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1. Introduction

Recent technological developments [1] have called attention to the importance of predicting
statistically unsteady turbulent flows. Isotropic turbulence driven by unsteady forcing defines a
class of problems suitable for testing ideas about modelling these flows. The absence of linear
mechanisms is appropriate because many technologically important unsteady flows are subject
to at most weak, unsteady shearing. These problems also provide good test cases for the ε
equation because their dynamics is dominated entirely by non-linearity.

This paper investigates the special problem of homogeneous, isotropic turbulence, initially
in a steady state, driven by forcing with a linearly growing amplitude. Although admittedly
a model problem, it was chosen because the imposed non-stationarity is as simple as possible.
Therefore, on the one hand, linearly increasing forcing provides a problem in which the two-
equation model is most likely to be successful and, on the other hand, a good place to analyse
deficiencies of the two-equation model if it fails. The spectral dynamics is studied using a recently
developed spectral closure [2] that is intermediate in complexity between the eddy-damped quasi-
normal Markovian (EDQNM) approximation and the Heisenberg model and closely related to
the model of Canuto and Dubovikov [3]. The transient and asymptotic predictions of this closure
are compared with the predictions of an appropriate two-equation model.

At long times, an asymptotic state develops in which the kinetic energy increases with time
as K ∼ t2/3 and the production to dissipation ratio, P/ε ∼ 1. This state is characterized to
leading order by a growing Kolmogorov spectrum, but with the k−7/3 corrections proposed by
Yoshizawa [4] for time-dependent turbulence. The cancellation of the O(Re1/2) vortex stretching
and enstrophy destruction terms required [5] to formulate the standard ε equation is confirmed
analytically; the O(Re0) remainder is determined by Yoshizawa’s k−7/3 correction term.

It is shown that this asymptotic state can be described by a two-equation model with non-
standard values of the constants Cε1 and Cε2. The conclusion that an asymptotic state can be
described by a two-equation model agrees with previous analyses [6, 7] and underlies our choice
of this problem. However, the transient evolution is not predicted accurately. The discrepancy
is analysed using the closure theory, which provides access to the details of the dynamics of ε.

As was just noted, the dissipation rate transport equation requires a balance between two
terms proportional to vortex stretching and enstrophy destruction [5, 8]. Two-equation modelling
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simply asserts that this balance can be modelled in terms of production, kinetic energy and the
dissipation rate itself. There is no fundamental justification for this assertion: there is simply
no alternative if a model is to be formulated using these basic quantities alone.

The choice of these dynamic descriptors makes two problems unavoidable: first, because
they are linked to relatively small scales of motion, the onset of non-trivial dynamics of vortex
stretching and enstrophy destruction will occur later than the imbalance of production and
dissipation; and secondly, the establishment of a balance between vortex stretching and enstrophy
destruction occurs on the rapid time scales related to these small scales of motion, not on the
integral time scale of the two-equation model. The consequences are that a two-equation model
will predict that ε begins to grow both sooner and more gradually than it should. Both effects
are confirmed numerically by closure computations and direct numerical simulation (DNS).

The conclusion that rapid time scales can dominate the transient evolution of ε can be
compared with the proposal of Speziale and Bernard [8] that the Kolmogorov time scale
replaces the integral time scale in the ε equation, thereby introducing explicit Reynolds number
dependence into this equation. This very unorthodox proposal was motivated by a dynamic
picture of unbalanced vortex stretching, in which the O(Re0) balance between vortex stretching
and enstrophy destruction envisioned in the standard discussions of the ε equation does not
occur.

Unlike Speziale and Bernard, we find that the possibility of unbalanced vortex stretching is
limited to the transient evolution. Furthermore, it is far from certain that it is the Kolmogorov
time scale that is relevant: we find far weaker Reynolds number dependence than dependence on
this time scale would produce. Finally, at long times, the O(Re0) balance is established, leading
to an asymptotic state that can be correctly described by a two-equation model of the standard
form.

Nevertheless, the essential point made by Speziale and Bernard that the dynamics of the
dissipation rate is not necessarily governed by the integral time scale, is confirmed in this paper.
On intuitive grounds, this conclusion is not surprising: what is surprising is that the dynamics
of the dissipation rate ever actually is governed by the integral time scale: this possibility is
linked to the idea that in ‘equilibrium’ turbulence, the dissipation rate is scale-independent and,
hence, a property of both large and small scales.

That the long time asymptotic dynamics is governed by the integral scale is to some extent
geometric or kinematic: in the asymptotic state, the two-equation model and governing equations
share certain common symmetry or invariance properties which greatly restrict the number
of possible length and time scales [6, 9]. The role of Yoshizawa’s correction term gives these
invariance properties an additional dynamic significance since it proves to be most significant at
the large scales of motion. In summary, this paper finds conditions under which the ε equation
can be valid and delineates its theoretical limitations in a special problem of time-dependent
turbulence.

2. Statement of the problem

Consider homogeneous isotropic turbulence in a Kolmogorov steady state that has developed
under steady random forcing. The steady-state spectral evolution equation is [10]

0 = Π(k/k0) − S(k) − 2νk2E(k), (1)

where E(k) is the energy spectrum, S(k) the transfer spectrum and the production spectrum
Π(κ) peaks at κ = 1.
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Starting from the initial condition defined by equation (1), increase the force amplitude
linearly, so that the spectral evolution equation becomes

Ė(k, t) = (1 + t/τ)Π(k/k0) − S(k, t) − 2νk2E(k, t). (2)

It will be convenient to call this turbulent flow ramp flow, and the constant τ−1 the ramp rate.
In this problem, the forcing scale k0 is fixed; only the force amplitude changes with time. Define
total production P (t) by

P (t) = (1 + t/τ)
∫ ∞

0
Π(k/k0) dk. (3)

The energy equation, obtained by integrating equation (2) over all wavenumbers k, is

K̇ = P − ε, (4)

where, as usual,

K =
∫ ∞

0
E(k, t) dk, ε = 2ν

∫ ∞

0
k2E(k, t) dk (5)

and conservation of energy by non-linear interaction implies∫ ∞

0
S(k, t) dk = 0. (6)

3. Elementary scaling analysis

We first consider a possible asymptotic state for this problem. Although it is probable that P
will always exceed ε, the ratio P/ε might approach a constant. Assume then that ε ∼ t. Since by
hypothesis the integral scale does not change, K3/2/ε should be constant. Since ε ∼ t, K ∼ t2/3.
However, then the kinetic energy equation (4) requires P − ε ∼ t−1/3. In particular, P/ε → 1.
To summarize, in this asymptotic state, the total production, dissipation and kinetic energy
scale with time as

P ∼ t, ε ∼ t − at−1/3, K ∼ t2/3 (7)

for some constant a. Thus, ramp flow transitions from a simple Kolmogorov steady state to
another simple but time-dependent asymptotic state. The transient dynamics through which
turbulence reorganizes itself between these states proves to be non-trivial.

Since it is characterized by certain constant limiting ratios, in this case of K3/2/ε and P/ε,
such an asymptotic state is sometimes called a fixed point: its existence reflects certain scaling
invariance properties and consequent similarity solutions of the Navier–Stokes equations. This
viewpoint can be developed in much greater depth [9].

4. Closure analysis of the asymptotic state

Ramp flow will be analysed using the recently developed Cartoon model of spectral behaviour
(CMSB) closure [2]. This model closes the energy transfer term in equation (2) by

S(k) =
∂F
∂k

, (8)
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where the energy flux F is

F(k) = c

{∫ k

0
dκ κ2E(κ)

∫ ∞

k
dp θ(p)E(p) −

∫ k

0
dκ κ4

∫ ∞

k
dp θ(p)

E(p)2

p2

+β

[∫ k

0
dκ κ2E(κ)

∫ ∞

k
dp θ(p)p

dE

dp
−

∫ k

0
dκ κ4

∫ ∞

k
dp θ(p)p

dE

dp

E(p)
p2

]}
. (9)

The time-scale θ satisfies the evolution equation

θ̇(k) = 1 − η(k)θ(k) − νk2θ(k), (10)

where the damping factor η is

η(k) = cηθ(k)
∫ k

0
dp p2E(p). (11)

Time arguments are assumed without being explicitly written in equations (9)–(11). Suggested
values for the constants are discussed in [2].

This closure results from a drastic simplification of the non-linear interactions in closures
based on the direct interaction approximation [11] which nevertheless retains some key properties
of such closures, including the importance of distant interactions and energy backscatter. The
advantage of this kind of closure is its computational simplicity (cf also the local wave-number
(LWN) closure [7, 6]). The first term on the right-hand side of equation (9) corresponds to
the classical Heisenberg model [10]. It provides eddy damping of the excitation at mode k.
The second term provides energy input to mode k and may be considered to represent energy
‘backscatter’. This combination of terms was proposed by Canuto and Dubovikov [3]; the present
model only differs in the third and fourth terms on the right-hand side of equation (9) and the
use of time-scale evolution equations (10) and (11).

Next, we refine the elementary scaling arguments of section 3 by extending them to the
closure equations. If the solution exhibits a range of scales satisfying Kolmogorov relations

E(k) = CKε2/3k−5/3, η(k) = CDε1/3k2/3, (12)

then, since k0 is fixed, we can anticipate the asymptotic time dependence

E ∼ t2/3, η ∼ t1/3 (13)

and equations (11) and (9) imply

θ ∼ t−1/3, F ∼ t1. (14)

It is clear, however, that equation (2) with the closure relations (8) and (9) will not be
satisfied by spectral quantities with these exact scalings. Instead, the correction to the scaling
of ε in equation (7) suggests expansions

E(k, t) = (t/τ)2/3E0(k) + (t/τ)−2/3E1(k) + · · · ,
θ(k, t) = (t/τ)−1/3θ0(k) + (t/τ)−5/3θ1(k) + · · · (15)

of the spectral quantities in powers of (t/τ)−4/3. Equating coefficients of like powers of t/τ gives

∂F0

∂k
= 0, 1 − θ2

0

∫ k

0
dκ κ2E0(κ) = 0, (16)
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where

F0(k) = c

{∫ k

0
dκ κ2E0(κ)

∫ ∞

k
dp θ0(p)E0(p) −

∫ k

0
dκ κ4

∫ ∞

k
dp θ0(p)

E0(p)2

p2

+ β

[∫ k

0
dκ κ2E0(κ)

∫ ∞

k
dp θ0(p)p

dE0

dp
−

∫ k

0
dκ κ4

∫ ∞

k
dp θ0(p)p

dE0

dp

E0(p)
p2

]}
(17)

to leading order. At the next order,

2
3
E0 =

∂F1

∂k
,

1
3

= θ0

∫ k

0
dκ κ2E1(κ) + 2θ1

∫ k

0
dκ κ2E0(κ), (18)

where

F1(k) = c

{∫ k

0
dκ κ2E1(κ)

∫ ∞

k
dp θ0(p)E0(p) +

∫ k

0
dκ κ2E0(κ)

∫ ∞

k
dp θ1(p)E0(p)

+
∫ k

0
dκ κ2E0(κ)

∫ ∞

k
dp θ0(p)E1(p) −

∫ k

0
dκ κ4

∫ ∞

k
dp θ1(p)

E0(p)2

p2

−
∫ k

0
dκ 2κ4

∫ ∞

k
dp θ0(p)

E0(p)E1(p)
p2 + β

[∫ k

0
dκ κ2E1(κ)

∫ ∞

k
dp θ0(p)p

dE0

dp

+
∫ k

0
dκ κ2E0(κ)

∫ ∞

k
dp θ1(p)p

dE0

dp
+

∫ k

0
dκ κ2E0(κ)

∫ ∞

k
dp θ0(p)p

dE1

dp

−
∫ k

0
dκ κ4

∫ ∞

k
dp θ1(p)p

dE0

dp

E0(p)
p2 −

∫ k

0
dκ κ4

∫ ∞

k
dp θ0(p)p

dE1

dp

E0(p)
p2

−
∫ k

0
dκ κ4

∫ ∞

k
dp θ0(p)p

dE0

dp

E1(p)
p2

]}
. (19)

Equations (16) and (17) coincide with the balance equations for a Kolmogorov steady state.
Therefore, to leading order, the flux is independent of k, even in this time-dependent case and
E0 and θ0 must be consistent with a Kolmogorov steady state; of course, equation (15) states
that E and θ are indeed time-dependent, and that the spectral flux increases with time.

Equations (18) represent a linear system of integral equations for E1 and θ1. Rather than
writing the lengthy system of equations explicitly, we simply note that it is consistent with
correction terms

E1 ∼ k−7/3, θ1 ∼ k−4/3, (20)

which evidently formally balance all terms in equation (18). The k−7/3 scaling of the energy
spectrum correction is consistent with the analysis of non-equilibrium turbulence of Yoshizawa
[4]. In the context of Yoshizawa’s analysis, it should be noted that the non-equilibrium time
scales P/Ṗ ∼ ε/ε̇ ∼ t are very large; consequently, we are in the regime of weak time dependence
in which perturbation about Kolmogorov scaling is appropriate.

5. Two-equation modelling

The exact ε equation in spectral form is

ε̇ = P2 + S − G, (21)
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where

P2 = 2ν

∫ ∞

0
dk k2P (k/k0), S = −2ν

∫ ∞

0
dk k2 ∂F

dk
, G = −4ν2

∫ ∞

0
dk k4E(k). (22)

S is ν times the vortex stretching term in the entrophy balance equation, and G is ν times the
enstrophy destruction. Since the production spectrum peaks at large scales, P2 is typically small,
and in a steady state, S = G, which is equivalent to Batchelor’s [10] relation for the skewness in
a Kolmogorov steady state in which k0 → 0.

Assuming a steady-state Kolmogorov spectrum with high-wavenumber cutoff at kd ∼
(ε/ν3)1/4 so that ν ∼ k

−4/3
d ,

G ∼ ν2k
10/3
d = k

2/3
d ∼ Re1/2. (23)

Since

S = 4ν

∫ ∞

0
dk kF(k) (24)

and in the inertial range, F(k) is constant,

S ∼ νk2
d ∼ k

2/3
d ∼ Re1/2. (25)

Thus, in a Kolmogorov steady state, with P2 ≈ 0, both terms on the right-hand side of equation
(21) are of order O(Re1/2), but in the asymptotic limit of k0 → 0, their sum is zero.

The formulation of a dissipation rate transport equation poses a fundamental question about
turbulence dynamics: the classic statement of this question by Tennekes and Lumley [5] will be
reviewed briefly. A basic premise of turbulence theory is that the dynamics of low-order moments
in high Reynolds number turbulence is in fact independent of Reynolds number. If valid, this
premise requires that the right-hand side of equation (21) be independent of Reynolds number.
Therefore, although equations (23) and (25) suggest that both S and G in equation (21) will be
of order O(Re1/2) even in a time-dependent flow, the difference S − G must nevertheless be of
the order O(Re0).

It has been difficult to give a completely convincing theoretical argument to justify this
hypothesis. Indeed, the absence of such arguments led Speziale and Bernard [8] to propose that
this cancellation of divergences does not occur, leading to a model in which ε̇ is proportional
to the Kolmogorov frequency scale

√
ε/ν. The consequent ν−1/2 ∼ O(Re1/2) imbalance on the

right-hand side of equation (21) was applied by Speziale and Bernard to decaying turbulence [8]
and to homogeneous shear flow [12] leading to novel predictions about both flows.

In the present problem of ramp flow, expand S and G in series

S = S0 + S1 + · · · , G = G0 + G1 + · · · , (26)

where

S0 = −2ν

∫ ∞

0
dk k2 ∂F0

dk
, S1 = −2ν

∫ ∞

0
dk k2 ∂F1

dk
(27)

and

G0 = −4ν2
∫ ∞

0
dk k4E0(k), G1 = −4ν2

∫ ∞

0
dk k4E1(k). (28)

In equations (27), F0 and F1 are defined by equations (17) and (19). The analysis in section 4
shows that despite the time dependence, the leading-order terms E0 and θ0 in equation (15) are
simply Kolmogorov. This implies that S0 = G0 even in this time-dependent problem and the
divergences of order O(Re1/2) do exactly cancel.
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The remainder is evaluated using the spectral corrections found in equation (20). First,

G1 ∼ ν2
∫ ∞

0
dk k4E1(k) ∼ ν2k

8/3
d ∼ k0

d (29)

is finite at high wavenumbers. Similarly, considering only a typical term in F1,

ν

∫ ∞

0
dk k

∫ k

0
dκ κ2E1(κ)

∫ ∞

k
dp θ0(p)E0(p) ∼ νk

4/3
d ∼ k0

d. (30)

The same conclusion obtains for the other contributions to S1. It follows that

S − G = S1 − G1 = O(Re0) (31)

in the asymptotic regime.
Although equation (31) confirms the formulation of Tennekes and Lumley [5], it is not a

useful guide to formulating the ε equation: it rules out the explicit appearance of viscosity
without suggesting any particular analytical form. Two-equation modelling simply proposes to
close the difference S − G in terms of the basic single-point moments P , K, and ε themselves.
We repeat that it has never been claimed that this proposal has any fundamental justification;
there is simply no alternative if the model is to be closed in terms of these quantities alone.

In the case of ramp flow, adding to the usual dimensional arguments the requirement that
the two-equation model be consistent with a Kolmogorov steady state, the initial conditions for
ramp flow, the ε equation must have the form

ε̇ = C
ε

K
(P − ε) (32)

so that, in the standard notation for the constants in two-equation models, Cε1 = Cε2. Note
that Yoshizawa [13] found this (supposedly incorrect) result by a general statistical argument,
and that it is also cited by Dejoan and Schiestel [14] as appropriate for models of small-scale
dynamics in multiple-scale modelling.

In the long time fixed point state, the length scale K3/2/ε is expected to be constant; thus,

ε̇

ε
=

3
2

K̇

K
(33)

and therefore Cε1 = Cε2 = 3/2. This value for Cε1 is found by Dejoan and Schiestel [15] and is
consistent with a constant length scale (cf [16]). To summarize, the model ε equation

ε̇ =
3
2

ε

K
(P − ε) (34)

is consistent with both the short and the long time limits of ramp flow and is the unique model
having this property. The two-equation model for ramp flow consists of the energy equation (4)
and the ε equation (34).

6. Evaluation of the two-equation model

The evolution of K and ε predicted by the two-equation model is compared with the predictions
of the CMSB closure in figure 1. The excellent agreement for K and ε at long times, in which both
quantities exhibit power-law growth, corroborates the formulation of equation (34). However,
although K is also well predicted during the transient evolution, the evolution of ε reveals
significant discrepancies: the two-equation model predicts a much earlier onset of growth of ε
than the closure, and when ε does begin to grow, the closure predicts that it grows much more
rapidly.
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Figure 1. Evolution of kinetic energy K (upper panel) and dissipation rate ε
(lower panel): CMSB model at different values of Reynolds number compared
with predictions of the two-equation model.

These discrepancies reflect an unavoidable defect of the two-equation model: in the two-
equation model, ε is produced by P , whereas in the exact result, equation (21), it is produced
by S. There are two consequences: (i) since equation (25) suggests that S responds to relatively
small scales, but the growth of P immediately energizes the largest scales of motion, ε inevitably
grows too soon in the two-equation model. However (ii), once S begins to grow, the dynamics of
S and G is determined by the fast time scales of relatively small scales of motion. The dynamic
relevance of these scales is demonstrated by the rapid rate of growth of ε in the closure. Such
time scales are necessarily absent from the two-equation model.
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Figure 2. The ratio of production to dissipation in the two-equation model and
in the CMSB closure at different Reynolds numbers.

The picture is entirely different at long times, when the growth of ε is determined by
the O(Re0) imbalance between S and G: because this imbalance is determined by Yoshizawa’s
spectral correction, which is dominated by large scales, the growth of ε is governed by the integral
time scale and the two-equation model becomes valid. We also note that in the asymptotic state,
the problem becomes scale-invariant so that only one time scale exists: the proportionality

P2 + S − G ∝ ε

K
(P − ε) (35)

is then almost a geometric necessity; we refer to [6, 9] for a discussion of the fundamental group-
theoretic issues.

The proposed relevance of rapid time scales in the transient evolution of the dissipation
rate is closely related to the suggestion of Speziale and Bernard [8] that vortex stretching might
not be balanced by enstrophy destruction. In the context of the dissipation rate equation,
this unbalanced vortex stretching is modelled by replacing the turbulent time scale K/ε by the
Kolmogorov time scale

√
ν/ε. The consequent explosive growth of ε leads to a balance of

production and dissipation in homogeneous shear flow and to fully self-similar t−1 decay of
homogeneous isotropic turbulence.

To assess the possible relevance of unbalanced vortex stretching in transient ramp flow,
we calculated the ramp flow at different Reynolds numbers. The Reynolds number effects are
noticeable but not very strong. Nevertheless, we believe that the rapid growth of ε shows the
essential relevance of the Speziale and Bernard ideas: the dynamics of the dissipation rate can
be influenced by the rapid time-scale characteristics of small scales of motion; however, this
relevance appears to be limited to the transient regime. At long times, the standard picture of
a balance between vortex stretching and enstrophy destruction is recovered.

Another way to look at the dynamics of ε is through the ratio P/ε. Figure 2 compares this
ratio as computed by the two-equation model and the CMSB closure at three different Reynolds
numbers. The graphs again reveal some Reynolds number dependence for the closure model,
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Figure 3. Ratio of the exact value of ε̇ to the value predicted by the two-equation
model with values of K and ε taken both from the CMSB closure and the two-
equation model. Results corresponding to two different initial conditions are
compared (see text).

which is necessarily absent from the two-equation model but, more significantly, shows that this
ratio peaks too early at too small a value in the two-equation model.

The central difficulty of two-equation modelling can be clarified by direct comparison of
the right-hand sides of equations (21) and (34). This comparison is shown in the upper panel
in figure 3, with K and ε computed both from the two-equation model and from the closure:
note however that in this comparison, the factor 3/2 on the right-hand side of equation (34)
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Figure 4. Ratio of right-hand side of the ε equation computed with values of
K and ε from the two-equation model and from the CMSB closure.

has been suppressed. The ratio, which is nearly constant and very close to 1.5 at long times,
indicates that equation (34) is indeed a very good model for the asymptotic state; however, it is
not satisfactory during the transient.

The effects of Reynolds number in these problems appear to depend on the initial conditions.
The lower panel in figure 3 shows results for a much smaller initial value of the time-scale ratio
K/(ετ): in this graph, K and ε are taken from the CMSB model only. The Reynolds number
dependence is clearly greatly enhanced by this increase in the dimensionless ramp rate.

A comparison which is implicit in figure 3 is the difference between the right-hand side of
equation (34) computed from the two-equation model and from the closure. This comparison
is shown in figure 4 for initial conditions corresponding to the upper panel in figure 3. These
quantities become equal at long times, but are significantly different during the transient
evolution.

7. Comparison with DNS

We briefly discuss the reliability of simplified closures for this problem. Closures in general have
been criticized [17] as intrinsically ‘too non-linear’. This criticism could certainly bear on the
present results, but there are also contrary arguments [18].

In comparison with a complete Lagrangian closure [19, 20], the CMSB model is partially
Markovianized and only considers restricted triad interactions. As a two-state variable (E and θ)
Markovian model, the CMSB model is similar to the three-state variable test-field model [21],
but is unlike EDQNM which is Markovian in E alone. Even partial Markovianization can
have an important effect on the short time dynamics [18]; however, it is likely that any degree
of Markovianization will tend to accelerate vortex stretching, not retard it. These effects of
time dependence will be assessed by computations now in progress with multiple-state variable
Markovian closure models.
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Figure 5. The ratio of production to dissipation in DNS (◦) and in the two-
equation model (•) at different ramp rates.

The limitation to a restricted class of triad interactions is potentially very significant:
because it treats energy transfer through a one-dimensional model, the CMSB model is
perhaps more closely related to shell models of turbulence than to the Navier–Stokes equations
themselves. Indeed, one might speculate that some form of the CMSB model is in fact the
one-loop closure for a suitable shell model. In shell models, the effective restriction of the non-
linear interactions typically leads to ‘noisier’ simulations than comparable DNS. This limitation
suggests that the analogous increased coherence of the CMSB model will overstate effects like
unbalanced vortex stretching. To address these questions, we will show some preliminary
evidence from DNS supporting our main conclusions.

The Navier–Stokes equations were solved in a box containing 1283 grid points using a
standard pseudo-spectral algorithm [22], fully de-aliased by a combination of truncation and
phase shifting. The turbulence is sustained by a deterministic forcing term [23, 24] fi(k) =
Aû(k)/[2E(k)] for 0 < k < 1.5 and fi(k) = 0, otherwise. This yields Π(1) = A and Π(k) = 0 for
k > 1. For all cases ν = 0.004. The equations are integrated with A = 0.06 until the flow reaches
stationarity, at which time Reλ = 90; then the linear increase in the forcing magnitude given
by equation (3) is imposed. Two different ramp rates were chosen: τ = 0.5 and 0.0625. The
computations are stopped before ηkmax becomes <1.0, where kmax is the maximum resolved
wavenumber and η is the Kolmogorov microscale. All the results presented represent averages
over 10 realizations.

Figure 5 compares the ratio (P − ε)/ε obtained from DNS and the two-equation model. In
agreement with the closure results shown in figure 2, figure 5 confirms that the two-equation
model predicts that this ratio peaks too early and at too small a value. Later, the predictions
of the two-equation model and the DNS become closer. However, the simulations were stopped
before reaching the asymptotic state and the performance of the model could not be verified at
long times. It should be noted that the comparisons between closure and DNS are qualitative
at this point because of differences in the simulation parameters.
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Figure 6 presents results analogous to those of figure 3: it shows the ratio of the value of ε̇
computed from DNS to the right-hand side of the ε equation (34), with both K and ε evaluated
from the DNS. At the times that the calculations were terminated, this ratio is continuing to
increase rapidly, indicating that ε is growing much more rapidly than the right-hand side of
equation (34) predicts, even when it is evaluated using the correct values of K and ε.

Figure 7 compares the right-hand side of equation (34) evaluated using K and ε from the
DNS and from the two-equation model; this figure can be compared with figure 4 in which the
same comparison is made between the closure and the two-equation model. Using these data to
evaluate the ratio of ε̇ from the DNS to the prediction of the two-equation model shows that at
time 2, the ratio is about 0.4 for the higher ramp rate (τ = 0.0625) and about 0.3 for the lower
(τ = 0.5); when the calculations terminate, this ratio is approximately 3.0 for both ramp rates.
These values, therefore, confirm the trend noted in section 6: initially, ε grows considerably more
slowly than the two-equation model predicts, but once growth sets in, it is far more rapid than
the growth predicted by the two-equation model.

Clearly, the ratio plotted in figure 6 has not yet peaked in either case, much less has it
achieved a constant asymptotic value. This observation underscores the great difficulty of DNS
in this problem: once the effect of the ramp is felt at all scales, the rapid growth of small-
scale energy begins to destabilize the numerics, requiring ever smaller time steps and, as the
Kolmogorov scale begins to decrease, ever more grid points. Although it is very difficult to track
the rapid and explosive changes in transient ramp flow with DNS, further DNS studies of ramp
flow are planned to validate the more detailed predictions of the closure model.

8. Conclusions

The long time analysis of ramp flow shows the k−7/3 corrections to the energy spectrum due
to non-equilibrium effects predicted by Yoshizawa [4]. The analysis also corroborates the
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Figure 7. Ratio of the right-hand side of the ε equation computed with values of
K and ε computed from the two-equation model and from DNS.

assumption of an unsteady balance of O(Re1/2) terms made in formulating the ε equation. A
two-equation model is consistent with the time dependence of the kinetic energy and dissipation
rate at both short and long times. However, the transient regime reveals the relevance of fast time
scales of small scales of motion which can be compared with the unbalanced vortex stretching
discussed by Speziale and Bernard [8, 12].

It is widely accepted that the ε equation lacks fundamental justification; it is therefore not
surprising that it can fail in very special circumstances like transient ramp flow. At the same
time, following previous work at Los Alamos National Laboratory [6, 7], we find theoretical
support for the ε equation in an asymptotic regime in which self-similarity imposes strong
geometric constraints on the time and length scales. Thus, this paper attempts to advance the
understanding of both the conditions under which the ε equation is valid and of its theoretical
limitations.
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