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We present a study of buoyancy-driven variable-density homogeneous turbulence,
using a two-point spectral closure model. We compute the time-evolution of the spectral
distribution in wave number k of the correlation of density and specific volume b(k), the
velocity associated with the turbulent mass flux a(k), and the turbulent kinetic energy
E(k), using a set of coupled equations. Under the modeling assumptions, each dynamical
variable has two coefficients governing spectral transfer among modes. In addition, the
velocity a(k) has two coefficients governing the drag between the two fluids. Using a
prescribed initial condition for b(k) and starting from a quiescent flow, we first evaluate
the relative importance of the different coefficients used to model this system and their
impact on the statistical quantities. We next assess the accuracy of the model, relative to
direct numerical simulation of the complete hydrodynamical equations, using b, a, and E

as metrics. We show that the model is able to capture the spectral distribution and global
means of all three statistical quantities at both low and high Atwood number for a set of
optimized coefficients. The optimization procedure also permits us to discern a minimal
set of four coefficients which are sufficient to yield reasonable results while pointing to the
mechanisms that dominate the mixing process in this problem.
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I. INTRODUCTION

The mixing of fluids with different densities is an important process in many practical ap-
plications such as oceanic or atmospheric flows, combustion, and inertial confinement fusion.
Variable-density flows are those in which fluctuations of the density from its mean value are large.
To predict the effects of such large density fluctuations on the mean flow in complex systems,
we require efficient computational models that are accurate, and also economical to run [1–3].
In the case of constant density turbulence there has been progress in model development [4,5].

*nairitap2009@gmail.com
†skurien@lanl.gov
‡ttc@unm.edu
§denis.aslangil@lanl.gov
‖livescu@lanl.gov

2469-990X/2018/3(12)/124608(21) 124608-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.3.124608&domain=pdf&date_stamp=2018-12-26
https://doi.org/10.1103/PhysRevFluids.3.124608


PAL, KURIEN, CLARK, ASLANGIL, AND LIVESCU

There are well-known efforts in the literature on two-point (spectral) models for constant density,
homogeneous isotropic turbulence in which energy transfer is described in wave number space
using the eddy damped quasinormal closure introduced in Ref. [6], with further developments for
homogeneous flows in Refs. [7,8]. In these efforts, the EDQNM framework is used to close the
hierarchy arising due to the triadic interactions in the nonlinear term. More recently, there has
been development in the studies of strongly anisotropic, homogeneous flow, with unstably stratified
homogeneous turbulence (USHT) [9], and for shear-driven and buoyancy-driven turbulent flows
[10], both of which have been computed using anisotropic EDQNM first developed in Ref. [8].
Spectral models of buoyancy-driven flows have been studied in Refs. [11,12] for the USHT system.
The modeling of anisotropic contributions in homogeneous turbulence has been largely addressed
in Refs. [10,13–15]. A novel approach to model the anisotropic contributions using the spherical
harmonic decomposition has been undertaken in Refs. [16,17]. Two-point closures using EDQNM
has been applied to inhomogeneous turbulence in Refs. [18,19]. Nonstationary inhomogeneous
turbulence using the shear-free mixing layer has been studied using the two-point spectral closure
model developed for the purpose [20,21].

It may be observed that in the above works, the approach has been to capture increasing
degrees of complexity in the flow, ranging from homogeneous and isotropic, to inhomogeneous
and anisotropic. Furthermore, the common factor in much of previous work has been they have
largely considered single-fluid, incompressible flows. We, on the other hand, are interested in
mixing between two fluids in the variable-density regime. Variable-density flows pose a difficulty
beyond those encountered in incompressible single-fluid systems; the divergence-free condition of
the velocity is lost and a pressure-strain correlation becomes nontrivial. Additional variables are
introduced due to the coupling between the fluids and the driving mechanism. Variable-density flows
have been studied in experiments [22–24], or using direct numerical simulations [25,26]. However,
analytical models for such flows are mainly limited to single-point closure models [27–30], in
which turbulence variables are studied as a function of a single space point. The latter suffer the
drawback of being incapable of capturing transients and scale generation [31], a fundamental feature
of turbulence.

In this paper, we work with a two-point spectral closure model for constant-density turbulent
flow originally developed in Ref. [20], and modified in Refs. [32,33] for variable-density flows. The
advantage of a model based on two-point correlations is its ability to capture the evolution of scales
with time. As a result, one does not need to specify an extra equation for the dissipation as is needed
in one-point models [2,34]. Our work bears some resemblance to Ref. [35], although that work is
focused only on the kinetic energy evolution. In our work, the initial condition is specified by the
two-point correlation of density fluctuation with specific-volume fluctuation defined as a distribution
in wave number space. This quantity b(k) in turn drives a velocity associated with the turbulent
mass flux a(k), defined as the two-point correlation of the turbulent momentum with the specific
volume, through a modulation of the pressure gradient. Consequently this turbulent flux velocity
drives the generation of Reynolds stress and conversion of potential energy into turbulent kinetic
energy E(k). This coupled system is spatially homogeneous, which allows us to isolate the variable-
density component of the model without the complications that may have been introduced by, say,
inhomogeneity as in the classical inhomogeneous Rayleigh-Taylor (RT) problem. It must be noted,
that our test problem is indeed the RT instability problem, posed in a manner that homogenizes it in
space. A recent work which explores USHT (comparable to homogeneous RT instability) has been
undertaken in Ref. [9] and is a detailed study of modeling the anisotropy in the flow using truncated
expansions of correlation function in the basis of spherical harmonics. The critical departure from
the approach in Ref. [9] occurs at the outset in that our flow of interest is non-Boussinesq, and we
primarily focus on assessing the variable-density effects. We do not account for anisotropy explicitly
apart from showing a posteriori that the model recovers the test data behavior satisfactorily even
with the isotropic assumption. Some of the authors of the present work have considered anisotropic
effects extensively both in rapid distortion limits and in terms of general solutions of the equations
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of motion [16,17]. Nevertheless for the present study with its focus on mixing, the investigation of
contributions due to anisotropy is mostly left for future work.

The closure assumptions for the spectral model truncate the hierarchy of equations at the level
of the triple-correlations. For the variable-density case, this introduces two coefficients for each
dynamical variable, expressing nonlinear spectral transfer. Additionally, a spectral drag governing
the breakup of fluid elements in scale is introduced following Ref. [36], giving rise to two more
coefficients in the evolution of a.

In the first part of our study, for a prescribed artificial initial b(k) following Ref. [37] we
show how these coefficients affect the time evolution of the integrated model variables. The
spectral transfer coefficients are varied pairwise for each evolution equation while keeping all other
constants fixed to their nominal values specified by benchmark studies in Refs. [29,32,37]. We
then determine suitable constants by comparison against direct numerical simulations (DNSs) of
the system described in Refs. [26,38], following an optimization procedure. With these optimized
constants, we find that the time evolution of the integrated mixing parameter b and velocity a

are well represented by the model. The integrated turbulent kinetic energy E is qualitatively well
captured including the timing of the peak but shows some deficits in the magnitude of the peak.

II. MODEL EQUATIONS AND IMPLEMENTATION

We will follow the development proposed for single-fluid incompressible flow by Besnard et al.
[20] and subsequently adapted for variable-density flow by Refs. [32,33]. We first decompose the
flow field variables, i.e., density ρ, velocity u, and pressure p into their mean and fluctuating parts
as follows:

ρ = ρ + ρ ′, (1)

u = u + u′, (2)

p = p + p′, (3)

where the overbar denotes the mean, and the primes the fluctuations about the mean. In the case of
variable-density flows, it is useful to work with the mass-weighted averages introduced by Favre,
known as Favre averages. So the Favre-averaged velocity ũ is

ũ = ρu
ρ

. (4)

Let u′′ denote the fluctuation about this Favre averaged velocity ũ. Then we have

u = ũ + u′′. (5)

If we apply the standard Reynolds decomposition to ρu we get

ρu = ρ u + ρ ′u′ (6)

since u′ = 0 and ρ ′ = 0. Using Eq. (4) we then obtain

ρ ũ = ρ u + ρ ′u′, ũ = u + ρ ′u′

ρ
. (7)

We define a velocity a associated with the net turbulent mass flux as

a = ρ ′u′

ρ
. (8)

From Eq. (7) then, we can define a as the flux of mass relative to ũ.
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For two arbitrary points x1 and x2 in space, the mass-weighted Reynolds stress tensor is defined
as

Rij (x1, x2) = 1
2 [ρ(x1) + ρ(x2)]u′′

i (x1)u′′
j (x2), (9)

the velocity associated with the turbulent mass flux is defined as

ai (x1, x2) = −u′′
i (x1)ρ(x1)υ(x2), (10)

and the covariance of the density and specific volume is defined as

b(x1, x2) = −ρ ′(x1)υ ′(x2). (11)

Subscripts i and j indicate Cartesian components, the specific volume is υ(x) = 1
ρ(x) , and its

fluctuations υ ′(x) are defined with respect to the mean specific volume. The Favre averaging is
a choice made both due to the history of this particular model and because it renders the energy
equation in conservative form. In Ref. [9] the Boussinesq case does not employ any special
density weighted averaging, but analogies may be drawn between their variable and these up to
the normalization by density. Our b variable corresponds in that case to the two-point correlation of
density fluctuation and is therefore analogous to potential energy.

The model is further developed in spectral space for which we require Fourier transformed
variables. It is useful to rewrite the arguments in terms of position x = 1

2 (x1 + x2) and scale
r = x1 − x2 and Fourier transform so that k is the wave vector associated with scale r , so that

Rij (x, k) =
∫

Rij (x, r )e−ik·r d r, (12)

ai (x, k) =
∫

ai (x, r )e−ik·r d r, (13)

b(x, k) =
∫

b(x, r )e−ik·r d r. (14)

To simplify further, we average over the sphere in k-space to obtain

Rij (x, k) =
∫

Rij (x, k)
k2 d�k

4π
, (15)

ai (x, k) =
∫

ai (x, k)
k2 d�k

4π
, (16)

b(x, k) =
∫

b(x, k)
k2 d�k

4π
, (17)

where d�k = sin θ dθ dφ for 0 � θ � π , 0 � φ � 2π . Henceforth we will use Rij , ai , and b to
denote the spectral quantities at a certain time t and will drop their respective arguments. We will
explicitly state their arguments when the variables are functions of time t only. Following Steinkamp
et al. [32] we write the mass and momentum conservation equations for variable-density flows
driven by gravity in the y direction as follows:

∂ρ

∂t
+ ∂ρũy

∂y
= 0, (18)

∂ρũy

∂t
+ ∂ρũyũy

∂y
= −∂p

∂y
+ ρg − ∂Ryy

∂y
. (19)

If we write the equations for the fluctuating density and velocity fields, and take the proper
convolutions [20,37], we obtain the evolution equations for the Reynolds stress Rij , velocity ai , and
the covariance of the density and specific volume b. These equations contain triple correlations of
the velocity and density fluctuations which represent the turbulence cascade in k-space. Based on
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the diffusion approximation model proposed by Leith [39], we model these triple correlation terms
as nonlinear advection and diffusion in k-space [20,37,39]. We modify Steinkamp’s set of equations
for statistically homogeneous variable-density flow, keeping the gravity direction the same, and
arrive at the following set of equations [32,33]:

∂Rnn

∂t
= 2ay

∂p

∂y
+ ∂

∂k

[
k�−1

(
−Cr1Rnn + Cr2k

∂Rnn

∂k

)]
− 2νk2Rnn, (20)

∂ay

∂t
= b

ρ

∂p

∂y
− (Crp1k

2√an̂an̂ + Crp2�
−1)ay

+ ∂

∂k

[
k�−1

(
−Ca1ay + Ca2k

∂ay

∂k

)]
− (ν + κ )k2ay, (21)

∂b

∂t
= ∂

∂k

[
k�−1

(
−Cb1b + Cb2k

∂b

∂k

)]
− 2κk2b, (22)

where the turbulence frequency �−1 =
√∫ k1

0
k2Rnn

ρ
dk. In Eqs. (20)–(22) the dynamical variables

Rnn, ay , and b, respectively, are functions of k. The equations in Ref. [32] have been modified to
introduce viscosity and diffusion terms necessary for comparison with DNS studies. In the original
papers by Steinkamp there was an additional equation for the vertical component of Reynolds stress,
Ryy , since that was an inhomogeneous system in which Ryy coupled directly back into both the
velocity associated with the mass flux and the energy. In our homogeneous system this mechanism
is absent, and it is therefore safe to omit that equation. Equations (18) and (19) are the mass and
momentum conservation laws, respectively. The first term on the right-hand side (RHS) of Eq. (22)
is based on a model proposed by Leith [39] for a nonlocal integral cascade with a wavelike part
(the Cb1 term) and a diffusive part (the Cb2 term). Note that, if we retain the Cb1 term only in the
RHS, it will produce a wave equation (a hyperbolic equation) on taking a second derivative of b

with respect to time. Hence the Cb1 term, which is also the advection of b in k-space is “wavelike.”
For Cb1 > 0, the wavelike cascade of b is always forward (i.e., towards higher wave numbers),
and Cb2 > 0 results in a forward as well as inverse cascade [32]. The cascade terms for Rnn and
ay in Eqs. (20) and (21), respectively, are written in an analogous manner [32]. The drag between
the fluids is described in the mass-flux equation (21) by the second term on the RHS. Here an̂ is
the component of a normal to the fluid interface. The Crp1 term represents a drag arising between
interpenetrating fluids at different scales [37,40,41]. The Crp2 term represents conventional drag
governed by the turbulence timescale [37]. Previous spectral models ([32,33]) neglected explicitly
the viscous and diffusive effects, while our aim here is to build a model for turbulence with viscous
dissipation. Therefore we had dissipation terms proportional to the diffusion coefficient κ and the
kinematic viscosity coefficient ν. We assume a Schmidt number Sc = ν/κ = 1. We assume that the
diffusion of b(k) occurs in the manner of passive scalar diffusion [42].

Since we are implementing a system which is homogeneous, only k-dependent terms appear in
the equations. This allows us to use only one cell for the physical direction in the computational
domain. The pressure gradient term ∂p

∂y
term in the gravity direction is independent of y. We

calculate ∂p

∂y
directly from Eq. (19) as

∂p

∂y
= g + ∫ ∞

0 (Crp1k
2√an̂an̂ + Crp2�

−1 + 2νk2)ay (k) dk

1+∫ ∞
0 b(k) dk

ρ

. (23)

The spectral model calculations presented in this paper are performed with a code using a
second-order MacCormack scheme [43] for time integration. This code is a modified version of a
code used previously for studying variable-density mixing in the RT configuration [32,33]. For the
purposes of code verification we also compare our results against an independent code which uses a
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second-order Crank-Nicolson [44] scheme for time advancement. In this way we can assess
confidence in the accuracy of our codes. The latter code is used only for verification. The results
presented are based on the code using the second-order MacCormack scheme for time advancement.
Both computer codes use an exponential grid for the wave number

k = ks exp

{
z

zs

}
,

where ks and zs are scale factors and assumed to be equal to unity [20]. The variables computed
are, in fact, kRnn, kRij , kai , and kb. This choice of variables results in the cascade terms retaining a
conservation form when expressed in terms of z rather than k. Likewise, the values of the integrals
of the spectral quantities are easily determined, e.g.,

Rnn(t ) =
∫ +∞

0
Rnn(k, t )dk =

∫ +∞

−∞
Rnn(z, t )

ks

zs

exp

{
z

zs

}
dz. (24)

Setting ks = 1 and zs gives

Rnn(t ) =
∫ +∞

−∞
exp (z)Rnn(z, t )dz,

where exp (z)Rnn(z, t ) = kRnn(k, t ) The explicit MacCormack methodology is nominally second-
order accurate in time and space and utilizes two steps. Each of the two steps uses single-sided
differences for the first-order derivatives, and the sides at which the differences are evaluated are
different for the two steps, i.e., the left side for the first step and right side for the second. The
second code utilizes a Crank-Nicolson method for time advancement and central differences for the
z-space derivatives. The implicit evaluations of the cascades are decoupled for the various variables.
However, the implicit step of the Crank-Nicolson method is iterated to achieve a coupling between
the variables and to bring the nonlinear terms, i.e., the turbulent frequency term �−1, up to date.
This typically requires three or four iterations to converge. The implicit cascade is solved using a
tridiagonal solver. The code is thus second-order accurate in time and space and unconditionally
stable at all time steps. It should be noted that large time steps may necessitate more iterations to
converge.

The boundary conditions at k = 1 and k = kmax are set to Neumann (zero flux). We initialize our
model calculations with spectra for b, ay , and Rnn at initial time t = t0. We provide a value for the
average density which corresponds to ρmax+ρmin

2 (here ρmax is the maximum density and ρmin is the
minimum density in the variable-density fluid mixture). The spectral code requires the information
of the mean density, and the details of the density contrast between the fluids are present only in the
initial spectral distribution of b, ay , and E.

In presenting results we will use integrated quantities as well as spectra for analysis. The
integrated quantities are b(t ) = ∫

b(k, t ) dk, a(t ) = ∫
ay (k, t ) dk, and Rnn(t ) = ∫

Rnn(k, t ) dk.
Rnn(t ) is related to the turbulent kinetic energy E(t ) in the following way:

E(t ) = 1

2ρ
Rnn(t ). (25)

The set of equations (20)–(22) can describe a wide variety of homogeneous variable-density
flows. We will focus on two canonical types of flow. The first is described by a nonzero initial
distribution of b(k) [37] with other variables set to zero and will be used to benchmark the
calculations against previous efforts. The second type of flow is that computed in Refs. [26,38]
and is initialized by b(k) describing a distribution of blobs of one fluid in another with both ay and
Rij set to nominally small values. The latter choice is made so that the flow reaches a turbulent state
in a reasonable period of (wall clock) time. These are discussed in the next section.
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TABLE I. Nominal values of all coefficients and other model parameters in the code-testing phase as
prescribed in Ref. [37].

Cb1 Cb2 Ca1 Ca2 Cr1 Cr2 Crp1 Crp2 ν κ kmax

0.12 0.06 0.12 0.06 0.12 0.06 1.0 1.0 10−4 10−4 512

III. RESULTS

In this section, we present our main results, which can be broadly divided into three categories.
First, we present studies to check the numerics of our variable-density model implementation. We
compare the results from the model calculations performed using two codes which use different
schemes for time advancement. We also demonstrate convergence with respect to grid refinement.
Second, we show how the system parameters affect the time evolution of the variables under study,
a(t ), b(t ), E(t ), for a test initial condition described by the b(k) spectrum used in Ref. [37], and
discuss the varying trends. Third, from this study of parameters, we choose an optimum set which
minimizes error with respect to the outcomes of a highly resolved low Atwood number (the Atwood
number is defined as ρmax−ρmin

ρmax+ρmin
) DNS study of variable-density buoyancy-driven turbulence [45]. We

use the same set of coefficients for a high Atwood number system and show that the time evolution
of b(t ) and a(t ) are well captured, while there is less fidelity to E(t ). Overall, however, the same
coefficients appear to reasonably capture the multiple stages of the mixing for a broad spread in
Atwood number.

A. Code convergence and time-stepping accuracy

To begin, we test whether the spectral model code converges under different system resolutions.
We choose an analytical form b(k) = B0e−k2

, with ay (k) = E(k) = 0 as our initial condition. Here

B0 is such that
∫ kmax

0 b(k) dk = 1 at t = 0, where kmax is the maximum number of k modes, and t

is the time. The coefficient values used in this part of the study are listed in Table I. In Fig. 1 we
show that the results converge as the grid in k-space is refined for a fixed vertical system size of 2π .
As the resolution is increased from 256 to 1024 k-modes, both the global energy and the spectral
distributions converge.

Next we compare our results for kmax = 256 against those from a code using a Crank-Nicolson
scheme for time integration for the same resolution. The results are shown in Figs. 2(a)–2(c) and
demonstrate that errors due to the time-advancement scheme are not significant.

100 101
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0.0

0.2

0.4

0.6

0.8

1.0

E
(t

)

kmax = 256

kmax = 512

kmax = 1024

(a)

101 102 103

k

10−11

10−9

10−7

10−5

10−3

10−1

E
(k

,t
)

kmax = 256

kmax = 512

kmax = 1024

(b)

FIG. 1. Convergence of outcomes at increasing resolution for initial Gaussian distribution for b(k), and
ay (k), E(k) set to zero at fixed viscosity ν = 10−4. (a) Time evolution plots of the turbulent kinetic energy
E(t ) at different system resolutions and (b) kinetic energy spectra at different resolutions.
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E
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FIG. 2. Comparison of results from codes using Crank-Nicolson (blue line with circles) and MacCormack
(orange line) schemes for time integration. Plots showing time evolution of (a) the mean density-specific
volume covariance b(t ), (b) a(t ), and (c) the turbulent kinetic energy E(t ).

B. Coefficient variation study

There are eight coefficients in this model. The theoretical constraint for energy equipartition in
the inviscid case Cr1 = 2Cr2 [27,46] reduces the space to seven coefficients. Most of these arise
from the closure approximation for the nonlinear (triple-correlation and higher-order) processes.
The drag terms in the evolution of ay were introduced in an ad hoc fashion [37] to provide an
additional mechanism for the breakup of fluid structures in scale. The structure of the spectral
transfer terms for b and ay was originally written by analogy with the arguments provided in
Ref. [20] for the energy spectral transfer. Given the rather nonrigorous quality of these arguments,
but nevertheless taking the model at face value, it is worthwhile to assess what impact the systematic
variation of these coefficients has on flow outcomes.

For the purposes of this study we systematically vary each coefficient while keeping the others
fixed at their provisional values given in Ref. [37]. We then plot the integrated quantities b(t ), a(t ),
and E(t ) as functions of time and describe how these vary relative to expected behaviors. In this
test study, the same nonzero initial condition b(k) as in the previous section provides the drive term
for the velocity associated with the mass flux, which subsequently drives the growth of Reynolds
stress Rnn. From Eq. (22) we note that the b equation has no production term in it, since there is
no production of mass in the system. The sole contribution to b(t ) evolution is a redistribution in
k-space via the terms weighted by coefficients Cb1 and Cb2. Formally, based on the terms in the
model, when Cb1 is increased it should deplete b(k) from the small k modes, i.e., the large length
scales, and transfer them to the large k modes where they are dissipated by viscosity. This should
increase the decay rate of b(t ) with time [Fig. 3(a)]. As b(t ) decays faster, peak of a(t ) is reduced,
since there is less production of ay (through the b

ρ

∂p

∂y
term). We see this is indeed the case in Fig. 3(b).

The reduction in a(t ) reduces E(t ) because there is less production in Rnn (due to the ay
∂p

∂y
term).

The coefficient Cb2 multiplies a wavelike component and a diffusive component. Due to the
wavelike part, an increase in Cb2 would transfer b(k) from the small k (large-scale) modes to
the large k (small-scale) modes, and a diffusive transfer of b(k) from the large k modes as well.
Consistent with this interpretation, rate of decay of b(t ) becomes stronger as Cb2 is increased, as
shown in Fig. 4(d). Since b is coupled to ay , there is a corresponding decrease in the peak of a(t )
as we increase Cb2 [Fig. 4(e)] and a consequent reduction in the peak of Rnn(t ), and thus E(t )
[Fig. 4(f)].

In Eq. (21) for ay , the spectral transfer part once again has two coefficients Ca1 and Ca2. As Ca1

is increased, more ay should be transferred from small k to large k modes, where it is dissipated
by viscosity. In Fig. 4(b) we see that increase in Ca1 corresponds, as expected, to increasingly rapid
decay of a(t ) in time as the spectral distribution terms become more important. Since ay is coupled
to Rnn through the pressure gradient term, E(t ) shows a dramatic decrease [Fig. 4(c)]. However, Rnn

occurs in the inverse timescale �−1. So, quite interestingly, reduction of Rnn reduces �−1 and thus
slows the decay of b(t ) as we see from Fig. 4(a). Ca2 affects the decay of a(t ) significantly, because
increasing Ca2 causes rapid transfer of ay from intermediate k modes to large k modes, where they

124608-8



TWO-POINT SPECTRAL MODEL FOR VARIABLE-DENSITY …

0 20
t

0.0

0.5

1.0

b(
t)

Cb1 = 0.0012

Cb1 = 0.012

Cb1 = 0.12

Cb1 = 1.2

Cb1 = 12

(a)

0 20
t

0.0

0.2

0.4

0.6

a
(t

)

(b)

0 20
t

0.0

0.5

1.0

1.5

E
(t

)

(c)

0 20
t

0.0

0.5

1.0

b(
t)

Cb2 = 0.0006

Cb2 = 0.006

Cb2 = 0.06

Cb2 = 6.0

Cb2 = 60

(d)

0 20
t

0.0

0.2

0.4

0.6

a
(t

)

(e)

0 20
t

0

1

2

E
(t

)

(f)

FIG. 3. Time evolution plots of (a) b(t ), (b) a(t ), and (c) E(t ) for different values of Cb1. Time evolution
plots of (d) b(t ), (e) a(t ), and (f) E(t ) for different values of Cb2. The values of the parameters which do not
vary in each case are shown in Table I. The number of k modes used is 512.

are dissipated due to the diffusive part in the spectral transfer term. So there is a substantial decrease
in the peak of a(t ) [Fig. 4(e)] and the peak of E(t ) [Fig. 4(f)] as well. Reduction in Rnn results in a
slower decay of b(t ) [Fig. 4(d)].

Next we vary the Cr1 and Cr2 coefficients pairwise, so as to maintain the condition Cr1 = 2Cr2

[46]. When we increase Cr1 and Cr2, the peak of the energy goes down, as well as the decay rates
[Fig. 5(c)]. This results in a decrease if the inverse timescale �−1. Thus a(t ) and b(t ) decay slowly
[Figs. 5(a) and 5(b)]. It is interesting to note that the shape of the energy as a function of time is
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FIG. 4. Time evolution plots of (a) b(t ), (b) a(t ), and (c) E(t ) for different values of Ca1. Time evolution
plots of (d) b(t ), (e) a(t ), and (f) E(t ) for different values of Ca2. The values of the parameters which do not
vary in each case are shown in Table I.
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FIG. 5. Time evolution plots of (a) b(t ), (b) a(t ), and (c) E(t ) for different values of Cr1 = 2Cr2. The
values of the other parameters are shown in Table I.

very different for small values of the coefficients compared to the larger values. This variation study
is the only one in our series that gives rise to this type of difference. However, it is consistent with
the observation that as Cr1 and Cr2 go to zero the spectral redistribution of energy ceases and only
the drive and dissipation terms remain. The inflected shape of the time series of energy as it decays
[Fig. 5(c)] is thus captured only with proper information about spectral distribution.

We also look at the effects of varying the drag coefficients Crp1 and Crp2 on b(t ), a(t ), E(t ). As
Crp1 is increased, drag on ay increases, and thus the peak of a(t ) is suppressed [Fig. 6(b)]. This
reduces the production of E, and thus the peak of E(t ) is also suppressed [Fig. 6(c)]. Reduction in
E reduces the turbulence frequency �−1. This slows the decay of b(t ) [Fig. 5(a)]. Crp2 increases
the decay of a(t ) substantially [Fig. 5(e)], which in turn increases the decay of E(t ) [Fig. 5(f)]. This
reduces the inverse timescale �−1, which results in a slower decay rate for b(t ) [Fig. 5(d)].

These results are summarized in Table II for convenience. With some knowledge and intuition of
the impact the model coefficients we next proceed to do a more in-depth study in comparison with
DNS data of variable-density buoyancy-driven turbulence.

C. Comparison and optimization with respect to DNS data

In this section we will attempt to optimize the coefficients for a particular problem that has
been exactly computed using the equations of motion in a highly resolved DNS. The goal is
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FIG. 6. Time evolution plots of (a) b(t ), (b) a(t ), and (c) E(t ) for different values of Crp1. Time evolution
plots of (d) b(t ), (e) a(t ), and (f) E(t ) for different values of Crp2. The values of the parameters which do not
vary in each case are shown in Table I.
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TABLE II. The parameters Cb1, Cb2, Cr1, Cr2, Ca1, Ca2, Crp1, and Crp2 for different calculations. The initial
condition was a Gaussian in k-space for b(k) field, and ay (k), E(k) were set to zero. The system had 512-k
modes. The viscosity is kept fixed at 10−4. The diffusivity of the density field is also 10−4.

Cb1 Cb2 Cr1 Cr2 Ca1 Ca2 Crp1 Crp2 Effect

Effect on
b(t )

0.0012–12 0.06 0.12 0.06 0.12 0.06 1.0 1.0 As Cb1 increases,
b(t ) decays faster

Effect on
a(t )

0.0012–12.0 0.06 0.12 0.06 0.12 0.06 1.0 1.0 As Cb1 increases,
peak of a(t )

decreases

Effect on
Rnn(t )

0.0012–12.0 0.06 0.12 0.06 0.12 0.06 1.0 1.0 As Cb1 increases
peak of E(t )

decreases

Effect on
b(t )

0.12 0.006–6.0 0.12 0.06 0.12 0.06 1.0 1.0 Decay rate increases
as Cb2 increases

Effect on
a(t )

0.12 0.006–6.0 0.12 0.06 0.12 0.06 1.0 1.0 Peak decreases as
Cb2 increases

Effect on
Rnn(t )

0.12 0.006–6.0 0.12 0.06 0.12 0.06 1.0 1.0 Peak decreases as
Cb2 increases

Effect on
Rnn(t )

0.12 0.06 0.0012–12.0 0.0006–6 0.12 0.06 1.0 1.0 As Cr1, Cr2

increases, peak
decreases

Effect on
a(t )

0.12 0.06 0.0012–12.0 0.0006–6 0.12 0.06 1.0 1.0 As Cr1, Cr2

increases, decay of
a(t ) decreases

Effect on
b(t )

0.12 0.06 0.0012–12.0 0.0006–6 0.12 0.06 1.0 1.0 As Cr1, Cr2

increases, decay of
b(t ) decreases

Effect on
a(t )

0.12 0.06 0.12 0.06 0.0012–12 0.06 1.0 1.0 As Ca1 increases,
decay of a(t ) is

better

Effect on
Rnn(t )

0.12 0.06 0.12 0.06 0.0012–12.0 0.06 1.0 0.25 As Ca1 increases,
peak decreases

Effect on
b(t )

0.12 0.06 0.12 0.06 0.0012–12.0 0.06 1.0 1.0 As Ca1 increases,
decay is slower

Effect on
a(t )

0.12 0.06 0.12 0.06 0.12 0.006–6.0 1.0 1.0 Peak decreases as
Ca2 increases

Effect on
Rnn(t )

0.12 0.06 0.12 0.06 0.12 0.006–6.0 1.0 1.0 Peak decreases as
Ca2 increases

Effect on
b(t )

0.12 0.06 0.12 0.06 0.12 0.006–6.0 1.0 1.0 Decay rate decreases
as Ca2 increases

Effect on
a(t )

0.12 0.06 0.12 0.06 0.12 0.06 0.0001–10.0 1.0 Peak decreases as
Crp1 increases

Effect on
Rnn(t )

0.12 0.06 0.12 0.06 0.12 0.06 0.0001–10.0 1.0 Peak decreases as
Crp1 increases

Effect on
b(t )

0.12 0.06 0.12 0.06 0.12 0.06 0.0001–10.0 1.0 Decay rate decreases
as Crp1 increases

Effect on
a(t )

0.12 0.06 0.12 0.06 0.12 0.06 1.0 0.0001–10 Peak decreases as
Crp2 increases

Effect on
Rnn(t )

0.12 0.06 0.12 0.06 0.12 0.06 1.0 0.0001–10 Peak decreases as
Crp2 increases

Effect on
b(t )

0.12 0.06 0.12 0.06 0.12 0.06 1.0 0.0001–10 Decay rate decreases
as Crp2 increases

to demonstrate the operation of the model for a realistic problem and assess whether and how
accurately the modeling assumptions capture both integrated and spectral quantities.

The DNS setup follows the triply periodic buoyancy-driven turbulence studied in Refs. [26,38].
This flow represents a homogeneous version of the classical RT instability and, during the growth
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FIG. 7. 3D visualization of the density field for the At = 0.05 DNS run (10243 mesh) at (a) initial time
and (b) turbulent kinetic energy peak time as described in Ref. [45].

stage, resembles the interior of the RT mixing layer. The flow is described by the variable-density
Navier-Stokes equations, which are obtained as the incompressible (infinite speed of sound) limit
of the fully compressible Navier- Stokes equations with two miscible species with different molar
masses [47,48]. In this limit, the density variations arise from compositional changes as the two
species mix and lead to nonzero divergence of velocity. The boundary conditions are triply periodic,
and the two fluids are initialized as random blobs, consistent with the homogeneity assumption.
The flow starts from rest, with only a small amount of dilatational velocity necessary to satisfy
the divergence condition, and turbulence is generated as the two fluids start moving in opposite
directions due to differential buoyancy forces. However, as the fluids become molecularly mixed, the
buoyancy forces decrease and at some point turbulence start decaying. The nonstationary evolution
of turbulence, resulting from the interplay between buoyancy turbulence production and mixing, is
very difficult to be captured by one-point models [29].

To calibrate and test the spectral model, we use new higher resolution simulations [45].
Similar to Refs. [26,38], the simulations were performed with the CFDNS code [47] using a
pseudospectral method. The time integration was performed with a third-order predictor-corrector
Adams-Bashforth-Moulton method coupled with a pressure projection method, which results in
a variable coefficient Poisson equation. The solution method uses direct Poisson solvers, with no
loss of accuracy. The density contrast between the fluids is obtained from the value of the Atwood
number At = ρmax−ρmin

ρmax+ρmin
. Here we use two sets of simulations, with At = 0.05 and At = 0.75, on

(2π )3 domains discretized using 10243 meshes. The initial density spectrum is a top hat between
wave numbers 3 and 5, resulting in a normalized initial density integral scale of 1.32 and a
mixing state metric θ ∼ 0.07. The maximum turbulent Reynolds number attained by the two cases
(At = 0.05 and At = 0.75) are 13 330 and 2230, resulting in Taylor Reynolds numbers using the
isotropic formula of 298 and 122, respectively. Visualizations [Figs. 7(a) and 7(b)] of the density
field at two different time points for At = 0.05 as obtained from the CFDNS code.

In order to remain as systematic as possible given the relatively large number of tuneable
coefficients, we first assign nominal values prescribed in Refs. [32,37]. The values of Cr1 = 0.12
and Cr2 = 0.06, their relationship constrained in Ref. [46], have the most prior validation due to
studies of single-fluid homogeneous isotropic and anisotropic flows [37,49]. Although we do not
have have a theoretical expectation for these in the variable-density case, the single fluid values
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FIG. 8. Plots of χ 2 function calculated using Eq. (26) for different values of Crp1, Crp2, Cb1, Cb2, Ca1, Ca2,
and Cr1. This minimum value of the χ 2 function occurs at the optimum value of each variable.

seem a reasonable place to search for an optimum. The corresponding spectral transfer coefficients
for a (Ca1 and Ca2) and b (Cb1 and Cb2) were assigned to be identical to Cr1 and Cr2, respectively,
on a provisional basis in previous work, but there exists no theory or other expectation for these to
the best of our knowledge. The drag coefficients for Crp1 and Crp2 were set to unity in Ref. [37]
but assigned the values of 5 and 6, respectively, in Ref. [32] following arguments in Ref. [36] for
effective drag around bluff bodies and spheres. We found that the values of 5 and 6 for Crp1 and
Crp2, respectively, in the present comparison were too high in that they strongly damped the growth
of a relative to the DNS. Therefore we choose drag coefficients around unity as in Ref. [37].

We proceed to optimize the coefficients as follows. Each coefficient is varied, keeping all others
fixed, and we can define the Pearson’s χ2 test function [50] as

χ2 =
tmax∑
t=0

[(bm − bD ) + (am − aD )/a0 + (Em − ED )/E0]2

bD + aD/a0 + ED/E0
, (26)

where bm = bm(t ) refers to the mean density specific-volume correlation obtained from the model
as a function of time, and bD = bD (t ) are the corresponding values from the resolved DNS. The
quantities for a and E are defined analogously, and a0 = E0 = 1 are chosen so that they have the
same dimensions as am and Em, respectively. The upper limit on time tmax = 20 in our case and is
chosen so that the essential features of growth, peak, and decay are sufficiently captured without
weighting the results too much by the very late times in which errors are naturally minimized.

We begin by optimizing the drag coefficient Crp1 keeping all other constants at their nominal
values. Its optimum value (and those of other coefficients subsequently) is found by minimizing the
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TABLE III. Optimized values of all coefficients used for comparison with the DNS flow At = 0.05. Those
values without uncertainties quoted correspond to χ2 minima that asymptotically approach zero.

Parameter Cb1 Cb2 Ca1 Ca2 Cr1 Cr2 Crp1 Crp2

R1 0.18 ± 0.06 0.05 0.12 0.06 0.12 ± 0.06 0.06 1.0 1.0 ± 0.5
R2 0.18 ± 0.06 0.0 0.0 0.0 0.12 ± 0.06 0.06 0.0 1.0 ± 0.5

function (26), as shown in the first panel of Fig. 8. As can be seen, the error function is relatively
insensitive to variation in Crp1, and retaining a value of unity is appropriate. The χ2 as function of
Crp2 shows a minimum at Crp2 ∼ 1.0. We may prescribe a conservative uncertainty estimate on the
minima by specifying (roughly) the range over which the minimum χ2 is doubled. With this error
specification, Crp2 � 1.0 ± 0.5 as is shown in Fig. 8(b), and so it is also retained as unity.

The other coefficients are optimized in a similar manner, and the quality of the optimizations are
shown in Fig. 8. There are two types of minima observed for the χ2 error functions shown. The first
is a true parabolic minimum as for Crp2, Cb1, and Cr1 [Figs. 8(b), 8(c), and 8(g)], and the second
is an asymptotic minimum as for Cb2, Ca1, and Ca2. The extreme case is the error with respect
to the already discussed Crp1, which shows no dependence of χ2 on the coefficient value at all.
Table III shows the optimized values (R1) of all coefficients for the At = 0.05 case along with their
uncertainties. For the cases that do not have a clear minimum the nominal values from Ref. [37] are
retained, and the range of uncertainty is taken to be all values between zero and the first instance
of the minimum. Note that the values obtained by minimizing the error over all the dynamical
variables simultaneously do not depart significantly from the nominal values proposed in Ref. [37].
Indeed, Cr1 and Cr2, which may be derived from the Kolmogorov constant and the Lee equipartition
constraint, are minimized at the theoretically expected values, which is a strong validation of the
model and, less directly, of the assumption that the energy cascade in the variable-density mixing
problem is not inconsistent with Kolmogorov dynamics.

Given the quality of the minima it is clear that the uncertainty in the coefficient choice may
be quite large (between 30% and 50%) either because of the shallowness of the minima or the
independence of the error function to values below a certain threshold. Due to the latter feature,
we may be justified in taking the values of Crp1, Crp2, Cb2, Ca1, and Ca2 to zero. The resulting
sparse set of nonzero coefficients is denoted by R2 in Table III. This set represents an attempt to
assess if a mimimal number of coefficients may be extracted to yield a reasonable comparison with
DNSs. Note that in both rows of values in Table III, those which do not have uncertainties quoted
correspond to the coefficients with asymptotic minimum χ2.

In Figs. 9(a)–9(c) we show the comparison of the model calculations at the optimized parameters
R1 (orange line) with the DNS data (blue line with circles). We observe reasonable agreement with
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FIG. 9. Time evolution of flow with initial At = 0.05. (a) Mean density-specific volume covariance b(t ),
(b) mean a(t ), and (c) turbulent kinetic energy E(t ) obtained from the results of the DNS calculations (blue
line with circles) and from the spectral model [R1(orange line) and R2 (green line)] with parameter values listed
in Table III. DNS runs in this case are at a resolution of 10243 (the viscosity is 10−4).
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FIG. 10. Spectra of flows with initial At = 0.05. Plots of b(k) versus the wave number k at times
(a) t = 0.8, (b) t = 3.2, (c) t = 6.4, and (d) t = 14. ay (k) versus the wave number k at times (e) t = 0.8,
(f) t = 3.2, (g) t = 6.4, and (h) t = 14. Energy E(k) versus the wave number k at times (i) t = 0.8, (j) t = 3.2,
(k) t = 6.4, and (l) t = 14. The parameters for these data are given in Table III with the corresponding DNS
data resolution at 10243.

the DNS data in the time evolution of b(t ) [Fig. 9(a)], a(t ) [see Fig. 9(b)], and the kinetic energy
growth stage [see Fig. 9(c)]. The magnitude of the peak of the kinetic energy is underestimated
by the model, although the timing of the peak is the same as that of the DNS. The decay of the
kinetic energy computed by the spectral model is slower than the decay of the kinetic energy in
the DNS. Overall the model has captured the global quantities quite well, especially given that our
optimization function Eq. (26) requires no weighting of one quantity over another and is a fairly
naive choice. All three primary regimes of the dynamics, namely, mix-driven growth of mass flux
followed by conversion of potential energy to turbulent kinetic energy and subsequent decaying
dynamics and a fully mixed state, are largely captured by the spectral model.

If we consider the minimal set of coefficients R2, we find that the comparison with DNS is
very similar to that obtained by using the full set. Indeed the peak of a(t ) and energy are both
in better agreement for R2. The decay regimes are more compromised in R2 as compared to
R1. This procedure of minimization of an error function over all metrics is thus a way also to
understand dominant processes and eliminate less critical contributions. Our analysis has shown
that, of the modeled terms, the downscale transfer of b (governed by Cb1), the downscale and
upscale redistribution of energy (governed by Cr1 and Cr2), and the breakup of the scales of a
due to turbulence (governed by Crp2) are the dominant spectral processes. The exact terms for
drive and dissipation are also important but clearly not sufficient. It is particularly interesting to
note that the minimal set of coefficients also seems to imply that the spectral redistribution of a is
entirely subdominant in the homogeneous variable-density mixing process. Our systematic study of
the coefficients and a fairly simple optimization procedure has thus revealed useful constraints and
properties both of the model as well as of the physical processes under study. These are a significant
advantage in turbulence modeling.

We next show the spectral quantities computed by the optimized model for low At in Fig. 10.
The first column shows the initial conditions of b(k), ay (k), and E(k) from the DNS in blue and
the approximation used by the model in orange. By necessity, we use a coarse representation of
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FIG. 11. Time evolution of flow with initial At = 0.75. (a) Mean density-specific volume covariance b(t ),
(b) mean a(t ), and (c) turbulent kinetic energy E(t ) obtained from the results of the DNS calculations (blue
line with circles) and from the spectral model code (orange line) with parameter values listed in Table III
(run R1), and the corresponding DNS resolution is 10243 (the viscosity is 10−4).

the spectra in the low wave numbers because of the implementation of the surrogate coordinate
z = zs ln(k/ks ) (zs = 1 and ks = 1). As time evolves the model spectra show good agreement with
the DNS at the peak values (which dominate the integrals) but overpredict the spectra at both small
and large k for intermediate time t = 3.2 (second column). As time evolves further to t = 6.4, both
ay (k) and b(k) model calculation show better agreement with DNS at higher k, but the high wave
numbers for the energy remain overpredicted. The spectra thus permit a more detailed understanding
of the flow dynamics than do the global quantities. Indeed we reiterate that our coefficient variation
study demonstrated that spectral information was critical to developing the right time evolution [in
Fig. 5(c), for example, very low values of the spectral transfer coefficients result in a substantially
slow decay of E] particularly on the decay side of the process.
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FIG. 12. Spectra of flows with initial At = 0.75. Plots of b(k) versus the wave number k at times
(a) t = 0.2, (b) t = 1.8, (c) t = 3.0, and (d) t = 5.0. ay (k) versus the wave number k at times (e) t = 0.2,
(f) t = 1.8, (g) t = 3.0, (h) t = 5.0. Energy E(k) versus the wave number k at times (i) t = 0.2, (j) t = 1.8,
(k) t = 3.0, (l) t = 5.0. The parameters for these data are given in Table III with the corresponding DNS data
resolution at 10243.
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For completeness we expand the discussion to a high Atwood number case At = 0.75. The
Atwood number in the DNS was changed by increasing the density of the heavier fluid. This
corresponds in the model to what we will call a “density contrast” since the Atwood number
does not explicitly appear in the spectral model. This density contrast is implicit in the larger
ρ = ρmax+ρmin

2 that is specified in the model equations of motion. As a first attempt we use the
coefficients optimized in the low Atwood number case shown in the R1 row in Table III. The results
are shown in Fig. 11. We observe that the quantitative agreement with DNS is fairly good, similar
to the low At case. Thus the optimization at low At also holds at high At. The decay of the kinetic
energy is slow compared to the DNS [Fig. 11(c)]. Nevertheless, certain qualitative features are still
captured quite well including the initial transition in b(t ) [Fig. 11(a)] and overall shape of a(t )
[Fig. 11(b)]. It must be noted that further iteration over the coefficients may well fine-tune the
outcomes, but such an exercise lies beyond the scope of this paper.

We next show the spectral quantities for the high At in Fig. 12. Similar to Fig. 10 we plot the
initial conditions of b(k), ay (k), and E(k), from the DNS and also the model in the first column. The
subsequent plots of ay (k), b(k), and E(k) at times t = 1.8, t = 3.0, and t = 5.0 are shown in the
second, third, and fourth columns, respectively. We note that the spectral evolution of b(k), ay (k),
and E(k) are well captured with respect to the DNS data. Thus the spectral as well as the global
quantities for high At show a good agreement with DNS data. This demonstrates that the spectral
model is able to capture the different stages of variable-density flow evolution for different values
of At with minimal change in system parameters.

IV. DISCUSSION AND CONCLUSION

We have benchmarked the two-point spectral model developed in Refs. [32,33,37] to study
variable-density homogeneous turbulence. In summary we can observe some general trends. The
main observation is that each dynamical variable is primarily affected by its spectral transfer terms
governed by CV 1 and CV 2 (where V is any of b, a, or E). The direct effect is to reduce both
peak value and delay the peak timing for the respective variable. However, the indirect effect on a
coupled variable may be quite different. The most striking example of this is the response of the
system to variation of Cr1 and Cr2. Recall that the values of Cr1 and Cr2 were derived based on
the Kolmogorov constant multiplying the spectrum and equipartition in the invisicid case. There-
fore variation away from those values implicitly permits reinterpretation of the cascade processes
in the model. In Fig. 5(c) the energy is reduced both in magnitude and in the decay rate. However,
the indirect effect on a(t ) and b(t ), via the decrease in frequency �−1 and corresponding increase in
characteristic turbulence timescale, results in delayed decay of both those quantities. Increasing this
pair of variables is the only change that decreases energy while increasing both mass-flux velocity
and the mixing parameter magnitude. This is a clear demonstration of how the turbulence timescale
as implemented in the model operates as a governing parameter for the behavior of the dynamical
variable.

The drag coefficients Crp1 and Crp2 for a govern a different process than do the spectral transfer
terms. The former have significant effect on a(t ) as expected and in turn on E(t ) because of the
direct coupling via the pressure gradient. The mixing parameter b(t ) on the other hand is relatively
insensitive to the drag on a for low to moderate values of the drag coefficients. For very large values
of those coefficients, the decay rate of b(t ) is slowed down. This may understood in light of the fact
that the drag on a is a tertiary effect on b via the turbulence energy timescale �−1. The processes
governing the entire cycle of the flow may be completed before the timescale has the chance to grow
enough to significantly impact b(t ).

In the second part of the study we test the model against DNS data. The purpose is to offer
a spectral model for variable-density turbulence at high resolution with coefficients tuned to the
problem and based on well-defined error parameters. We choose to optimize the coefficients on
the low At case first and found that the model works well for the buoyancy production stage, as
well as the decay of the different variables. In optimizing the coefficients we did not favor any one
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dynamical variable over another; we could envision a more targeted application which, for example,
specifies greater fidelity of the turbulent kinetic energy. In that case the fidelity to the mass-flux
velocity and b will be compromised and a different set of coefficients deduced. Another important
factor in the outcomes of the coefficients is the time over which the functions are optimized, in this
case 0 < t � tmax = 20. If a different interval were chosen, one might do better at isolating, say,
the growth phase or the decay phase. It is not our intention to provide a fixed set of coefficients but
merely to demonstrate that the model can recover a realistic flow with satisfactory agreement to the
global quantities and to the spectral distributions. Even with these caveats, it appears that several of
the eight coefficients, and hence the processes corresponding to the terms that they multiply, become
subdominant because of the manner in which they have asymptotically minimized errors for small
values. The coefficients with true minima are Cb1, the downscale spectral transfer coefficient of
b, Cr1 and Cr2, both of which govern upscale and downscale spectral redistribution of turbulence
kinetic energy, and Crp2, which provides a mechanism for the breakup of fluid parcels in scale
due to turbulence. It is important to note that Cr1 and Cr2 optimize to the values consistent with
Kolmogorov and equipartition theory. This suggests that the cascade process in the variable-density
mixing problem, at least from the point of view of a second-order spectral model, is consistent with
that of the constant density Kolmogorov turbulence problem. It is worth mentioning here that the
presence of density fluctuations may modify the nonlinear interactions and perhaps may not achieve
equipartition in the case of large density fluctuations for the inviscid, nondiffusive truncated system.
The choice of maintaining the Cr1 = 2Cr2 for the energy cascade coefficients allows the energy
cascade to be maintained in the constant density limit. However, this limit (constant density) is
irrelevant for the correlations a and b since they vanish in this limit. It is possible that the cascade
coefficients in this simple model may be variables of, say, the Atwood number. However, we have
not explored this issue and have not seen the utility of this added complication at this point.

This emergence of four dominant coefficients leads to the understanding that, apart from the drive
terms and the dissipation which are treated exactly, the model expressions for downscale transfer
of b, the break-up of fluid blobs as they sink under gravity and couple with the turbulence, and the
resulting redistribution of E in spectral space are the main mechanisms at play in the homogeneous
variable-density mixing problem. At the level of second-order two-point correlations, therefore, the
model points to and helps elucidate the dominant physical mechanisms at play.

The set of coefficients in Table III obtained from analysis of the low At data appear to be less
suitable for a high Atwood number system At = 0.75, particularly as they relate to the energy.
However, the comparison is qualitatively quite good overall considering that we performed only a
first-order process for determining coefficients in the low At case and the difference in At for the
two cases is very large. There is no approximation or assumption in the model development that
requires Boussinesq or near-Boussinesq (low Atwood number) conditions. Therefore it is perhaps
not surprising that one set of coefficients works quite well over a broad range of At.

In summary, the spectral model we have studied is able to recover the statistical and spectral
outcomes from nontrivial physical processes in a mixing problem, with minimal tuning of coef-
ficients for two widely different Atwood number flows. The tuning procedure is systematic and
may be used to narrow down the space of unknown coefficients, which is always an advantage in
predictive modeling. In future work, we will try to develop a more general understanding of flows
with different density ratios and will address the canonical inhomogeneous RT mixing problem.
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