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Provably time-stable finite-difference schemes that apply boundary conditions strongly (or
exactly) are presented for hyperbolic systems. The proof of stability is constructed using the
energy method. Sufficient conditions for stability and conservation are derived for scalar
hyperbolic equation and coupled system of hyperbolic equations. Boundary stencils and
norms that satisfy the sufficient conditions are derived for the centered second- and fourth-
order interior stencils. A framework to further derive higher-order stencils is provided. The
discretization uses non-square derivative operator to allow energy and conservation statements
in terms of solution values at grid points excluding the boundary point where physical boundary
condition is applied. The approach for strong boundary conditions on uniform grid is then
applied to cut-cell grid configurations to derive cut-cell boundary stencils. The derived stencils
do not have a small-cell problem and can be easily implemented in two- and three-dimensions
following a dimensionally split discretization. Various linear and non-linear numerical tests
that verify the accuracy and stability of the method are presented.

I. Introduction
Fluid-flow simulations for practical applications, involving wall boundaries or finite-domain inflow/outflow

boundaries, require stable boundary treatment to allow long-time calculations typical of turbulent flows. High-order
centered finite-difference schemes are commonly used for high-fidelity turbulent flow simulations and wave propagation
problems because of their non-dissipative property, ease of implementation, and computational efficiency. However, the
non-dissipative character of centered schemes also makes them prone to numerical instabilities when the boundary
stencil, in combination with the interior stencil, is unstable.

Various numerical stability definitions exist that bound the solution of an initial-boundary value problem in terms
of constants independent of grid spacing and initial/boundary data [1]. The classical definition allows non-physical
solution growth in time, even though the solution may converge on successive grid refinements [2], which can be
detrimental to long-time calculations. In this study, the boundary stencils are, therefore, derived to satisfy the time
stability (also called strict or energy stability) definition, which provides a uniform bound of solution in time, preventing
non-physical growth in time.

Commonly used time-stable boundary treatments include the weak imposition of boundary conditions (BCs) with
simultaneous-approximation-term (SAT)[2] and the projection method[3, 4]. The SAT approach imposes BCs using a
penalty term, whereas the projection method uses a projection matrix to incorporate BCs into the system of ODEs solved
for the discrete solution. The extent to which the boundary point may satisfy the BC with SAT approach depends on the
value of the penalty parameter. A higher value may better satisfy the BC, however, it makes the ODE system stiffer, with
adverse implications on time stepping. In case of non-homogeneous BCs, the projection method also does not satisfy
the BC exactly because the projected ODE system imposes the time-derivative of BC, and the time-integration of the
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ODE system may not be exact. Therefore, we seek a time-stable method with strong BC enforcement, which satisfies
the BC exactly, that may be better suited for accurate near-wall turbulence statistics in direct numerical simulations of
wall-bounded flows.

Weak boundary conditions for fluid-flow simulations, solving the Euler or the Navier-Stokes equations, require
target values for all conservative variables, which are often not available. Other commonly used approaches, e.g.,
characteristic boundary conditions [5–7], circumvent that requirement by imposing the known boundary values strongly,
which determine the incoming characteristics, and, then, computing the remaining unknowns from differential equations
cast in terms of the incoming characteristic variables. While numerical stability analyses of schemes using the weak
implementation are widely available [8–12], a similar analysis for strong implementations is hindered by the challenge
of constructing a closed system of (differential) equations that incorporates strong boundary conditions and a lack of
methodology to examine stability of such systems [13]. This work proposes a framework for stability analysis with
strong BCs, facilitating derivation of boundary stencils that are time-stable with strong enforcement of BCs.

The developed framework is then employed to derive closed-form finite-difference cut-cell boundary stencils.
Cut-cell methods [14–16] are widely used for fluid-flow simulations over non-trivial solid geometries and moving
bodies. The popularity of the cut-cell approach stems from its advantages in grid generation and its computational
efficiency. It highly simplifies grid generation on complex domains by considering a Cartesian fluid grid with solid body,
intersecting the domain, simply cut out from the fluid domain, as shown schematically in figure 1. Though extensively
used for aerodynamic calculations, e.g., [17, 18], the use of cut-cell methods for high-fidelity turbulent flow simulations
is limited by several shortcomings in the existing approaches.

Most existing cut-cell approaches use a finite-volume discretization with fluxes approximated using upwind or
essentially non-oscillatory reconstructions [19, 20]. These reconstructions help stabilize simulations, especially at
cut-cell boundaries, however, they introduce numerical dissipation that may unfavorably influence turbulence/mixing
statistics [21, 22]. Cut cells generated in the fluid domain, after extracting the intersecting body, can become arbitrarily
small. The small cells require unreasonably small time steps for numerical stability in explicit time integration and they
ill-condition the system in case of implicit time integration. This issue, commonly referred to as the small-cell problem,
is solved by cell mixing/merging/linking approaches that tend to lower the accuracy of the overall scheme and introduce
additional complexity in form of index changes and book keeping. This study aims at resolving the above-mentioned
issues by considering a conservative finite-difference discretization that, by construction, does not have a small-cell
problem and is provably time-stable [23]. The analytical proof of stability used in this study provides stencils that are
different from the cut-cell boundary stencils of [24] derived using optimization procedures.

The paper is organized as follows. Sections II.A and II.B provide the proof of time-stability for a finite-difference
discretization applying strong BCs to solve a hyperbolic scalar equation and a hyperbolic system of equations, respectively,
on uniform grids. The stencils resulting from the proofs are described in section II.C. Numerical results from the
application of the uniform-grid boundary stencils are discussed in section II.D. Section III describes the extension of the
uniform-grid framework to derive cut-cell boundary stencils. Numerical results from the cut-cell stencils are provided
in section III.B. Section IV discusses the results and the conclusions of the study.

II. Time-stability of strong boundary conditions on uniform grids
In this section, the conditions on boundary stencils for time-stable enforcement of strong BCs to solve a hyperbolic

scalar equation and hyperbolic system of equations discretized on uniform grids are derived. Boundary stencils that
satisfy those conditions are then applied to various problems to verify the accuracy and stability of the method.
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Fig. 1 Schematic of a cut-cell grid. The solid body intersecting the fluid domain (Ω f ) is denoted by Ωs . The
cut-cell boundary is denoted by Γ.

A. Scalar hyperbolic problem
Consider the scalar hyperbolic equation

∂U
∂t

+
∂U
∂x

= 0, x0 ≤ x ≤ xn, t ≥ 0, (1)

with the initial and the boundary conditions given by

U(x, 0) = f (x), U(x0, t) = g(t). (2)

A semi-discretization of (1)-(2) with strong boundary conditions and n + 1 equidistant grid points in the domain can be
written as

dũ
dt

= −Du, (3)

whereu(t) =
[
u0(t) · · · · · · un(t)

]T
, withu0(t) ≡ g(t), is the discrete solution vector. ũ(t) =

[
u1(t) · · · · · · un(t)

]T
is the solution vector without the first element, corresponding to the grid point where boundary condition is imposed. D,
a matrix of size n × (n + 1), denotes the derivative operator. The entries of D will be denoted by di j , where 1 ≤ i ≤ n

and 0 ≤ j ≤ n. Its non-square structure prevents computation at the first point, essentially, turning it into a flux point.
Define a scalar product and norm for discrete real-valued vector functions v,w ∈ Rn by

(v,w)H = vT Hw =
κ∑

i, j=1
hi jviwj∆x+

n−κ∑
i=κ+1

viwi∆x+
n∑

i, j=n−κ+1
hi jviwj∆x, (4)

‖v‖H =
√

(v, v)H, (5)

where ∆x denotes the grid spacing, κ represents the depth of boundary stencil, and hi j are the entries of a symmetric
positive-definite (norm) matrix H.
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Multiplying (3) by ũT H, where H is a norm matrix of size n × n, and using the chain rule yields

d
dt
‖ũ‖2H = −ũT HDu − (Du)T Hũ. (6)

Time-stability of (3) can be ensured by showing

d
dt
‖ũ‖2H ≤ K |g |2 , (7)

where K must be a constant independent of f , g, ∆x, and time step ∆t.
To simplify the analysis, the non-square operator Q = HD can be decomposed such that

ũT HDu = ũTQu = ũT Q̃ũ + ũTq0g, (8)

where Q̃ is a square (n × n) matrix containing all columns of Q except the first and vector q0 is the the first column of Q.
Substituting (8) in r.h.s. of (6) provides the time-stability condition:

− ũT HDu − (Du)T Hũ = −ũT
(
Q̃ + Q̃T

)
ũ − 2ũTq0g ≤ K |g |2 . (9)

The quantity S =
xn∫
x0

U dx, governed by (1), should depend only on boundary fluxes, i.e.,

dS
dt

= g(t) −U(xn, t). (10)

A discrete statement for (10) is given by

dS
dt
≈

n∑
i=1

(
d
dt

Hũ
)
i

= −
n∑
i=1
(HDu)i = g(t) − un(t), (11)

where (v)i denotes the i-th component of vector v and the entries of H constitute a quadrature for the domain x0 ≤ x ≤ xn.
In terms of the operators defined in (8), condition (11) translates to

n∑
i=1
(q0)i = −1,

n∑
i=1

qi j =


1 j = n

0 otherwise
, (12)

where qi j denotes the element of matrix Q̃ at i-th row and j-th column for 1 ≤ i, j ≤ n.
We seek derivative approximations, D, and norm matrices, H, that satisfy the time-stability condition (9) and the

discrete conservation statement (11) for various orders of accuracy. The derivation proceeds by assuming an extent of

non-zero elements in vector q0, denoted by β, i.e., let q0 =
[
q10 · · · qβ0 0 · · · 0

]T
. β > 0 represents the depth

of boundary stencils that use the physical boundary point, where strong boundary condition is applied, for derivative
approximation. A non-zero (row) entry in q0 requires a corresponding non-zero diagonal entry in Q̃ to satisfy (9), as
shown by the following.
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The time-stability condition (9) is satisfied if, for 1 ≤ i, j ≤ n and β > 0,

qi j


= −qji if i 6= j,

> 0 if i = j ≤ β,

≥ 0 if i = j > β.

(13)

The conservation statement (12) is concurrently satisfied if the latter two conditions in (13), for the diagonal entries of
Q̃, are replaced by stricter conditions, given by

qi j =



−qji if i 6= j,

− 1
2 qi0 > 0 if i = j ≤ β,

0 if β < i = j < n,
1
2 if i = j = n,

(14)

and
β∑
i=1

qi0 = −1. A proof for (13) and (14) is provided in Appendix A.

B. System of hyperbolic equations
In this section, the conditions for time stability of a semi-discretization for a system of one-dimensional hyperbolic

equations with strong boundary conditions are discussed. The hyperbolic system coupled at the boundaries, discussed
in [2, 25], that provides a severe test of stability for numerical schemes is considered. The system, on domain 0 ≤ x ≤ 1
and t ≥ 0, is given by

∂UI

∂t
+ ΛI ∂UI

∂x
= 0, (15)

∂UI I

∂t
+ ΛI I ∂UI I

∂x
= 0, (16)

where

UI =
[
U1 (x, t) · · · Uk (x, t)

]T
, ΛI = diag (λ1, · · · , λk) , for λ1 > λ2 > · · · > λk > 0 (17)

describe a system of right-moving waves and

UI I =
[
Uk+1 (x, t) · · · Ur (x, t)

]T
, ΛI I = diag (λk+1, · · · , λr ) , for 0 > λk+1 > λk+2 > · · · > λr, (18)

a system of left-moving waves. The system (15)-(16) is well-posed for arbitrary initial conditions with continuous
derivative and boundary conditions given by

UI (0, t) = LUI I (0, t) + gI (t) , (19)

UI I (1, t) = RUI (1, t) + gI I (t) , (20)

where L and R are constant matrices of size k × (r − k) and (r − k) × k, respectively, and gI and gI I are vectors of size
k and r − k, respectively. The system (15)-(20) has a non-growing solution in time if gI and gI I are zero and

‖L‖ ‖R‖ ≤ 1. (21)
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The matrix norm for real matrices is defined by ‖L‖2 = ρ
(
LT L

)
, where ρ (·) denotes the spectral radius.

A semi-discretization of (15)-(20) using strong boundary conditions can be written as

dw
dt

= −Dw, (22)

where w(t) =
[

ũI (t) ũI I (t)
]T

with ũI (t) =
[
ũ1(t) · · · · · · ũk(t)

]
and ũI I (t) =

[
ũk+1(t) · · · · · · ũr (t)

]
. The

unknowns for each equation in the system are given, assuming a discretization with n + 1 grid points, as described

in section II.A, by ũφ(t) =
[
uφ1 (t) · · · · · · uφn (t)

]T
for 1 ≤ φ ≤ k and by ũφ(t) =

[
uφ0 (t) · · · · · · uφ

n−1(t)
]T

for
k + 1 ≤ φ ≤ r , where ũφ(t) is the solution vector without the element corresponding to the grid point where boundary
condition is applied. Therefore, the solution vectors for the first k equations do not contain the element corresponding to
the first point and the rest do not contain the element corresponding to the last point.

The derivative operator, D, is then given by

D = ΛH−1Q, (23)

where Λ = diag (λ1, · · · , λr ),

H =

H11 0

0 H22

 , and Q =

Q11 Q12

Q21 Q22

 . (24)

The submatrices
H11 = Ik ⊗ H, H22 = Ir−k ⊗ H#, (25)

Q11 = Ik ⊗ Q̃, Q12 = L ⊗ Q0, Q21 = −R ⊗ Q#
0, Q22 = −Ir−k ⊗ Q̃#, (26)

where Im denotes an identity matrix of size m × m, ⊗ denotes the Kronecker product and the superscript # denotes
matrices/vectors rotated by 180o, for example,


a b

c d


#

=

d c

b a

 and

a

b


#

=

b

a

 . (27)

Q0 is a n × n matrix with q0 as the first column and remaining columns zero. The vector q0 and matrices H and Q̃ are
as described in section II.A.

Let the discrete energy be defined as (e.g., [2, 25])

E(t) =
k∑
φ=1

‖R‖
λφ

(
ũφ

)T Hũφ+
r∑

φ=k+1

‖L‖��λφ �� (
ũφ

)T H#ũφ, (28)

which provides the time stability condition:

dE
dt

=
k∑
φ=1

‖R‖
λφ

d
dt

(
ũφ

)T Hũφ+
r∑

φ=k+1

‖L‖��λφ �� d
dt

(
ũφ

)T H#ũφ ≤ 0. (29)

The choice of gI = 0 and gI I = 0 in (19)-(20) results in the time-stability requirement of non-positive dE/dt in (29).
Non-zero gI and gI I will require a bound in terms of

gI
 and

gI I
. However, for stability analysis, it suffices to

assume that both gI and gI I vanish, without loss of generality [2].
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The conservation statement for the system (15)-(16) is, evidently, same as that for the scalar equation (1), since the
system comprises of scalar advection equations. Essentially, the numerical flux should “telescope” across a domain to
the boundaries without loss, consistent with the continuous flux behavior. Therefore, the conservation condition for the
operators used in semi-discretization (22) is given by (12).

The time-stability condition (29) is satisfied if, for 1 ≤ i, j ≤ n and β > 0,

qi j



= −qji if i 6= j,

≥
q2
i0

4qnnai
‖L‖ ‖R‖ if i = j ≤ β,

≥ 0 if β < i = j < n,

> 0 if i = j = n,

(30)

where ai > 0 and
β∑
i=1

ai = 1. The conservation statement (12) is concurrently satisfied if (14) is true with
β∑
i=1

qi0 = −1.

A proof for (30) and the preceding statement is provided in Appendix B.

C. Stencils for various orders of accuracy
The stability conditions derived in sections II.A and II.B assume a symmetric positive-definite norm matrix, H. If

matrix H is diagonal, the corresponding stencil is referred to as a diagonal-norm stencil and if H has a block structure,
the stencil is called a block-norm stencil, following the nomenclature of [26]. An analysis similar to [27] shows that for
a diagonal-norm stencil, the stability results derived on uniform grid apply also to computations over a curvilinear grid.
For a block-norm stencil, stability on uniform grid does not guarantee stability on curvilinear grids because the block
(norm) matrix does not commute with the diagonal matrix containing metric relations for coordinate transformation.

Similarly, the stability results derived for a linearized constant-coefficient problem apply to a variable-coefficient
problem in case of diagonal-norm stencils but not for block-norm stencils. For stability analysis, the role of the
diagonal matrix containing variable coefficients in a variable-coefficient problem is same as the role of the matrix
containing metric relations in computation over a curvilinear grid. Due to broader applicability of stability results of a
diagonal-norm stencil, their derivation is the focus of this paper. The diagonal norm stencils are denoted by p − 2p − p,
where p and 2p are the order-of-accuracy of boundary and interior stencils, respectively. If an energy estimate exists, the
global order-of-accuracy of the p − 2p − p scheme is expected to be p + 1 for first-order hyperbolic problems [28, 29].

1. 1 − 2 − 1 scheme

Assume β = 1, i.e., let q0 =
[
q10 0 · · · 0

]T
, H = ∆x diag

(
h11, 1, · · · , 1, 1

2

)
, and Q̃ of the form

Q̃ =



q11
1
2

− 1
2 0 1

2

− 1
2 0 1

2
. . . . . . . . .

− 1
2 0 1

2

− 1
2

1
2


. (31)
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Applying first-order accuracy constraints at the boundary yields

q10 =
1
2
− h11, q11 = −1 + h11. (32)

h11 > 1 provides parameters that satisfy (13). h11 = 3
2 provides parameters that satisfy (13), (14) and (30), providing a

time-stable and conservative scheme for the scalar problem (1)-(11) and the system (15)-(20). Derivative approximation
and the norm matrix are then given by

D =
1

∆x



− 2
3

1
3

1
3

− 1
2 0 1

2
. . . . . . . . .

− 1
2 0 1

2

−1 1


, H = ∆x



3
2

1
. . .

1
1
2


. (33)

2. 2 − 4 − 2 scheme
Assume Q̃ with upper left unknown boundary block of size κ × κ and qi j = −qji for i 6= j, with fourth-order centered

stencils in the interior,

Q̃ =



q11 · · · q1κ−1 q1κ
...

. . .
...

...

−q1κ−1 · · · qκ−1κ−1 qκ−1κ − 1
12

−q1κ · · · −qκ−1κ qκκ 2
3 − 1

12
1
12 − 2

3 0 2
3 − 1

12
. . . . . . . . . . . . . . .


, (34)

and H = ∆x diag (h11, · · · , hκ−1κ−1, hκκ, 1, · · ·). Global third-order accuracy is expected with second-order accuracy at
boundary points when the interior stencils are fourth-order accurate.

The derivation proceeds by considering values of β and κ to determine a second-order accurate boundary stencil
that satisfies conditions in (13) and (30). If a stencil is not found, β and κ are systematically incremented to allow for
more free parameters. Mathematica [30] and a global optimization solver, Alpine [31], are used for the derivations. For
β = 1, values of κ up to 8 did not provide a stencil that satisfies even the least restrictive condition (13). For β = 2 and 3,
there exist stencils that satisfy (13), however, no stencils were found that satisfy (14) and (30) for ‖L‖ ‖R‖ = 1, such that
a stable solution to the coupled system discussed in section II.D.2 can be obtained for t < ∞.

In Appendix C, a stencil for β = 4 and κ = 6 is provided that satisfies (13) and (30) for ‖L‖ ‖R‖ ≤ 1/4. (13)
and (30) are sufficient conditions for time-stability, but not necessary. The condition (30) is satisfied by the stencil in
Appendix C for ‖L‖ ‖R‖ ≤ 1/4, however, numerical experiments show that the stencil provides time-stable results even
if 1/4 < ‖L‖ ‖R‖ ≤ 1, as demonstrated in section II.D.2, for example. Similar extension of the time-stability properties
of a stencil beyond the ‖L‖ ‖R‖ values for which the sufficient conditions from proof hold were also noted in [32].

The stencil in Appendix C does not satisfy all the equalities of condition (14), meant to satisfy the discrete
conservation statement (11). In fact, no stencils were found for values of β ≤ 8 with values of κ ≤ 10 that satisfy (14).
Therefore, the stencil in Appendix C is derived to satisfy

8

D
ow

nl
oa

de
d 

by
 L

O
S 

A
L

A
M

O
S 

N
A

T
IO

N
A

L
 L

A
B

O
R

A
T

O
R

Y
 o

n 
Ja

nu
ar

y 
6,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

08
07

 



qi j



= −qji if i 6= j,

> 0 if i = j ≤ β,

= 0 if β < i = j < n,

= 1
2 if i = j = n,

(35)

and
β∑
j=0

κ∑
i=1

qi j = −1, such that the following conservation statement holds,

dS
dt
≈

n∑
i=1

(
d
dt

Hũ
)
i

= −
n∑
i=1
(HDu)i = g(t) − un(t) + O (∆x) , (36)

in place of (11). As obvious, in the limit of ∆x → 0, the statement (36) tends to (11).

3. Higher-order schemes
Using the approach described in the previous section, several stencils for 3− 6− 3 and 4− 8− 4 schemes were found

that satisfy (13) and (36), and are time-stable for the coupled system in section II.D.2. However, a detailed discussion of
these schemes is beyond the scope of this article and will be a subject of future publication.

D. Numerical results from uniform-grid simulations
In this section, numerical results from application of boundary stencils derived in the previous section are discussed.

The derived stencils are used at the boundary where physical boundary condition is applied. At the outflow boundary,
where no BC is applied, diagonal-norm SBP stencils derived in [26] are used. In all cases, time integration is performed
using the classical fourth-order Runge-Kutta (RK4) method. For convergence studies, the time step is taken small
enough such that the temporal errors are insignificant compared to the spatial truncation errors.

1. 1-D scalar advection equation
Consider the scalar hyperbolic equation (1), on a spatial domain 0 ≤ x ≤ 1, with initial and boundary conditions

given by
u(x, 0) = sin 2πx, u(0, t) = g(t) = sin 2π (−t) . (37)

The exact solution to the problem is u(x, t) = sin 2π (x − t). A semi-discretization to the problem, using strong BCs, the
notation of (3), and the decomposition described in (8), is given by

dũ
dt

= −Du = −H−1Q̃ũ − H−1q0g. (38)

For a bounded boundary data g(t), the stability of the semi-discretization depends on the properties of the matrix
M = −H−1Q̃, referred to as the system matrix. Figures 2 and 3 show the eigenvalue spectrum of the system matrix
using various grid points for the 1 − 2 − 1 and the 2 − 4 − 2 scheme, respectively. All eigenvalues lie in strict left half of
the complex plane and, therefore, the discretization is time-stable.

Table 1 shows the L2− and L∞−norm of the solution error, denoted by ε, and the respective convergence rates from
the two schemes. As expected, the 1 − 2 − 1 scheme converges with second-order accuracy and the 2 − 4 − 2 scheme
converges with third-order accuracy.
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Fig. 2 Eigenvalue spectrum of the system matrix to solve (1) with initial and boundary condition given by (37)
using 1 − 2 − 1 scheme for various number of grid points. (a) All eigenvalues, (b) Magnified view near the
imaginary axis. Legend is the same for both plots.
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Fig. 3 Eigenvalue spectrum of the system matrix to solve (1) with initial and boundary condition given by (37)
using 2 − 4 − 2 scheme for various number of grid points. (a) All eigenvalues, (b) Magnified view near the
imaginary axis. Legend is the same for both plots.
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n
1 − 2 − 1 2 − 4 − 2

log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate

20 -1.442427 -1.234263 -1.828907 -1.541334
40 -2.044080 1.999 -1.834978 1.996 -2.789357 3.215 -2.335029 2.637
80 -2.644558 1.995 -2.435158 1.994 -3.729319 3.298 -3.204515 2.888
160 -3.245543 1.996 -3.039630 2.008 -4.653197 3.110 -4.099137 2.972
320 -3.846993 1.998 -3.646874 2.017 -5.567189 3.046 -5.000487 2.994
640 -4.448730 1.999 -4.250385 2.005 -6.475805 3.027 -5.903084 2.998

Table 1 L2− and L∞−norm of the error and convergence rates for the 1 − 2 − 1 and 2 − 4 − 2 scheme. Error
calculations performed at t f = 1.0.

2. 1-D coupled hyperbolic system
Consider the hyperbolic system, on domain 0 ≤ x ≤ 1 and t ≥ 0,

∂U
∂t

+
∂U
∂x

= 0, (39)

∂V
∂t
−
∂V
∂x

= 0. (40)

Initial conditions : U(x, 0) = sin 2πx, V(x, 0) = − sin 2πx. (41)

Boundary conditions : U(0, t) = V(0, t), V(1, t) = U(1, t). (42)

This systemprovides a severe test of numerical stability because it is neutrally stable, i.e., the energy,
1∫
0

[
U(x, t)2 + V(x, t)2] dx,

remains constant with time.
Let u(t) =

[
u0(t) · · · · · · un(t)

]T
and v(t) =

[
v0(t) · · · · · · vn(t)

]T
denote the grid function, assuming a

spatial discretization of the above system with n + 1 grid points. A semi-discretization of (39)-(42) with strong boundary
conditions is given by

dw
dt

= −Dw, (43)

where w(t) =
[

ũ(t) ṽ(t)
]T
with ũ(t) =

[
u1(t) · · · · · · un(t)

]T
and ṽ(t) =

[
v0(t) · · · · · · vn−1(t)

]T
. The

derivative operator, D, is given by

D =

H 0

0 H#


−1 

Q̃ Q0

−Q#
0 −Q̃#

 = H−1Q, (44)

where Q̃ and Q0 are as described in (8) and (26), respectively, and the superscript # denotes matrices/vectors rotated by
180o, as described in (27).

To the best of our knowledge, there are no third- or higher-order finite-difference stencils that can solve the problem
(39)-(42) with strong BCs in a time-stable manner, i.e., stably for long times. Figure 4(a) shows the eigenvalue spectrum
of the system matrix used to solve (39)-(42) with strong BCs and first-derivative stencils from some popular references
[26, 33, 34]. Few eigenvalues in each case lie in right half of the complex plane, i.e., the maximum real part of the
eigenvalues is positive. Therefore, each scheme will exhibit unphysical solution growth in time, as shown in figure 4(b).

Figures 5 and 6 show the the eigenvalue spectrum of the system matrix, given by −D in (43), using various number
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of grid points for the 1− 2− 1 and the 2− 4− 2 scheme, respectively. All eigenvalues lie in strict left half of the complex
plane indicating a time-stable discretization. Table 2 shows the L2− and L∞−norm of the solution error, denoted by
ε, and the respective convergence rates from the two schemes. As expected, the 1 − 2 − 1 scheme converges with
second-order accuracy and the 2 − 4 − 2 scheme converges with third-order accuracy.
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Fig. 4 (a) Eigenvalue spectrumof the systemmatrix and (b) solution energy from solving the coupled hyperbolic
system (39)-(42) using various spatial schemes with strong boundary conditions and 51 grid points.
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Fig. 5 Spectrum of the systemmatrix to solve (39)-(42) using 1−2−1 scheme for various number of grid points.
(a) All eigenvalues, (b) Magnified view near the imaginary axis. Legend is the same for both plots.
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Fig. 6 Spectrum of the systemmatrix to solve (39)-(42) using 2−4−2 scheme for various number of grid points.
(a) All eigenvalues, (b) Magnified view near the imaginary axis. Legend is the same for both plots.

n
1 − 2 − 1 2 − 4 − 2

log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate

20 -1.217223 -1.225890 -1.676188 -1.508359
40 -1.803716 1.948 -1.770808 1.810 -2.643277 3.215 -2.351858 2.802
80 -2.398761 1.977 -2.353810 1.937 -3.582599 3.120 -3.206750 2.840
160 -2.997715 1.990 -2.955241 1.998 -4.505004 3.064 -4.099017 2.964
320 -3.598344 1.995 -3.555882 1.995 -5.417936 3.035 -5.000116 2.993
640 -4.199721 1.998 -4.157098 1.997 -6.325949 3.016 -5.902821 2.999

Table 2 L2− and L∞−norm of the error and convergence rate with the 1 − 2 − 1 and 2 − 4 − 2 scheme. Error
calculations performed at t f = 1.0.
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3. 2-D variable-coefficient advection equation
Consider the scalar problem

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= 0, 0 ≤ x, y ≤ L t ≥ 0, (45)

u(x, y) =
∂r
∂x
, v(x, y) =

∂r
∂x
, (46)

r (x, y) =
√
(x − x0)

2 + (y − y0)
2, (47)

where L =
√

2, x0 = −0.25 and y0 = −0.25. The initial and boundary conditions are given by

φ(x, y, 0) = sin 2πr, (48)

and
φ(0, y, t) = sin 2π (r (0, y) − t) , φ(x, 0, t) = sin 2π (r (x, 0) − t) , (49)

respectively. The exact solution to the problem is φ(x, y, t) = sin 2π (r − t).
Figures 7(a) and (b) show the L∞−error from a long-time simulation using 1−2−1 and 2−4−2 scheme, respectively.

A low and a high value of CFL numbers are used with various number of grid points to show that the derived boundary
stencils yield accurate results at reasonable time steps. The error remains constant with time indicating a time-stable
behavior. As expected, errors from the 2 − 4 − 2 scheme are smaller than that from the 1 − 2 − 1 scheme. Increasing the
CFL number from 0.3 to 0.8 does not have a visible influence on error profile indicating that the spatial truncation error
dominates in these runs.

Table 3 shows the errors and convergence rates from the two schemes used to solve (46)-(49). As desired, the
1 − 2 − 1 scheme converges with second-order accuracy and the 2 − 4 − 2 scheme converges with third-order accuracy.

0 200 400 600 800 1000
10

-4

10
-3

10
-2

10
-1

10
0

0 200 400 600 800 1000
10

-4

10
-3

10
-2

10
-1

10
0

(a) (b)

Fig. 7 L∞−error from a long-time simulation of (46)-(49) using two CFL numbers, N × N grid points, and (a)
1 − 2 − 1 and (b) 2 − 4 − 2 scheme.
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N
1 − 2 − 1 2 − 4 − 2

log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate

30 -1.404196 -1.037912 -2.118175 -1.439252
60 -2.018962 1.993 -1.615432 1.872 -3.092760 3.160 -2.445756 3.263
120 -2.626948 1.995 -2.207732 1.944 -4.035679 3.095 -3.435688 3.249
240 -3.232256 1.999 -2.801850 1.962 -4.954626 3.034 -4.343758 2.998

Table 3 L2− and L∞−norm of the error and convergence rate with the 1 − 2 − 1 and 2 − 4 − 2 scheme used to
solve (46)-(49) on a N × N grid. Error calculations performed at t f = 1.0.

III. Time-stability of strong boundary conditions on cut-cell grids
On a cut-cell grid, boundary point(s) generated by the embedded boundary may not be uniformly spaced with

respect to other grid points, as seen in figure 1. A one-dimensional analogue of such a configuration, for solving the
scalar hyperbolic problem (1)-(2), is shown in figure 8. α = 1 corresponds to a uniform grid. For cut-cell configurations,
assuming x0 = 0 for α = 1, the boundary coordinate becomes

x0 = (1 − α)∆x = x1 − α∆x, (50)

where x1 = ∆x is fixed.
Following the same approach as section II.A, a semi-discretization for the cut-cell configuration can be written

as (3), where strong BC u0(t) ≡ U(x0, t) ≡ g(t) is applied. The time-stability condition and the discrete conservation
statement are, similarly, given by (9) and (11), respectively. The conditions on the entries of Q = HD to satisfy (9)
and (11), given by (13)-(14), remain the same. The cut-cell boundary location, x0, influences the truncation error
calculation (affecting the boundary stencils in D) and the quadrature for conserved quantity calculation (affecting the
entries of H near cut-cell boundary). However, constraints on the entries of matrix Q for stability and conservation
remain unchanged. For the system of hyperbolic equations (section II.B), the constraints (30) for time-stability hold.

The task, as in the uniform-grid case, is to find a symmetric positive-definite matrix, H, and a derivative operator, D,
for various orders of accuracy that satisfy the time-stability and conservation constraints.

Fig. 8 One-dimensional grid with variable first grid point location, analogous to a cut-cell boundary point.
Solid dots denote grid points where the governing equation is solved. 0 ≤ α ≤ 1.

A. Stencils for various orders of accuracy
Asmentioned in section II.C, the present study focuses on diagonal-norm stencils. For a conservative finite-difference

scheme, the entries of the diagonal norm matrix, H, represent cell sizes for a corresponding flux-based discretization
given at a point, to solve (1), by (e.g., [35])

dui
dt

= −
ui+ 1

2
− ui− 1

2

hii∆x
, (51)
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where hii denotes the i-th diagonal entry of 1
∆x

H. Small-cell problem arises if hii → 0 for 0 ≤ α ≤ 1. As shown below,
for the derived 1− 2− 1 and 2− 4− 2 stencils, hii remains much larger than zero for 0 ≤ α ≤ 1. Therefore, the proposed
method does not have a small-cell issue, as also confirmed by the numerical results discussed in section III.B.

1. 1 − 2 − 1 scheme
Assuming the structure of Q̃ given by (31) and applying first-order accuracy constraints at the boundary yields

stencils that satisfy (14) and (30), the time-stability and conservation constraints for the scalar hyperbolic problem
(section II.A) and the system of hyperbolic equations (section II.B). The derivative approximation and the norm matrix
are given by

D =
1

∆x



− 2
1+2α

1
1+2α

1
1+2α

− 1
2 0 1

2
. . . . . . . . .

− 1
2 0 1

2

−1 1


, H = ∆x



1
2 + α

1
. . .

1
1
2


. (52)

The cell sizes, hii∆x, for the flux-based discretization (51) corresponding to (52) defines cell boundaries/interfaces
shown as dashed blue lines in figure 9. The cell sizes do not become zero for 0 ≤ α ≤ 1, thus, the small-cell problem
does not arise. For uniform-grid case, α = 1, (52) reduces to (33).

Fig. 9 One-dimensional grid with variable first grid point location, analogous to a cut-cell boundary point.
Dashed blue lines show cell interfaces determined by the entries of the diagonal norm matrix, H, for 1 − 2 − 1
scheme.

2. 2 − 4 − 2 scheme
Assuming the structure of Q̃ given by (34) and applying second-order accuracy constraints at the boundary yields

stencils that satisfy (13) and (35). The stencils are provided in Appendix D. Like the 1 − 2 − 1 scheme, hii in this stencil
also remains much larger than zero for 0 ≤ α ≤ 1, thus, solving the small-cell issue.

The stencils are derived using Mathematica [30], where solving for inequalities becomes computationally demanding
for large number of free parameters, as in this case. As a result, attempts to determine a closed-form stencil that satisifes
(30) have been unsuccessful. For α = 1, the stencil in Appendix D does not reduce to the one in Appendix C because
the stencils in Appendix C were derived to satisfy (30).

B. Numerical results from cut-cell grid simulations
In this section, numerical results from application of boundary stencils derived in the previous section are discussed.

The derived stencils are used at the boundary for incoming characteristics, which require imposing the BC. For outgoing
characterisitcs, where no BC is applied, diagonal-norm SBP stencils derived in [26] are used. In all cases, time
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integration is performed using the classical fourth-order Runge-Kutta (RK4) method. For convergence studies, the time
step is taken small enough such that the temporal errors are insignificant compared to the spatial truncation errors.

1. 1-D scalar advection equation
Consider the scalar hyperbolic equation (1), on a spatial domain x0 ≤ x ≤ 1, where x0 is given by (50), with initial

and boundary conditions given by

u(x, 0) = sin 2πx, u(x0, t) = g(t) = sin 2π (x0 − t) . (53)

The exact solution to the problem is u(x, t) = sin 2π (x − t).
Figures 10(a) and (b) show the L∞−error from a long-time simulation using 1 − 2 − 1 and 2 − 4 − 2 scheme,

respectively. A low and a high value of CFL numbers are used with various values of α to show that the derived
boundary stencils do not have the small-cell problem. The error remains constant with time indicating a time-stable
behavior. As expected, errors from the 2 − 4 − 2 scheme are smaller than that from the 1 − 2 − 1 scheme. Increasing the
CFL number from 0.3 to 0.8 does not have a visible influence on error profile indicating that the spatial truncation error
dominates in these runs.

Figures 11(a) and (b) show the L∞−error and the convergence rates of the two schemes for various values of α.
As expected, the 1 − 2 − 1 scheme converges with second-order accuracy and the 2 − 4 − 2 scheme converges with
third-order accuracy. The error profiles in figures 10 and 11 suggest that the prefactor in leading-order truncation error
term does not vary much with α and, therefore, the error magnitude is similar for various values of α.
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(a) (b)

Fig. 10 L∞−error from a long-time simulation of (1) using x0 given by (50), initial and boundary condition
given by 53, various values of α, and (a) 1 − 2 − 1 and (b) 2 − 4 − 2 scheme at two CFL numbers.

2. 2-D variable-coefficient advection equation
Consider a cut-cell grid as shown in figure 12(a) and the scalar problem of section II.D.3 with a different domain

extent, given by
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Fig. 11 L∞−norm of the solution error and convergence rate with the (a) 1 − 2 − 1 and (b) 2 − 4 − 2 scheme
used to solve (1) with x0 given by (50) and a domain with n grid points. Error calculations performed at t f = 1.0.
Dashed black line show the expected order-of-accuracy.

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= 0, −L ≤ x, y ≤ L t ≥ 0, (54)

where u and v are expressed as (46), and L = 1, x0 = 0 and y0 = 0 is assumed. The initial condition is given by (48) and

the boundary condition at the cut-cell boundary r =
√
(x − x0)

2 + (y − y0)
2 = r0 is

φ(x, y, t) = sin 2π (r0 − t) at
√
(x − x0)

2 + (y − y0)
2 = r0. (55)

The exact solution to the problem is φ(x, y, t) = sin 2π (r − t). The grid points with r < r0 are blanked out, i.e., the
governing equation is not solved there. Figure 12(b) shows a surface plot of the initial condition on the cut-cell grid.

Figures 13(a) and (b) show the L∞−error from a long-time simulation of (54) using the 1 − 2 − 1 and the 2 − 4 − 2
scheme, respectively. A low and a high value of CFL numbers are used with various number of grid points to show
that the small-cell problem does not arise with the derived boundary stencils. The error remains constant with time
indicating a time-stable behavior. As expected, errors from the 2 − 4 − 2 scheme are smaller than that from the 1 − 2 − 1
scheme. Increasing the CFL number from 0.3 to 0.8 does not have a visible influence on error profile indicating that the
spatial truncation error dominates in these runs.

Table 4 shows the errors and convergence rates from the two schemes. As desired, the 1 − 2 − 1 scheme converges
with second-order accuracy and the 2 − 4 − 2 scheme converges with third-order accuracy.
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(a) (b)

Fig. 12 (a) An example cut-cell grid for the scalar problem (54) and (b) a surface plot of the initial condition
on the cut-cell domain shown in subfigure (a).
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(a) (b)

Fig. 13 L∞−error from a long-time simulation of (54) using two CFL numbers and N × N grid points with (a)
1 − 2 − 1 and (b) 2 − 4 − 2 scheme.

N
1 − 2 − 1 2 − 4 − 2

log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate log10 ‖ε‖2 Rate log10 ‖ε‖∞ Rate

30 -0.989345 -0.643610 -1.666727 -1.196508
60 -1.662429 2.182 -1.273019 2.041 -2.639233 3.153 -2.191315 3.225
120 -2.355574 2.275 -1.921113 2.127 -3.573114 3.065 -3.125201 3.102
240 -3.019971 2.194 -2.553477 2.088 -4.482657 3.021 -4.025420 2.990

Table 4 L2− and L∞−norm of the error and convergence rate with the 1 − 2 − 1 and 2 − 4 − 2 schemes. Error
calculations performed at t f = 1.0.
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3. 2-D Euler equations
In this section, we discuss the extension of the cut-cell approach to solve the Euler equations. The conservative form

of the two-dimensional Euler equations is given by

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

= 0, (56)

Q =



ρ

ρu

ρv

E


, F =



ρu

ρu2 + p

ρuv

u (E + p)


, G =



ρv

ρuv

ρv2 + p

v (E + p)


, (57)

E =
p

γ − 1
+ ρ

(
u2 + v2

2

)
, (58)

where u, v are the Cartesian velocity components, ρ denotes the density, p the pressure and E is the total energy. γ
denotes the ratio of specific heats.

Assume a cut-cell boundary as shown in figure 14. A semi-discretization for the grid point shown in red, denoted by
subscript i j, using strong BCs is given by

dqi j

dt
= −S

( [
S−1 (

Dout
x f

)
i j

]
+

+
[
S−1 (

Din
x f

)
i j

]
−

)
−

(
Dyg

)
i j , (59)

where columns of S are the right eigenvectors of the Jacobian matrix A = ∂F/∂x = SΛS−1. The matrices S and Λ
can be found in [11]. Din

x and Dout
x are the inflow and outflow boundary stencils, respectively. As mentioned before,

diagonal-norm SBP stencils are used as outflow stencil and the boundary stencils derived in section III.A are used as
inflow stencil. The characteristic decomposition in semi-discretization (59) is performed only in x-direction because the
grid point, shown in red in figure 14, needs to use the boundary stencil only in x-direction. In y-direction interior stencil
is used. In the case where a grid point has to use the boundary stencil in y-direction, a similar decomposition ought to
be performed in y-direction.

Fig. 14 Two-dimensional schematic of grid points near a cut-cell boundary.

To examine the performance of the cut-cell method, we solve the two-dimensional Euler equations for the propagation
of a compressible isentropic vortex on a domain with cut boundaries, as shown in figure 15. Boundaries in x-direction
are assumed to be periodic, which allows the vortex to loop through the domain multiple times, assessing long-time
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stability of the method. Characteristic boundary conditions are applied in y-direction using the exact solution for strong
enforcement.

The exact solution to the problem is given by

ρ =

(
1 −

$2(γ − 1)
8π2c2

0
e1−ϕ2r2

) 1
γ−1

, u = u0 −
$

2π
ϕ(y − y0 − v0t)e

1−ϕ2r2
2 ,

v = v0 +
$

2π
ϕ(x − x0 − u0t)e

1−ϕ2r2
2 , E =

p
γ − 1

+
1
2
ρ(u2 + v2), (60)

p = ργ, r2 = (x − x0 − u0t)2 + (y − y0 − v0t)2,

where (x0, y0) denotes the initial position of the vortex, (u0, v0) denotes the vortex convective velocity, ϕ is a scaling
factor and $ denotes the non-dimensional circulation. Unless otherwise stated, we use v0 = 0, γ = 1.4, ϕ = 11 and
$ = 1. All quantities in (60) are non-dimensional, obtained from the density scale = ρ∗0, velocity scale u∗0 = c∗0√

γ
, unit

length scale and pressure scale = ρ∗0u∗20 , where ∗ denotes the dimensional quantities. The non-dimensional ambient
speed of sound is c0 = √γ.

Figures 13(a) and (b) show the L∞−error from a long-time simulation using the 1 − 2 − 1 and the 2 − 4 − 2 scheme,
respectively. A subsonic (u0 = 1.0) and a supersonic (u0 = 2.0) convective velocity is used to examine the robustness
of boundary implementation for cases where all characteristics leave/enter the domain as well as cases where some
characteristics enter, while the others leave the domain. The error remains constant with time indicating a time-stable
behavior. As expected, errors from the 2−4−2 scheme are smaller than that from the 1−2−1 scheme. The calculations
were performed at a CFL number of 0.5, showing for this non-linear problem that the method does not have a small-cell
problem.

Fig. 15 Cut-cell domain showing the initial density contour for isentropic convecting vortex.

IV. Conclusions
A framework to examine the stability of finite-difference methods with strong (exact) boundary conditions is

developed and used to derive provably time-stable boundary stencils for hyperbolic (inviscid) systems on uniform grid.
The stencils allow stable long-time simulation of systems that previously required additional stabilization measures or a
weak implementation of boundary conditions. The framework is then used to derive time-stable boundary stencils for
cut-cell grids. The derived stencils do not have the small-cell problem, commonly encountered with cut-cell methods.
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Fig. 16 L∞−error from a long-time simulation of the Euler equations for the convecting vortex problem at
subsonic and supersonic convective velocity using N × N grid points with (a) 1 − 2 − 1 and (b) 2 − 4 − 2 scheme.

For simulations in higher dimensions, a dimensionally split approach is used, which highly simplifies the implementation
of the method and is computationally efficient. Several linear and non-linear inviscid tests confirm the stability and
robustness of the approach.
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Appendix

A. Proof of conditions (13) and (14)
Matrix Q̃ with entries satisfying qi j = −qji , for i 6= j, yields

Q̃ + Q̃T

2
= diag

(
q11, · · · , qββ, · · · , qnn

)
, (61)

whose substitution in (9), with q0 =
[
q10 · · · qβ0 0 · · · 0

]T
, provides

−ũT
(
Q̃ + Q̃T

)
ũ−2ũTq0g = −

n∑
i=1

2qiiu2
i −

β∑
i=1

2qi0uig (62)

=
β∑
i=1

[
−2qii

(
ui +

qi0
2qii

g

)2
+

q2
i0

2qii
g2

]
−

n∑
i=β+1

2qiiu2
i ≤ K1g

2, (63)
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where the last inequality holds for qii > 0 if 1 ≤ i ≤ β and qii ≥ 0 if β < i ≤ n (the conditions in (13)), and K1 =
β∑
i=1

q2
i0

2qii .

This proves the first statement of the theorem.

Substituting the values of (14) in (63), and using
β∑
i=1

qi0 = −1, provides

− ũT
(
Q̃ + Q̃T

)
ũ − 2ũTq0g ≤ g2, (64)

which ensures time-stability. The following shows that (14) also satisfies the conservation statement (12).
The rows of a derivative approximation, D, sum to zero and, hence, the rows of HD also sum to zero. It provides,

using the relation between HD and the elements of q0 and Q̃ defined in (8),

n∑
j=0

qi j = qi0 + qii+
n∑
j=1
j 6=i

qi j = 0 ∀ 1 ≤ i ≤ n, (65)

where qi0 = 0 if i > β. Using qi j = −qji for i 6= j yields

n∑
j=1
j 6=i

qi j = −
n∑
j=1
j 6=i

qji ∀ 1 ≤ i ≤ n. (66)

Adding −qii to both sides of (66) and using (65) provides

−
n∑
j=1

qji =
n∑
j=1

qi j − 2qii = −qi0 − 2qii ∀ 1 ≤ i ≤ n. (67)

To satisfy (12), then, qii = − 1
2 qi0 if 1 ≤ i < n and qii = 1

2 −
1
2 qi0 if i = n. But, since qi0 = 0 if i > β, qii = 0 if β < i < n

and qii = 1
2 if i = n, which are the parameter values in (14). This completes the proof.

B. Proof of condition (30)
The individual terms in summations of (29), that denote the contribution from each equation of the system, are given by

d
dt

(
ũφ

)T Hũφ =
d
dt

ũφ2
H

= −λφ
(
ũφ

)T (
Q̃ + Q̃T

)
ũφ − 2λφ

(
ũφ

)T q0

(
LũI I

0

)
φ
, 1 ≤ φ ≤ k, (68)

d
dt

(
ũφ

)T H#ũφ =
d
dt

ũφ2
H# = −λφ

(
ũφ

)T (
Q̃# +

(
Q̃#

)T )
ũφ − 2λφ

(
ũφ

)T q#
0

(
RũI

n

)
φ
, k + 1 ≤ φ ≤ r, (69)

where ũI I
0 =

[
uk+1

0 (t) uk+2
0 (t) · · · ur0(t)

]T
and ũI

n =
[
u1
n(t) u2

n(t) · · · uk
n(t)

]T
. Assuming qi j = −qji , for i 6= j

in matrix Q̃, the contribution to (29) from the first term in r.h.s. of (68) and (69) can be calculated from, respectively,

k∑
φ=1

(
ũφ

)T (
Q̃ + Q̃T

)
ũφ = 2

n∑
i=1

qii
k∑
φ=1

(
uφi

)2
= 2

n∑
i=1

qii
ũI

i

2
, (70)

r∑
φ=k+1

(
ũφ

)T (
Q̃# +

(
Q̃#

)T )
ũφ = −2

n∑
i=1

qii
r∑

φ=k+1

(
uφn−i

)2
= −2

n∑
i=1

qii
ũI I

n−i

2
, (71)
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where
ũI

i

2 =
k∑
φ=1

(
uφi

)2
and

ũI I
n−i

2 =
r∑

φ=k+1

(
uφn−i

)2
. Further, assuming q0 =

[
q10 · · · qβ0 0 · · · 0

]T
, the

contribution to (29) from the second term in r.h.s. of (68) and (69) can be estimated from, respectively,

k∑
φ=1

(
ũφ

)T q0

(
LũI I

0

)
φ

=
β∑
i=1

qi0
k∑
φ=1

uφi
(
LũI I

0

)
φ
, (72)

r∑
φ=k+1

(
ũφ

)T q#
0

(
RũI

n

)
φ

= −
β∑
i=1

qi0
r∑

φ=k+1
uφn−i

(
RũI

n

)
φ
. (73)

Using
k∑
φ=1

uφi
(
LũI I

0

)
φ
≤

ũI
i

 ‖L‖ ũI I
0

 and
r∑

φ=k+1
uφn−i

(
RũI

n

)
φ
≤

ũI I
n−i

 ‖R‖ ũI
n

 (74)

in (72) and (73), respectively, and, in turn, using (68)-(69) with (70)-(73) in (29), assuming qii ≥ 0 for β < i < n, it can
be shown

dE
dt
≤

{
β∑
i=1

(
−2qii ‖R‖

ũI
i

2 + 2 |qi0 | ‖L‖ ‖R‖
ũI

i

 ũI I
0

) − 2qnn ‖L‖
ũI I

0
2

}
(75)

+

{
β∑
i=1

(
−2qii ‖L‖

ũI I
n−i

2 + 2 |qi0 | ‖L‖ ‖R‖
ũI

n

 ũI I
n−i

) − 2qnn ‖R‖
ũI

n

2
}
. (76)

The time-stability condition (29) is satisfied if both curly brackets in (76) are non-positive. Introducing
β∑
i=1

ai = 1, where

ai > 0, the last term in the curly brackets can be written as

2qnn ‖L‖
ũI I

0
2 = 2

β∑
i=1

aiqnn ‖L‖
ũI I

0
2 and 2qnn ‖R‖

ũI
n

2 = 2
β∑
i=1

aiqnn ‖R‖
ũI

n

2
. (77)

Substituting (77) in (76), it can be shown that dE/dt ≤ 0 if

qii ≥
q2
i0

4qnnai
‖L‖ ‖R‖ , 1 ≤ i ≤ β. (78)

This proves the first statement of the theorem.

Appendix A showed that (14) with
β∑
i=1

qi0 = −1, where qi0 ≤ 0, satisfies the discrete conservation statement (12) for

the scalar advection equation. As mentioned before, the discrete conservation statement for the system (15)-(16) is same
as that for the scalar advection equation. Therefore, a stencil satisfying (14) provides a conservative scheme for the
system (15)-(16). It remains to be shown that the stencil also satisfies the stability condition (29).

Using (14) with
β∑
i=1

qi0 = −1 and ai = −qi0 in (78) yields the condition

1 ≥ ‖L‖ ‖R‖ , (79)

which is satisfied from (21). This completes the proof.

C. 2 − 4 − 2 scheme for uniform grid
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h11 = 1.117853598033634 h22 = 1.734954607723689 h33 = 0.493492831348563 h44 = 1.153698962894113

d10 = −0.558055563977424 d20 = −0.177806646597481 d30 = 0.197577181565075 d40 = 0.053103321910167

d11 = 0.206193447640676 d21 = −0.148032843241780 d31 = −0.349146497048670 d41 = 0.031031686127352

d12 = 0.229753040942520 d22 = 0.010938409310223 d32 = −0.469159274307636 d42 = −0.272872172147738

d13 = 0.154135831102631 d23 = 0.133448297494816 d33 = 0.026584989564182 d43 = −0.326375382961636

d14 = −0.032026755708402 d24 = 0.181452783034222 d34 = 0.763007924163851 d44 = 0.009492491845307

d15 = 0 d25 = 0 d35 = −0.168864323936802 d45 = 0.577851491687484

d16 = 0 d26 = 0 d36 = 0 d46 = −0.072231436460936

D. 2 − 4 − 2 scheme for cut-cell grid

h11 =
18α5 + 117α4 + 270α3 + 270α2 + 117α + 17

24
(
9α2 + 9α + 2

) h22 =
−42α5 − 177α4 − 78α3 + 294α2 + 275α + 59

24
(
9α2 + 9α + 2

)
h33 =

30α5 + 75α4 + 30α3 + 186α2 + 191α + 43
24

(
9α2 + 9α + 2

) h44 =
−6α5 − 15α4 − 6α3 + 222α2 + 221α + 49

24
(
9α2 + 9α + 2

)
d10 = −

36(α + 1)2(2α + 1)
18α5 + 117α4 + 270α3 + 270α2 + 117α + 17

d11 =
6(α + 1)(3α + 2)

18α5 + 117α4 + 270α3 + 270α2 + 117α + 17

d12 =
−18α5 − 45α4 + 126α3 + 378α2 + 279α + 59
36α5 + 234α4 + 540α3 + 540α2 + 234α + 34

d13 = −
2(3α + 1)(3α + 2)

18α5 + 117α4 + 270α3 + 270α2 + 117α + 17

d14 =
3
(
6α5 + 15α4 + 6α3 − 6α2 − 5α − 1

)
36α5 + 234α4 + 540α3 + 540α2 + 234α + 34

d15 = 0 d16 = 0

d20 = −
36α2(2α + 1)

42α5 + 177α4 + 78α3 − 294α2 − 275α − 59
d21 =

−18α5 − 45α4 + 126α3 + 378α2 + 279α + 59
2
(
42α5 + 177α4 + 78α3 − 294α2 − 275α − 59

)
d22 = −

6α(3α + 1)
42α5 + 177α4 + 78α3 − 294α2 − 275α − 59

d23 =
30α5 + 75α4 + 30α3 + 258α2 + 263α + 59

−84α5 − 354α4 − 156α3 + 588α2 + 550α + 118

d24 =
2α

(
12α4 + 30α3 + 12α2 − 3α − 1

)
42α5 + 177α4 + 78α3 − 294α2 − 275α − 59

d25 = 0 d26 = 0

d30 = 0 d31 =
2(3α + 1)(3α + 2)

30α5 + 75α4 + 30α3 + 186α2 + 191α + 43

d32 = −
30α5 + 75α4 + 30α3 + 258α2 + 263α + 59

60α5 + 150α4 + 60α3 + 372α2 + 382α + 86
d33 = 0

d34 =
30α5 + 75α4 + 30α3 + 258α2 + 263α + 59

60α5 + 150α4 + 60α3 + 372α2 + 382α + 86
d35 = −

2(3α + 1)(3α + 2)
30α5 + 75α4 + 30α3 + 186α2 + 191α + 43

d36 = 0 d40 = 0 d41 =
3
(
6α5 + 15α4 + 6α3 − 6α2 − 5α − 1

)
2
(
6α5 + 15α4 + 6α3 − 222α2 − 221α − 49

)
d42 = −

2α
(
12α4 + 30α3 + 12α2 − 3α − 1

)
6α5 + 15α4 + 6α3 − 222α2 − 221α − 49

d43 =
30α5 + 75α4 + 30α3 + 258α2 + 263α + 59

2
(
6α5 + 15α4 + 6α3 − 222α2 − 221α − 49

)
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d44 = 0 d45 = −
16(3α + 1)(3α + 2)

6α5 + 15α4 + 6α3 − 222α2 − 221α − 49

d46 =
2(3α + 1)(3α + 2)

6α5 + 15α4 + 6α3 − 222α2 − 221α − 49
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