?
if (CondI) then

Update Bq,h
u and Bq,h

l to satisfy Condition I

return Bq,h
u and Bq,h

l

else
Optimize entries of Bq,h

u and Bq,h
l to satisfy Condition II, while

maximizing ∥L∥ ∥R∥
CondII ← Is an optimal solution found?
if (CondII) then

Update Bq,h
u and Bq,h

l if the found optimal ∥L∥ ∥R∥ > M
M ← max (M, optimal ∥L∥ ∥R∥)

end if
κ++

end if
else

κ++
end if

end while

if(M > 0) return Bq,h
u and Bq,h

l

else return no solution found

The algorithm was executed in Mathematica [16] using Nκ = 8 for high-order
cases and the nonlinear optimization to maximize ∥L∥ ∥R∥ was performed using the
IPOPT library [36]. The 1− 2− 1 scheme obtained from the algorithm is

D =
1

∆x


− 2

3
1
3

1
3

− 1
2 0 1

2
. . .

. . .
. . .

− 1
2 0 1

2
−1 1

 , H = ∆x


3
2

1
. . .

1
1
2

 .(3.7)

Here β = κ = 1 and
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Table 1
Summary of the strong time stability and conservation properties of various schemes. ✓ denotes

that the scheme satisfies that condition, whereas " denotes that it does not.

Scheme κ Norm
Strong time stability Conservation

Scalar convection Coupled system Condition I Condition II

1− 2− 1 1 diagonal ✓ ∥L∥ ∥R∥ < 1 ✓ ✓
2− 4− 2 4 diagonal ✓ ∥L∥ ∥R∥ ≤ 1/4 " ✓
3− 4− 3 4 full ✓ ∥L∥ ∥R∥ ≤ 1/6 " ✓
3− 6− 3 4 full ✓ ∥L∥ ∥R∥ ≤ 1/3 " ✓

q0 =



−1
0
...
...
0

 , Q̃ =



1
2

1
2

− 1
2 0 1

2
. . .

. . .
. . .

− 1
2 0 1

2

− 1
2

1
2

 .(3.8)

The 2 − 4 − 2 scheme that is expected to provide a global third order of accuracy
[13, 14] is presented in Appendix B. The 3 − 4 − 3 and 3 − 6 − 3 schemes that
provide a global fourth order of accuracy are included in the supplementary material
(SM Intro.pdf [local/web 171KB]). MATLAB scripts for each stencil are also included
in the supplementary material (SM MATLAB.zip [local/web 9.35KB]).

Important attributes of these schemes are summarized in Table 1. Boundary
blocks are of size κ = 4 in the high-order schemes. 1 − 2 − 1 and 2 − 4 − 2 schemes
have diagonal norm matrix, while 3 − 4 − 3 and 3 − 6 − 3 schemes have full norm
matrix. Symbolic computations with values of κ up to 8 did not yield diagonal-norm
3− 4− 3 and 3− 6− 3 schemes that simultaneously satisfy the strong time-stability
and conservation constraints. All the schemes listed in Table 1 are provably strongly
time stable with strong (or exact) BCs for scalar convection problems as well as for
the coupled hyperbolic systems with ∥L∥ ∥R∥ values as listed in the table. To the best
of our knowledge, strongly time-stable schemes with nondissipative centered schemes
in the interior and strong BCs have not been reported in the literature for hyperbolic
problems. The 1 − 2 − 1 scheme satisfies Condition I, while the high-order schemes
satisfy Condition II. Numerical tests to verify the accuracy and stability of these
schemes are presented in the next section.

4. Numerical results. This section examines numerical results from applica-
tion of the schemes discussed in the previous section. In all cases, time integration is
performed using the classical fourth-order Runge–Kutta (RK4) method with a CFL
of 0.8, unless mentioned otherwise. For convergence studies, the time step is taken
small enough such that the temporal errors are insignificant compared to the spa-
tial truncation errors. The schemes discussed in section 3 allow imposition of EBCs,
therefore, for brevity, we will refer to them as EBC schemes in the following sections.

4.1. 1-D scalar advection equation. Consider the scalar hyperbolic equation
(1.1) with the initial and the boundary condition given by

u(x, 0) = sin 2πx, u(0, t) = g(t) = sin 2π (−t) .(4.1)

The exact solution to the problem is u(x, t) = sin 2π (x− t). A semidiscretization to
the problem, using strong BCs, the notation of (2.2), and the decomposition described
in (2.9), is given by
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Fig. 1. Eigenvalue spectrum of the system matrix to solve (1.1) with initial and boundary
conditions given by (4.1) using n = 40 and various schemes. (a) All eigenvalues and (b) magnified
view near the imaginary axis. Legend is the same for both plots.

dũ

dt
= −Du = −H−1Q̃ũ−H−1q0g.(4.2)

For a bounded boundary data g(t), the stability of the semidiscretization depends on
the properties of the matrix M = −H−1Q̃, referred to as the system matrix [5]. If the
semidiscretization (4.2) is time stable (as per Definition 1), then, from Theorem 1,
the real part of all eigenvalues of the system matrix, M , must be nonpositive. Figure
1 shows the eigenvalue spectrum of the system matrix using the EBC schemes with
n = 40. All eigenvalues for all schemes lie in the strict left half of the complex plane
and, therefore, all the schemes show time stability for this problem, as expected from
the theoretical proof.

Table 2 shows the L2- and L∞-norms of the solution error, denoted by ε, and
the respective convergence rates from the EBC schemes. As expected, all schemes
converge with at least pb+1 global order of accuracy, where pb is the order of accuracy
of the boundary stencils.

4.2. 1-D coupled hyperbolic system. This section examines the performance
of the EBC schemes for a 2 × 2 system coupled by the BCs. This system provides
a severe test of numerical stability [6, 1] and, as noted by Carpenter, Gottlieb, and
Abarbanel [6], no existing central difference scheme of order of accuracy greater than
two is time stable for this system with strong BCs. Here, we evaluate the numerical
stability and accuracy of boundary closures for various centered schemes with strong
BCs.

The hyperbolic system, on domain 0 ≤ x ≤ 1 and t ≥ 0, is given by

∂U

∂t
+

∂U

∂x
= 0,(4.3)

∂V

∂t
− ∂V

∂x
= 0.(4.4)

Initial conditions : U(x, 0) = sin 2πx, V (x, 0) = − sin 2πx.(4.5)

Boundary conditions : U(0, t) = α1V (0, t), V (1, t) = α2U(1, t).(4.6)

For α1 = α2 = 1, this system provides a strict test of numerical stability because it

is neutrally stable, i.e., the energy,
∫ 1

0
[U(x, t)2 + V (x, t)2] dx, remains constant with

time.
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Table 2
L2- and L∞-norm of the solution error and convergence rates from solving (1.1) using various

schemes. Error calculations performed at t = 1.0.

n
1− 2− 1 2− 4− 2

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

20 -1.442427 -1.234263 -1.828907 -1.541334
40 -2.044080 1.999 -1.834978 1.996 -2.789357 3.215 -2.335029 2.637
80 -2.644558 1.995 -2.435158 1.994 -3.729319 3.298 -3.204515 2.888
160 -3.245543 1.996 -3.039630 2.008 -4.653197 3.110 -4.099137 2.972
320 -3.846993 1.998 -3.646874 2.017 -5.567189 3.046 -5.000487 2.994
640 -4.448730 1.999 -4.250385 2.005 -6.475805 3.027 -5.903084 2.998

n
3− 4− 3 3− 6− 3

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

20 -1.946005 -1.801309 -1.681300 -1.160180

40 -3.355294 4.682 -3.137755 4.440 -3.107325 4.737 -2.484588 4.399

80 -4.706377 4.488 -4.522492 4.599 -4.493823 4.606 -3.853948 4.549

160 -5.978925 4.227 -5.810145 4.277 -5.775224 4.257 -5.200389 4.473

320 -7.208962 4.086 -7.047904 4.112 -7.002522 4.077 -6.504670 4.333

640 -8.418204 4.017 -8.233410 3.938 -8.213472 4.023 -7.770852 4.206

Let u(t) =
[
u0(t) · · · · · · un(t)

]T
and v(t) =

[
v0(t) · · · · · · vn(t)

]T
de-

note the grid function, assuming a spatial discretization of the above system with
n+ 1 grid points. A semidiscretization of (4.3)–(4.6) using strong BCs is given by

dw

dt
= −Dw,(4.7)

where w(t) = [ ũ(t) ṽ(t) ]Twith ũ(t) =
[
u1(t) · · · · · · un(t)

]T
and ṽ(t) =[

v0(t) · · · · · · vn−1(t)
]T

. The derivative operator, D, is given by

D =

[
H 0
0 H#

]−1 [
Q̃ α1Q0

−α2Q
#
0 −Q̃#

]
= H−1Q,

where Q̃ and Q0 are as described in (2.9) and (2.28), respectively, and the superscript
# denotes the matrix transformation (2.30). The off-diagonal entries of Q, involving
Q0, apply the BCs (4.6) strongly.

As mentioned earlier, existing high-order central difference schemes fail to be
stable for this problem when solved with strong BCs. Figure 2(a) shows the eigenvalue
spectrum of the system matrix, given by −D in (4.7), for the neutrally stable problem
with various high-order schemes from the literature. All schemes exhibit eigenvalues
with positive real part, therefore, the numerical solution grows nonphysically in a
long-time simulation, as shown by the solution error (ε) plotted in Figure 2(b).

Figure 3 shows the the eigenvalue spectrum of the system matrix for the neutrally
stable problem from various EBC schemes discussed in section 3. The eigenvalues lie
in the strict left half of the complex plane in all cases indicating time stability. Further,
the eigenvalue spectrum for α1 = α2 = 1/2 from various EBC schemes is depicted
in Figure 4. All derived schemes are also time stable for this problem, and larger
negative real part of the eigenvalues compared to Figure 3 indicates the dissipative
nature of the BCs. An eigenvalue spectrum from various values of n (not presented
here for brevity) showed similar time-stable behavior. Table 3 shows the L2- and
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Fig. 2. (a) Eigenvalue spectrum of the system matrix near imaginary axis and (b) L∞-error
from solving the coupled hyperbolic system (4.3)–(4.6) with α1 = α2 = 1 using various spatial
schemes from literature with strong BCs. Classical RK4 is used for time integration with a CFL of
0.25 and 40 grid points in the domain. 3rd Order (Strand 1994) denotes the diagonal-norm stencil
in [32, Appendix A] that is second-order accurate at the boundary; 4th Order (Strand 1994) denotes
the minimum-bandwidth full-norm stencil in [32, Appendix B] that is third-order accurate at the
boundary; 4th Order (Carpenter et al. 1993) and 6th Order (Carpenter et al. 1993) denote the
43−4−43 and 52, 52−6−52, 52 stencils of [5], respectively; 6th Order (Cook & Riley 1996) denotes
the sixth-order compact scheme of [9, section 7.3].
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Fig. 3. Eigenvalue spectrum of the system matrix to solve (4.3)–(4.6) with α1 = α2 = 1 using
n = 40 and various schemes. (a) All eigenvalues and (b) magnified view near the imaginary axis.
Legend is the same for both plots.

L∞-norms of the solution error, denoted by ε, and the respective convergence rates
from the EBC schemes for this problem. All schemes converge with approximately
pb + 1 global order of accuracy.

4.3. Inviscid Burgers’ equation. Consider the inviscid Burgers’ equation with
a source term,

∂U

∂t
+

∂

∂x

(
U2

2

)
= fU . 0 ≤ x ≤ 1, t ≥ 0,(4.8)

The method of manufactured solutions [27] is employed to perform long-time simu-
lations to assess the stability and the accuracy of the derived schemes. The source
term prevents solution discontinuities. The solution is assumed to be
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Fig. 4. Eigenvalue spectrum of the system matrix to solve (4.3)–(4.6) with α1 = α2 = 1/2 using
n = 40 and various schemes. (a) All eigenvalues and (b) magnified view near the imaginary axis.
Legend is the same for both plots.

Table 3
L2- and L∞-norms of the solution error and convergence rates from solving (4.3)–(4.6) using

various schemes. Error calculations performed at t = 1.0.

n
1− 2− 1 2− 4− 2

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

20 -1.217223 -1.225890 -1.676188 -1.508359

40 -1.803716 1.948 -1.770808 1.810 -2.643277 3.215 -2.351858 2.802

80 -2.398761 1.977 -2.353810 1.937 -3.582599 3.120 -3.206750 2.840

160 -2.997715 1.990 -2.955241 1.998 -4.505004 3.064 -4.099017 2.964

320 -3.598344 1.995 -3.555882 1.995 -5.417936 3.035 -5.000116 2.993

640 -4.199721 1.998 -4.157098 1.997 -6.325949 3.016 -5.902821 2.999

n
3− 4− 3 3− 6− 3

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

20 -1.771245 -1.777406 -1.992622 -1.811695

40 -3.162562 4.622 -3.117156 4.451 -3.419956 4.742 -3.201140 4.616

80 -4.494335 4.424 -4.487070 4.551 -4.765353 4.469 -4.638031 4.773

160 -5.760716 4.207 -5.754529 4.210 -6.020126 4.168 -5.970614 4.427

320 -6.983890 4.063 -6.979341 4.069 -7.237780 4.045 -7.187086 4.041

640 -8.083748 3.654 -8.059036 3.587 -8.445220 4.011 -8.394934 4.012

U (x, t) = sin 2π (x− t) + C,(4.9)

where C = 1.0 is a constant. (4.9) prescribes the initial and the boundary data, and
the source term is given by

fU (x, t) = π sin 4π (x− t) .(4.10)

The solution (4.9) is nonnegative in the domain at all times, therefore, the BC
U(0, t) = sin 2π (−t) + C makes the problem well-posed.

Figure 5 shows the L∞-errors with time in long-time simulations using various
schemes. A constant error profile indicates time-stable behavior. Figure 5(a) shows
the errors from the EBC schemes and, for comparison, Figure 5(b) shows the errors
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Fig. 5. L∞−error from long-time simulations of (4.8) using n = 40 with (a) EBC schemes and
(b) schemes from literature referenced in Figure 2. Note the difference in axis scales between the
two subfigures.

Table 4
L2− and L∞−norm of the solution error and convergence rates from solving (4.8) using various

schemes. Error calculations performed at t = 1.0.

n
1− 2− 1 2− 4− 2

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

20 -1.176427 -0.738973 -1.987098 -1.528051

40 -1.781249 2.009 -1.280048 1.797 -2.833219 2.811 -2.230067 2.332

80 -2.414563 2.104 -1.740013 1.528 -3.677578 2.805 -3.068572 2.785

160 -3.042268 2.085 -2.244332 1.675 -4.547528 2.890 -3.765753 2.316

320 -3.658045 2.046 -2.793888 1.826 -5.397666 2.824 -4.496024 2.426

640 -4.268635 2.028 -3.375075 1.931 -6.297327 2.989 -5.369695 2.902

n
3− 4− 3 3− 6− 3

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

20 -2.222065 -1.804324 -2.437228 -2.136384

40 -3.540079 4.378 -2.998817 3.968 -3.463385 3.409 -2.876606 2.459

80 -4.765848 4.072 -4.154203 3.838 -4.686090 4.062 -4.306489 4.750

160 -6.170204 4.665 -5.414077 4.185 -5.876633 3.955 -5.540050 4.098

320 -7.502206 4.425 -6.640841 4.075 -7.068063 3.958 -6.705179 3.870

640 -8.748263 4.139 -7.871633 4.089 -8.264577 3.975 -7.884398 3.917

from the schemes (from literature) used in Figure 2. While all the schemes of Figure
5(b) were unstable with strong BC implementation for the neutrally stable coupled
system of section 4.2, the diagonal-norm third-order scheme of [32] and the forth-order
compact scheme of [5] show time stability for this problem. The other schemes diverge
early in time. Table 4 shows the L2- and L∞-norms of the solution error and the
respective convergence rates from the EBC schemes. All schemes show approximately
pb + 1 global order of accuracy.

4.4. 2-D variable-coefficient advection equation. Consider the scalar
problem

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
= 0, 0 ≤ x, y ≤ L, t ≥ 0,
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Fig. 6. L∞-error from long-time simulations of (4.11)–(4.13) using N = 40 with (a) EBC
schemes and (b) schemes from literature referenced in Figure 2. Note the difference in axis scales
between the two subfigures.

u(x, y) =
∂r

∂x
, v(x, y) =

∂r

∂y
,(4.11)

r (x, y) =

√
(x− x0)

2
+ (y − y0)

2
,

where L =
√
2, x0 = −0.25 and y0 = −0.25. The initial and the boundary conditions

are given by

ϕ(x, y, 0) = sin 2πr(4.12)

and

ϕ(0, y, t) = sin 2π (r (0, y)− t) , ϕ(x, 0, t) = sin 2π (r (x, 0)− t) ,(4.13)

respectively. The exact solution to the problem is ϕ(x, y, t) = sin 2π (r − t).
Figure 6 shows the L∞-errors from long-time simulations of (4.11)–(4.13) using

various schemes with N × N grid points. To highlight the efficacy of the derived
schemes, a CFL of 1.5, calculated from

CFL = ∆t

(
|u|
∆x

+
|v|
∆y

)
,

is used for the results of this figure. Figure 6(a) shows the errors from the EBC
schemes and Figure 6(b) shows the errors from the schemes used in Figure 2. As
in the case of the inviscid Burgers’ equation in the previous section, the diagonal-
norm third-order scheme of [32] and the forth-order compact scheme of [5] show time
stability. The other schemes tend to diverge very early in time. Table 5 shows the
L2- and L∞-norms of the solution error and the respective convergence rates from the
EBC schemes. All schemes show approximately pb + 1 global order of accuracy.

5. Application to the Euler equations using characteristic boundary
conditions. This section discusses the application of the schemes derived in section
3 to solve the 2-D Euler equations. The extension to three dimensions follows a similar
approach. The primary interest of this study is in high-fidelity fluid-flow simulations,
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Table 5
L2- and L∞-norms of the solution error and convergence rates from solving (4.11)–(4.13) on a

N ×N grid using various schemes. Error calculations performed at t = 1.0.

N
1− 2− 1 2− 4− 2

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

30 -1.404196 -1.037912 -2.118175 -1.439252

60 -2.018962 1.993 -1.615432 1.872 -3.092760 3.160 -2.445756 3.263

120 -2.626948 1.995 -2.207732 1.944 -4.035679 3.095 -3.435688 3.249

240 -3.232256 1.999 -2.801850 1.962 -4.954626 3.034 -4.343758 2.998

N
3− 4− 3 3− 6− 3

log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate log10 ∥ε∥2 Rate log10 ∥ε∥∞ Rate

30 -2.337262 -1.760082 -2.513605 -1.942708

60 -3.646564 4.245 -2.929111 3.790 -3.838707 4.296 -3.070683 3.657

120 -4.956536 4.299 -4.123419 3.920 -5.147756 4.296 -4.249164 3.868

240 -6.268282 4.331 -5.324285 3.965 -6.456819 4.322 -5.447414 3.957

and hence the performance of the derived schemes is analyzed for the Euler equa-
tions. Theoretical stability and convergence analysis of finite-difference and pseudo
spectral schemes for other nonlinear hyperbolic PDEs can be found in [37, 3, 7, 38], for
example.

The 2-D Euler equations, assuming a calorically perfect gas, in generalized coor-
dinates are given by

∂Q

∂τ
+

∂F

∂ξ
+

∂G

∂η
= 0,(5.1)

Q =
1

J


ρ
ρu
ρv
ρE

 , F =
1

J


ρU

ρuU + ξxp
ρvU + ξyp

ρEU + ξxi
uip

 , G =
1

J


ρV

ρuV + ηxp
ρvV + ηyp

ρEV + ηxi
uip

 ,(5.2)

U = ξt + ξxu+ ξyv, V = ηt + ηxu+ ηyv,

ρE =
p

γ − 1
+ ρ

(
u2 + v2

2

)
.

The coordinate transformation between the physical domain x = (x, y) and the
computational domain ξ = (ξ, η) is ξ = Ξ(x, t) with the inverse transformation
x = X(ξ, τ) and the metric Jacobian J = det(∂ξ/∂x) = (xξyη −xηyξ)

−1. We assume
the time to be invariant, therefore, τ = t. u, v are the Cartesian velocity components,
ρ denotes the density, p is the pressure, and E is the total energy per unit mass.

Let i and j denote the grid indices in ξ and η direction, respectively, where
0 ≤ i ≤ Nξ and 0 ≤ j ≤ Nη for a (Nξ + 1)×(Nη + 1) computational grid. To simplify
the discussion, let us consider the boundary located at i = 0, which has a constant
ξ value. The flux-derivative in the ξ-direction in (5.1), then, has to be modified to
account for the physical BC. (5.1) can be transformed to a characteristic form in
the direction normal to the i = 0 boundary by using a similarity transformation
A = ∂F/∂Q = TξΛξT

−1
ξ , where the columns of Tξ contain the right eigenvectors of A

D
ow

nl
oa

de
d 

06
/0

6/
22

 to
 1

92
.1

2.
18

4.
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2022 Nek Sharan

STRONG BOUNDARY CONDITIONS IN FINITE DIFFERENCES 1353

and Λξ is a diagonal matrix containing the eigenvalues of A. The expressions for Λξ

and Tξ can be found in [24]. The resulting characteristic equations are given by (e.g.,
[17])

∂R

∂t
+ L = SC ,(5.3)

where R is the vector of characteristic variables,

L = JT−1
ξ

{
∂F

∂ξ
−
[
F

∂

∂ξ

(
ξx
J

)
+G

∂

∂ξ

(
ξy
J

)]}
(5.4)

and

SC = −JT−1
ξ

{
∂G

∂η
+

[
F

∂

∂ξ

(
ξx
J

)
+G

∂

∂ξ

(
ξy
J

)]}
.(5.5)

The square brackets in (5.4)–(5.5) preserve the conservative form of the equation [17].
Following the 1-D discretization described in section 2, a semidiscretization of

(5.1) at grid points within the boundary stencil depth from the i = 0 boundary, i.e.,
0 ≤ i ≤ κ, can be written as

dqij
dt

= −
(
1

J
SξL

∗ +

[
F

∂

∂ξ

(
ξx
J

)
+G

∂

∂ξ

(
ξy
J

)])
ij

− (Dηg)ij ,(5.6)

where qij and (Dηg)ij are the discrete approximations of Q and ∂G/∂η at the i, j grid
point and L∗ denotes the modified characteristic convection term in the ξ-direction
given by

L∗ = L∗
SBP + L∗

EBC.(5.7)

The derivative operators derived in section 3 to satisfy the stability and conservation
constraints of section 2 are nonsquare and use different stencils at inflow (where a
physical BC is applied) and outflow boundaries. The outflow boundary uses an SBP
stencil, whereas stencils for the inflow boundary, derived in section 3, that impose
the EBCs will be referred to as the EBC stencils. L∗

SBP denotes the convection terms
for the outgoing waves calculated using the SBP stencil. The outgoing characteristics
correspond to the negative entries of Λξ at the i = 0 boundary, therefore, the elements
of L∗

SBP can be obtained from

(L∗
SBP)k =

|λk| − λk

2 |λk|
(LSBP)k ,(5.8)

where (•)k denotes the kth entry of the vector, λk is the kth diagonal entry of Λξ, and
LSBP is L in (5.4) calculated using the SBP derivative approximation. The prefactor
|λk|−λk

2|λk| ensures that the SBP stencil is applied only to the outgoing characteristic

calculations. L∗
EBC denotes the incoming characteristic convection terms that at i = 0

are calculated using the physical boundary data and at 0 < i ≤ κ calculated using
the EBC derivative stencils from
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(L∗
EBC)k =

|λk|+ λk

2 |λk|
(LEBC)k ,(5.9)

where the expressions are as described for (5.8).
Next, we describe the application of the above discretization to solve problems

where the exact or target boundary data for all conservative variables may or may not
be known. The metric terms are calculated using the SBP derivative approximation
and time integration is performed using the classical RK4 method with a CFL of 0.6
for all results discussed in the following sections. For convergence studies, the time
step is taken small enough such that the temporal errors are insignificant compared
to the spatial truncation errors.

5.1. Isentropic convecting vortex. The 2-D Euler equations are solved for
a compressible isentropic vortex propagation. Initial and boundary conditions are
applied using the exact solution given by (e.g., [28])

ρ =

(
1− ϖ2(γ − 1)

8π2c20
e1−φ2r2

) 1
γ−1

, u = u0 −
ϖ

2π
φ(y − y0 − v0t)e

1−φ2r2

2 ,

v = v0 +
ϖ

2π
φ(x− x0 − u0t)e

1−φ2r2

2 , E =
p

γ − 1
+

1

2
ρ(u2 + v2),(5.10)

p = ργ , r2 = (x− x0 − u0t)
2 + (y − y0 − v0t)

2,

where (x0, y0) denotes the initial position of the vortex, (u0, v0) denotes the vortex
convective velocity, φ is a scaling factor, and ϖ denotes the nondimensional circula-
tion. γ = 1.4, φ = 11, and ϖ = 1 is used for all simulations. All quantities in (5.10)

are nondimensional, obtained from the density scale = ρ∗0, velocity scale u∗
0 =

c∗0√
γ , unit

length scale, and pressure scale = ρ∗0u
∗2
0 , where ∗ denotes the dimensional quantities.

The nondimensional ambient speed of sound is c0 =
√
γ.

Figure 8 shows the L∞−errors of velocity magnitude and density from simula-
tions using (x0, y0) = (−1.5, 0) on the domain shown in Figure 7, i.e., the vortex is
initially located outside the computational domain. A subsonic (u0 = 1.0, v0 = 0) and
a supersonic (u0 = 2.0, v0 = 0) convective velocity are used to examine the robustness
of the boundary implementation. In the subsonic case, the left/right boundary has
three/one incoming and one/three outgoing characteristics. As per the characteristic
eigenvalue/eigenvector matrices of [24], for the subsonic left boundary, the outgoing
wave (L∗)4 = (LSBP)4, the incoming waves (L∗)1,2,3 are calculated directly from the
exact solution at i = 0 and (L∗)1,2,3 = (LEBC)1,2,3 at 0 < i ≤ κ. For the subsonic
right boundary, the outgoing waves (L∗)1,2,3 = (LSBP)1,2,3, the incoming wave (L∗)4
is calculated directly from the exact solution at i = Nx = Nξ and (L∗)4 = (LEBC)4 at
Nξ−κ ≤ i < Nξ. A similar characteristic treatment is used for the boundaries normal
to the y-direction, where the incoming/outgoing waves are determined by the entries
of Λη, obtained from the similarity transformation B = ∂G/∂Q = TηΛηT

−1
η [24].

The supersonic case has characteristic velocities of the same sign at each x-boundary,
therefore, theoretically, no similarity transformation is required to impose the BCs.
However, the code implementation performs a decomposition and assigns L∗ = LSBP

at the right boundary and, at the left boundary, L∗ is calculated directly from the
exact solution at i = 0 and L∗ = LEBC at 0 < i ≤ κ.

In the simulation duration shown in Figure 8, the vortex enters and exits the
domain through the left and the right boundary, respectively. The two spikes in the
plots of Figure 8 mark the time of vortex entry and exit. The time interval between the
entry and the exit is longer for the subsonic case, as expected. The vortex entry/exit
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Fig. 7. Computational domain for isentropic convective vortex simulations.
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(b)

Fig. 8. L∞−norm of (a) velocity magnitude error and (b) density error from solving the Euler
equations for isentropic convecting vortex using various EBC schemes with 201×101 grid points. Left
and right columns show errors from a subsonic (u0 = 1.0, v0 = 0) and supersonic (u0 = 2.0, v0 = 0)
convective velocity, respectively. Initial vortex location is (x0, y0) = (−1.5, 0) for all simulations.
Legend is the same for all plots.

triggers numerical reflections from the inflow/outflow boundary, which can be a source
of instability and, therefore, the simulation is set up to examine if the errors grow
with time. All schemes of section 3 are stable for this problem. The error decay rate
is higher in the supersonic cases, likely because of the simpler boundary treatment
where all characteristic eigenvalues have the same sign.

D
ow

nl
oa

de
d 

06
/0

6/
22

 to
 1

92
.1

2.
18

4.
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2022 Nek Sharan

1356 NEK SHARAN, PETER T. BRADY, AND DANIEL LIVESCU

0 2 4 6 8 10

10-8

10-6

10-4

10-2

100

0 2 4 6 8 10

10-8

10-6

10-4

10-2

100

(a) (b)

Fig. 9. L∞−norm of (a) velocity magnitude error and (b) density error from solving the
Euler equations for isentropic convecting vortex using various EBC schemes with 201 × 101 grid
points. Convective velocity (u0 = 0.8, v0 = 0.4) with initial vortex location (x0, y0) = (0, 0) is used
to simulate a subsonic vortex traveling through the top-right corner of computational domain.

The extent/magnitude of numerical reflections at the outflow boundary may de-
pend on the flow direction at the boundary [2]. To examine the robustness of the
developed schemes, several numerical tests were performed with vortex traveling in a
direction that is oblique to the boundary. Figure 9 shows the velocity magnitude and
density errors with time for a subsonic vortex traveling through the top-right corner
of computational domain. Initial vortex location (x0, y0) = (0, 0) with convective
velocity (u0 = 0.8, v0 = 0.4) allow the vortex to exit the domain in t ≲ 2, allowing
an assessment of error growth with time. Figure 9 shows the results from the EBC
schemes of section 3. All schemes produce stable results without any ad hoc stabi-
lization measures indicating the suitability of these schemes for high-fidelity turbulent
flow calculations [19, 29].

L2- and L∞-norms of the solution error and respective convergence rates from
the stable schemes for this problem are given in Table 6. The errors are calculated at
t = 1 using (x0, y0) = (−0.5, 0) for the subsonic (u0 = 1.0) case. All schemes exhibit
a global order of accuracy approaching pb + 1 or higher.

5.2. Acoustic scatter by a rigid cylinder. This section examines the perfor-
mance of the EBC schemes on a curvilinear grid to solve problems where the exact
(or target) values of all conservative variables are not known at the boundary, as is
often the case in practical flow simulations. The strong BC implementations, unlike
the weak enforcement, do not require target values for all conservative variables.

The Euler equations (5.1) are solved for scattering of an initial pressure pulse by
a cylinder [34], as shown in Figure 10. The initial condition is given by

p =
1

γ
+ ε exp

[
− (ln 2)

(x− 4)
2
+ y2

0.22

]
, ρ =

(
1− 1

γ

)
+ p, u = v = 0,(5.11)

where a small value of ε = 10−4 is considered to trigger a linear response allowing
comparison with the linearized Euler equations solution. The pressure disturbance
is centered at (xs, ys) = (4, 0). All quantities in (5.11) are nondimensional, obtained
from the density scale = ρ∗∞, velocity scale = c∗∞, length scale = r0(cylinder radius),
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Table 6
L2- and L∞-norms of the density error and convergence rates from solving the Euler equations

for isentropic vortex convection on an N × N grid using various schemes. Error calculations are
performed at t = 1.0.

N
1 − 2 − 1 2 − 4 − 2

log10 ∥ερ∥2 Rate log10 ∥ερ∥∞ Rate log10 ∥ερ∥2 Rate log10 ∥ερ∥∞ Rate

50 -2.97741 -1.99754 -3.55779 -2.68874

100 -3.5008 1.714 -2.50662 1.667 -4.34167 2.566 -3.46567 2.544

150 -3.85544 1.997 -2.86293 2.007 -4.83949 2.804 -3.99159 2.962

200 -4.10382 1.977 -3.11973 2.043 -5.21171 2.962 -4.38812 3.155

250 -4.29947 2.010 -3.32405 2.099 -5.50531 3.016 -4.70008 3.204

N
3 − 4 − 3 3 − 6 − 3

log10 ∥ερ∥2 Rate log10 ∥ερ∥∞ Rate log10 ∥ερ∥2 Rate log10 ∥ερ∥∞ Rate

50 -3.0783 -2.14384 -3.19404 -2.28162

100 -4.06836 3.242 -3.14236 3.269 -4.25752 3.482 -3.32069 3.402

150 -4.70384 3.579 -3.73467 3.336 -4.94213 3.856 -3.97785 3.701

200 -5.22411 4.140 -4.22631 3.912 -5.50794 4.502 -4.51338 4.262

250 -5.65743 4.451 -4.64963 4.349 -5.96407 4.686 -4.95957 4.584

and pressure scale = ρ∗∞c∗2∞, where ∗ denotes the dimensional quantities, subscript ∞
denotes the ambient values, and c is the speed of sound.

Figure 10(a) shows the computational grid and the BCs for the problem. The
inviscid wall imposes the no-penetration condition normal to the wall and slip condi-
tion in the tangential direction. The no-penetration condition makes the contravari-
ant velocity U in (5.2) zero and, therefore, (L∗)1 = (L∗)2 = 0 in (5.7), based
on the eigenvalue arrangement of the characteristic matrices of [24]. (L∗)4 corre-
sponds to the outgoing wave, therefore, (L∗)4 = (LSBP)4 and the incoming wave
(L∗)3 = (LSBP)4 + (SC)3 − (SC)4; see [17]. The outflow has three outgoing and
one incoming waves. (L∗)1,2,3 are the convection terms of outgoing waves, therefore,
(L∗)1,2,3 = (LSBP)1,2,3 and (L∗)4 is specified using a pressure relaxation term, as in
[23].

Figures 10(b) to (d) show the pressure fluctuation contours at various times. The
solution consists of the incident pulse and the pulse reflected by the cylinder. The
exact solution of pressure fluctuation is given by (see [34])

p′(x, y, t) = Re

{∫ ∞

0

(Ai (x, y, ω) +Ar (x, y, ω))ωe
−iωtdω

}
.

The contribution of the incident pulse is estimated from

Ai (x, y, ω) =
1

2b
e−iω2/2bJ0 (ωrs) ,

where rs =

√
(x− 4)

2
+ y2 and J0 is the Bessel function of order zero. The reflected

pulse contribution is calculated from

Ar (x, y, ω) =

∞∑
k=0

Ck(ω)H
(1)
k (rω)cos(kθ),
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Fig. 10. Initial pressure-pulse problem: (a) computational grid and boundary conditions, and
pressure fluctuation contours at (b) t ≈ 1.5, (c) t ≈ 4.5, and (d) t ≈ 9.5. The contour lines show 10
levels in the range [−5, 5]× 10−6.

where H
(1)
k is the Hankel function of the first kind of order k, r =

√
x2 + y2, θ =

atan2 (y, x), and

Ck (ω) =
ω

2b
e−iω2/2b εk

πωH
(1)
k (ω)

∫ π

0

J1(ωrs0)
1− 4 cos θ

rs0
cos(kθ) dθ,

where rs0 = rs|r=r0=1 =

√
(cos θ − 4)

2
+ sin2 θ, ε0 = 1 and εk = 2 for k ̸= 0.

A comparison of the exact solution with the numerical results from various schemes
at different spatial locations is shown in Figure 11. The subfigures in the left column
show the time history of pressure fluctuation and the right column shows the respec-
tive errors. The spatial locations span different regions of the domain; x = 2, y = 0
(top subfigures) lies in between the cylinder and the acoustic source, x = 0, y = 5
(middle subfigures) lies above the cylinder, and x = −5, y = 0 (bottom figures) lies
behind the cylinder with respect to the source. The polar grid shown in Figure 10(a)
with an outer radius of 12 and 251 grid points uniformly distributed in the radial and
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Fig. 11. Numerical results from various schemes showing time history of (a) pressure fluctua-
tion and (b) pressure-fluctuation error at x = 2, y = 0 (top), x = 0, y = 5 (middle), and x = −5,
y = 0 (bottom). The black solid line in subfigures of (a) shows the exact solution. Note the differ-
ence in axis scales of the top subfigure in each column. Legend is the same for each subfigure of a
column. In subfigures of column (b), the absolute of the maximum error is less than 1.5× 10−6 for
the 2− 4− 2 and 3− 4− 3 schemes, and less than 4.5× 10−7 for the 3− 6− 3 scheme at all times.

azimuthal directions is used for all simulations. The two peaks in the top and the
middle subfigure of Figure 11(a) correspond to the incident and the reflected pulse.

All EBC schemes of section 3 are stable for this problem. The error plots show
the significance of high-order schemes for acoustic (wave propagation) problems. The
second-order scheme has poor dispersion properties and, as a result, the highest error
among all schemes. The error decreases with increase in order of accuracy of the
interior scheme, as expected.

6. Conclusions. A systematic approach is developed to derive strongly time-
stable high-order finite-difference schemes that enforce BCs strongly for hyperbolic
systems. Time-stability and conservation constraints are derived for nonsquare first-
derivative operators that, by construction, exclude calculations at grid points where
physical BC is imposed. Schemes of global order of accuracy up to fourth order are
derived that show time stability for problems that previously could not be solved
for long times with high-order schemes and strong BCs without additional stability
measures, e.g., artificial dissipation/filters. The robustness of the proposed method
is verified for solving various problems: (a) 1-D scalar advection equation, (b) 1-
D coupled hyperbolic system, (c) 1-D inviscid Burgers’ equation, (d) 2-D variable-
coefficient advection equation, and (e) 2-D Euler equations in curvilinear coordinates.

Appendix A. Additional proofs.

Lemma A.1. A square derivative operator, D̂, that ensures discrete conservation
in solving (1.1) is not conservative after the row omission for strong BC enforcement.
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Proof. Consider the grid function u(t) =
[
u0(t) · · · un(t)

]T
for solving (1.1)

over the domain 0 ≤ x ≤ 1 with n + 1 equidistant grid points. A square (n+ 1) ×
(n+ 1) derivative operator, D̂, typically satisfies the discrete analogue of (1.2) given
by

d

dt

∫ 1

0

U dx ≈ d

dt

n∑
i=0

(
Ĥu
)
i
= −

n∑
i=0

(
ĤD̂u

)
i
= u0(t)− un(t),(A.1)

where (v)i denotes the ith component of a vector v =
[
v0 · · · vn

]T
and Ĥ is an

(n+ 1)× (n+ 1) matrix that constitutes a quadrature for the spatial domain. (A.1)
implies for the entries q̂ij of Q̂ = ĤD̂ that

n∑
i=0

q̂ij =

n∑
i=0

n∑
k=0

ĥikd̂kj =


−1, j = 0,

1, j = n,

0 otherwise,

(A.2)

where ĥik and d̂kj denote the entries of Ĥ and D̂, respectively.

To enforce BC strongly, if the first row of D̂ is omitted, i.e., if d̂kj = 0 is assumed

for k = 0, then (A.2) holds only if d̂0j = 0 for all 0 ≤ j ≤ n in D̂. But, if D̂ is
a valid derivative operator at all grid points, including the boundary points, then
d̂0j ̸= 0 for some values of j. The omission of the first row of D̂, therefore, introduces

a conservation error at the jth grid point of
∑n

i=0ĥi0d̂0j , which is O (1) at some grid
points.

Lemma A.2. The rows of a derivative operator D sum to zero, and hence the
rows of Q = HD should also sum to zero.

Proof. The rows of a derivative operator D sum to zero, i.e., D1 = 0, where 1
denotes a vector whose entries are all one. For a symmetric positive definite H, D =
H−1Q. Hence, D1 = 0 implies H−1Q1 = 0. Multiplying both sides of H−1Q1 = 0
by H yields Q1 = 0 or that the rows of Q sum to zero.

Appendix B. 2 − 4 − 2 stencil.

H = ∆xdiag

(
h11, h22, h33, h44, 1, . . . , 1,

49

48
,
43

48
,
59

48
,
17

48

)
,

D =
1

∆x



d10 d11 d12 d13 d14 d15 d16
d20 d21 d22 d23 d24 d25 d26
d30 d31 d32 d33 d34 d35 d36
d40 d41 d42 d43 d44 d45 d46

1
12

− 2
3

0 2
3

− 1
12

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
1
12

− 2
3

0 2
3

− 1
12

4
49

− 32
49

0 59
98

0 − 3
98

0 4
43

− 59
86

0 59
86

− 4
43

0 0 0 − 1
2

0 1
2

0 0 3
34

4
17

− 59
34

24
17



.

(B.1)
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h11 = 1.117853598033634 h22 = 1.734954607723689 h33 = 0.493492831348563 h44 = 1.153698962894113

d10 = −0.558055563977424 d20 = −0.177806646597481 d30 = 0.197577181565075 d40 = 0.053103321910167

d11 = 0.206193447640676 d21 = −0.148032843241780 d31 = −0.349146497048670 d41 = 0.031031686127352

d12 = 0.229753040942520 d22 = 0.010938409310223 d32 = −0.469159274307636 d42 = −0.272872172147738

d13 = 0.154135831102631 d23 = 0.133448297494816 d33 = 0.026584989564182 d43 = −0.326375382961636

d14 = −0.032026755708402 d24 = 0.181452783034222 d34 = 0.763007924163851 d44 = 0.009492491845307

d15 = 0 d25 = 0 d35 = −0.168864323936802 d45 = 0.577851491687484

d16 = 0 d26 = 0 d36 = 0 d46 = −0.072231436460936
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impact of advection schemes on restratifiction due to lateral shear and baroclinic instabi-
ities, Ocean Modelling, 94 (2015), pp. 112–127.

[20] Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, Fully conservative higher order
finite difference schemes for incompressible flow, J. Comput. Phys., 143 (1998), pp. 90–124.

D
ow

nl
oa

de
d 

06
/0

6/
22

 to
 1

92
.1

2.
18

4.
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://www.wolfram.com/mathematica


© 2022 Nek Sharan

1362 NEK SHARAN, PETER T. BRADY, AND DANIEL LIVESCU

[21] P. Olsson, Summation by parts, projections, and stability. I, Math. Comput., 64 (1995),
pp. 1035–1065.

[22] P. Olsson, Summation by parts, projections, and stability. II, Math. Comput., 64 (1995),
pp. 1473–1493.

[23] T. J. Poinsot and S. Lele, Boundary conditions for direct simulations of compressible viscous
flows, J. Comput. Phys., 101 (1992), pp. 104–129.

[24] T. H. Pulliam and D. Chaussee, A diagonal form of an implicit approximate-factorization
algorithm, J. Comput. Phys., 39 (1981), pp. 347–363.

[25] M. M. Rai and P. Moin, Direct simulations of turbulent flow using finite-difference schemes,
J. Comput. Phys., 96 (1991), pp. 15–53.

[26] J. Ryu and D. Livescu, Turbulence structure behind the shock in canonical shock–vortical
turbulence interaction, J. Fluid Mech., 756 (2014).

[27] K. Salari and P. Knupp, Code Verification by the Method of Manufactured Solutions, Tech-
nical report, Sandia National Laboratories, Albuquerque, NM, 2000.

[28] N. Sharan, Time-Stable High-Order Finite Difference Methods for Overset Grids, Ph.D. thesis,
University of Illinois at Urbana-Champaign, 2016.

[29] N. Sharan, G. Matheou, and P. E. Dimotakis, Mixing, scalar boundedness, and numerical
dissipation in large-eddy simulations, J. Comput. Phys., 369 (2018), pp. 148–172.

[30] N. Sharan, G. Matheou, and P. E. Dimotakis, Turbulent shear-layer mixing: initial condi-
tions, and direct-numerical and large-eddy simulations, J. Fluid Mech., 877 (2019), pp. 35–
81.

[31] N. Sharan, C. Pantano, and D. J. Bodony, Time-stable overset grid method for hyperbolic
problems using summation-by-parts operators, J. Comput. Phys., 361 (2018), pp. 199–230.

[32] B. Strand, Summation by parts for finite difference approximations for d/dx, J. Comput.
Phys., 110 (1994), pp. 47–67.

[33] C. K. Tam and Z. Dong, Wall boundary conditions for high-order finite-difference schemes in
computational aeroacoustics, Theoret. Computat. Fluid Dynamics, 6 (1994), pp. 303–322.

[34] C. K. Tam and F. Q. Hu, An Optimized Multi-Dimensional Interpolation Scheme for Com-
putational Aeroacoustics Applications Using Overset Grids, AIAA Paper 2812, (2004).

[35] L. N. Trefethen, Stability of finite-difference models containing two boundaries or interfaces,
Math. Comput., 45 (1985), pp. 279–300.
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