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a b s t r a c t 

Skeletal model reduction based on local sensitivity analysis of time dependent systems is presented in 

which sensitivities are modeled by forced optimally time dependent (f-OTD) modes. The f-OTD factor- 

izes the sensitivity coefficient matrix into a compressed format as the product of two skinny matrices, 

i.e. f-OTD modes and f-OTD coefficients. The modes create a low-dimensional, time dependent, orthonor- 

mal basis which capture the directions of the phase space associated with most dominant sensitivities. 

These directions highlight the instantaneous active species, and reaction paths. Evolution equations for 

the f-OTD modes and coefficients are derived, and the implementation of f-OTD for skeletal reduction is 

described. For demonstration, skeletal reduction is conducted of the constant pressure ethylene-air burn- 

ing in a zero-dimensional reactor, and new reduced models are generated. The laminar flame speed, the 

ignition delay, and the extinction curve as predicted by the models are compared against some existing 

skeletal models in literature for the same detailed model. The results demonstrate the capability of f-OTD 

to eliminate unimportant reactions and species in a systematic, efficient and accurate manner. 

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

Detailed reaction models for C 1 -C 4 hydrocarbons usually con- 

ain over 100 species in about 10 0 0 elementary reactions [1–6] . 

irect application of such models is limited only to simple, 

anonical combustion simulations because of their tremendous 

omputational cost. Various reduction techniques have been 

eveloped to accommodate realistic fuel chemistry simulations, 

nd to capture intricacies of chemical kinetics in complex multi- 

imensional combustion systems. As the first step in developing 

odel reduction, it is important to extract a subset of the detailed 

eaction model, skeletal model , by eliminating unimportant species 

nd reactions [7,8] . Local sensitivity analysis (SA), reaction flux 

nalysis [9–11] , and directed relation graph (DRG) and its vari- 

nts [12–15] have often been utilized for skeletal model reduction. 

ocal SA, which is the subject of the present work, explores 

he response of model output to a small change of a parameter 

rom its nominal value [16] while global sensitivity analysis is 

seful for studying uncertainty of kinetic parameters ( i.e. collision 
� Fully documented templates are available in the elsarticle package on CTAN . 
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requencies and activation energies) which propagate through 

odel and non-linear coupling effects [2,17–24] . 

Model reduction with local SA contains methods such as 

CA [1,25–31] , and construction of a species ranking [32] . In local 

A, the sensitivities are commonly computed either by finite dif- 

erence (FD) discretizations, directly solving a sensitivity equation 

SE), or by an adjoint equation (AE) [33] . The computational cost 

f using FD or SE, which are forward in time methods, scales lin- 

arly with the number of parameters making them impracticable 

hen sensitivities with respect to a large number of parameters 

re needed. On the other hand, computing sensitivities with AE 

equires a forward-backward workflow, but the computational cost 

s independent of the number of parameters as it requires solving 

 single ordinary/partial differential equation (ODE/PDE) [34–36] . 

he AE solution is tied to the objective function, and for cases 

here multiple objective functions are of interest, the same num- 

er of AEs must be solved. Regardless of the method of computing 

ensitivities, the output of FD, SE, and AE at each time instance 

s the full sensitivity coefficient matrix, which can be extremely 

arge for systems with large number of parameters. 

Recently, the forced optimally time dependent (f-OTD) de- 

omposition method was introduced for computing sensitivities 

n evolutionary systems using a model driven low-rank ap- 

roximation [33] . This methodology is the extension of OTD 
. 

https://doi.org/10.1016/j.combustflame.2021.111684
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2021.111684&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:arn36@pitt.edu
https://doi.org/10.1016/j.combustflame.2021.111684
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ecomposition in which a mathematical framework is laid out 

or the extraction of the low-rank subspace associated with 

ransient instability of the dynamical system [37] . The OTD ap- 

roximates sensitivities with respect to initial conditions, while 

-OTD approximates sensitivities with respect to external pa- 

ameters, e.g. , forcing. As a consequence, in the formulation of 

-OTD there is a two–way coupling between the evolution of 

he f-OTD modes and the f-OTD coefficients, whereas in OTD 

ormulation, the evolution of the modes is independent of the 

oefficients. In forward workflow of f-OTD, the sensitivity matrix 

.e. S(t) ∈ R 

n eq ×n r is modeled on-the-fly as the multiplication of 

wo skinny matrices U(t) = [ u 1 (t) , u 2 (t ) , · · · , u r (t )] ∈ R 

n eq ×r , and

 (t) = [ y 1 (t) , y 2 (t ) , · · · , y r (t )] ∈ R 

n r ×r which contain the f-OTD

odes and f-OTD coefficients, respectively, where n eq is the 

umber of equations (or outputs), n r is the number of inde- 

endent parameters, r � min{ n s , n r } is the reduction size, and 

(t) ≈ U(t ) Y T (t ) . The key characteristic of f-OTD is that both U(t)

nd Y (t) are time-dependent and they evolve based on closed 

orm evolution equations extracted from the model, and are able 

o capture sudden transitions associated with the largest finite 

ime Lyapunov exponents [38] . The time-dependent bases have 

lso been used for stochastic reduced order modeling [39–43] , and 

ecently for on-the-fly reduced order modeling of reactive species 

ransport equation [44] . In a nutshell, f-OTD workflow i) is forward 

n time unlike AE, ii) bypasses the computational cost of solving FD 

nd SE, or other data-driven reduction techniques, and iii) stores 

he modeled sensitivities in a compressed format, i.e. we only store 

nd solve for two skinny matrices U and Y instead of storing and 

olving the full sensitivity matrix S, as in FD, SE and AE. 

The major advantage of PCA in skeletal reduction is to com- 

ine the sensitivity coefficients for a wide range of operating con- 

itions ( e.g. equivalence ratio and pressure) [1] . The PCA finds the 

ow-dimensional subspace of data gathered from different (tempo- 

al or spatial) locations by applying a minimization algorithm over 

he whole data at once. Therefore, PCA is a low-rank approxima- 

ion in a time-averaged sense and may fail to capture highly tran- 

ient finite-time events ( e.g. ignition). In order to resolve this is- 

ue, one needs to pre-recognize the locations of such events and 

se the data mainly from these locations. This requires extensive 

nowledge and/or expertise. Moreover, PCA modes are time invari- 

nt, and the process of selecting sufficient eigenvalues/eigenmodes 

o capture the essence of all observed phenomena ( e.g. ignition, 

ame propagation), is crucial but is usually done by trial and error. 

eferences [1,45] show that for certain problems, a skeletal model 

uilt solely upon the information conveyed by that first reaction 

roup (first eigenmode) from PCA can fail to accurately reproduce 

he detailed model over the entire domain of interest. Therefore, 

ne needs to deal with several eigenmodes with close eigenvalues 

nd choose essential reaction groups among them [1] . 

In order to resolve the drawbacks of current SA methods and 

CA for skeletal model reduction, we use f-OTD methodology for 

oth SA and skeletal model reduction. The applicability of our ap- 

roach is demonstrated for ethylene-air burning with the Univer- 

ity of Southern California (USC) chemistry model [2] as the de- 

ailed model. Adiabatic, constant pressure, spatially homogeneous 

gnition is the canonical problem; and the generated skeletal mod- 

ls with f-OTD are compared against detailed and several skeletal 

odels. 

The remainder of this paper is organized as follows. The the- 

retical description of PCA and f-OTD and their mathematical 

erivations for SA are presented in Section 2 . Model reduction with 

-OTD is first described in Section 3 , with a simple reaction model 

or hydrogen-oxygen combustion, followed by skeletal model re- 

uction with f-OTD for the more complex ethylene-air system in 

ection 4 . The paper ends with conclusions in Section 5 . All the

enerated models are supplied in supplementary materials section. 
2 
. Formulation 

Consider a chemical system of n s species reacting through n r 
rreversible reactions, 

n s 
 

k =1 

ν ′ 
k j M k → 

n s ∑ 

k =1 

ν ′′ 
k j M k , j = 1 , . . . n r , (1) 

here M k is a symbol for species k , and ν ′ 
k j 

and ν′′ 
k j 

are the mo-

ar stoichiometric coefficients of species k in reaction j. Changes 

f mass fractions ψ = [ ψ 1 , ψ 2 , . . . , ψ n s ] 
T and temperature T in an

diabatic, constant pressure p, and spatially homogeneous reac- 

ion system of ideal gases can be described by the following initial 

alue problems (IVPs) [46] 

dψ k 

dt 
= f ψ k 

(ψ, T , α) = 

W k 

ρ

n r ∑ 

j=1 

νk j Q j , ψ(0) = ψ 0 , (2a) 

dT 

dt 
= f T (ψ, T , α) = − 1 

c p 

n s ∑ 

k =1 

h k f ψ k 
, T (0) = T 0 , (2b) 

here t ∈ [0 , t f ] is time, t f is the final time and W k and h k are the

olecular weight and enthalpy of species k , respectively, and 

k j = ν ′′ 
k j − ν ′ 

k j , (3a) 

 j = α j K j 

n s ∏ 

m =1 

(
ρψ m 

W m 

)ν ′ 
m j 

. (3b) 

Here, α = [1 , 1 , . . . , 1] ∈ R 

n r is the vector of perturbation param-

ters and K j is the rate constant of reaction j which is usually 

odeled using the modified Arrhenius parameters [47] for elemen- 

ary reactions (Note: all reversible reactions are cast as irreversible 

eactions). In Eq. (2) ρ(T , ψ) and c p (T , ψ) = 

∑ n s 
k =1 

ψ k c p k (T ) are

he density and specific heat at constant pressure of the mixture, 

espectively, where c p k (T ) is the specific heat at constant pressure 

f k th species given by the NASA coefficient polynomial parame- 

erization [48] . Let ξ = [ ψ, T ] ∈ R 

n eq denote the vector of compo-

itions and accordingly f = [ f ψ 

, f T ] where n eq = n s + 1 . Then the

ompositions IVP is governed by: 

dξi 

dt 
= f i ( ξ , α) , ξ (0) = [ ψ 0 , T 0 ] . (4) 

Since α = 1 , the perturbation with respect to α j amounts to an 

nfinitesimal perturbation of progress rates Q j for j = 1 , 2 , . . . , n r .

he sensitivity matrix, S(t) = [ s 1 (t) , s 2 (t ) , . . . s n r (t )] ∈ R 

n eq ×n r , con-

ains local sensitivity coefficients, s j = ∂ ξ/∂ α j , and it can be calcu- 

ated by solving the SE, 

dS i j 

dt 
= 

∑ n eq 

m =1 
∂ f i 
∂ξm 

∂ξm 

∂α j 
+ 

∂ f i 
∂α j 

= 

∑ n eq 

m =1 
L im 

S m j + F i j , (5) 

here L im 

= 

∂ f i 
∂ξm 

and F i j = 

∂ f i 
∂α j 

are the Jacobian and the forcing ma- 

rices, respectively. 

.1. Principal component analysis 

Principal component analysis allows the investigation of the ef- 

ects of parameter perturbations on the objective function G(p) 

 ( p ) = 

∫ z 2 

z 1 

n eq ∑ 

i =1 

[ 

ξi ( z, p ) − ξi 

(
z, p 

0 
)

ξi 

(
z, p 

0 
)

] 2 

dz , (6) 

here p 

0 and p are unperturbed and perturbed normalized ki- 

etic parameters, respectively; and p j = ln α j for j = 1 . . . n r . The

ntegrated squared deviation is investigated on the interval [ z 1 , z 2 ] 

f the independent variable (time and/or space) [45] . It has been 
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1 
hown [25] that G(p) can be approximated around the nominal 

arameter set ( p 

0 ) as, 

 ( p ) ≈ ( �p ) 
T 
S 

T 
S ( �p ) , (7) 

here �p = p − p 

0 and 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

≈
S | z 1 ≈
S | z 2 
. . . 

. . . 
≈
S | z m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(m.n eq ) ×n r 

. (8) 

Here, 
≈
S | z i ( i = 1 , . . . , m ) are normalized sensitivity matrices 

 

≈
S i j = 

α j 

ξi 

∂ξi 
∂α j 

) on a series of m quadrature points on [ z 1 , z 2 ] to ap-

roximate the integral in Eq. (6) . Eigen decomposition of S 
T 
S = 

 	A 

T results in: 

 ( p ) ≈
(
A 

T �p 

)T 
	

(
A 

T �p 

)
, (9) 

here 	 = diag [ λ1 , λ2 , . . . λn r ] is a diagonal matrix contain- 

ng eigenvalues of S 
T 
S (which are real and positive) in descend- 

ng order ( λ1 ≥ λ2 ≥ . . . ≥ λn r ), and A = [ a 1 , a 2 , . . . a n r ] contains the

igenvectors of S 
T 
S sorted from left to right with the same or- 

er in 	. Then PCA uses two thresholds ( λε & a ε ) to select first

j sets of reactions ( a 1 , a 2 , . . . , a j ) which satisfy λ j > λε condition

nd choose every i th reaction in each a j set with | a i j | > a ε condi-

ion [1] . 

.2. Sensitivity analysis with optimally time dependent modes 

Like PCA, our kinetic model reduction strategy is based on se- 

ecting reactions, whose perturbations grow most intensely in the 

omposition evolution given by Eq. (4) . However, the selection of 

mportant reactions is made here based on instantaneous observa- 

ion of modeled sensitivities, unlike PCA. 

.2.1. Modeling the sensitivity matrix 

Imagine we perturb the composition evolution equation 

 Eq. (4) ) by infinitesimal variations of α j = 1 to α j = 1 + δα j ,

here δα j � 1 for j = 1 , 2 , . . . , n r . In f-OTD, we factorize the sen-

itivity matrix S(t) into a time-dependent subspace in the n eq - 

imensional phase space of compositions represented by a set of f- 

TD modes: U(t) = [ u 1 (t) , u 2 (t ) , · · · , u r (t )] ∈ R 

n eq ×r . These modes

re orthonormal u 

T 
i 
(t) u j (t) = δij at all t , where δi j is the Kronecker

elta. The rank of S(t) ∈ R 

n eq ×n r is d = min { n eq , n r } while the f-OTD

odes represent a rank- r subspace, where r � d. To this end, we 

pproximate the sensitivity matrix via the f-OTD decomposition 

 Fig. 1 ): 

(t) ≈ U(t ) Y T (t ) , (10) 

here Y (t) = [ y 1 (t) , y 2 (t ) , · · · , y r (t )] ∈ R 

n r ×r is the f-OTD coeffi-

ient matrix. The above decomposition is not exact as Eq. (10) is a 

ow-rank approximation of the sensitivity matrix S(t) . Note that in 

he above decomposition both U(t) and Y (t) are time dependent. 

e drop the explicit time dependence on t for brevity. Fig. 1 shows 

he schematic of decomposition of S into f-OTD components U and 

 . The evolution equation for U and Y are obtained by substituting 

q. (10) into Eq. (5) : 

dS 

dt 
≈ dU 

dt 
Y T + U 

dY T 

dt 
= LUY T + F . (11) 

rojecting Eq. (11) to U results in 

 

T dU 

dt 
Y T + U 

T U 

dY T 

dt 
= U 

T LU Y T + U 

T F . (12)

he f-OTD modes are orthonormal, U 

T U = I. Taking a time deriva- 

ive of the orthonormality condition yields in: dU T 

dt 
U + U 

T dU 
dt 

= 0 . This 
3 
eans that ϕ = U 

T dU 
dt 

∈ R 

r×r is a skew-symmetric matrix ( ϕ 

T =
ϕ). As shown in Refs. [33,37] , any skew-symmetric choice of ma- 

rix ϕ, will lead to equivalent f-OTD subspaces. Here we choose 

 = 0 . Using U 

T U = I and U 

T dU 
dt 

= 0 , Eq. (12) simplifies to 

dY T 

dt 
= U 

T LU Y T + U 

T F . (13) 

he evolution equation for U can be obtained by substituting dY T 

dt 
rom Eq. (13) in Eq. (11) and projecting the resulting equation onto 

 by multiplying Y from right 

dU 

dt 
= Q LU + Q F Y C −1 , (14) 

here Q = I − U U 

T is the orthogonal projection onto the space 

panned by the complement of U and C = Y T Y ∈ R 

r×r is a correla-

ion matrix matrix. Matrix C(t) is, in general, a full matrix implying 

hat the f-OTD coefficients are correlated. Eq. (13) can be written 

s 

dY 

dt 
= Y L T r + F T U, (15) 

here L r = U 

T LU ∈ R 

r×r is a reduced linearized operator. 

qs. (14) and (15) are a coupled system of ODEs and they 

onstitute the f-OTD evolution equations. The f-OTD modes align 

hemselves with the most instantaneously sensitive directions 

f the composition evolution equation when perturbed by α. It 

s shown in Ref. [38] that when α is the perturbation to the 

nitial condition, the OTD modes converge exponentially to the 

igen-directions of the CauchyGreen tensor associated with the 

ost intense finite-time instabilities. We refer to Ref. [37] for 

urther details about OTD. 

.2.2. Selecting important reactions & species 

In our approach, instantaneous sensitivities are analyzed as op- 

osed to PCA in which sensitivities are sampled at a few selected 

ime instants. Computing instantaneous sensitivities would signif- 

cantly increase the computational/bookkeeping costs especially if 

arge detailed mechanisms are to be analyzed. The f-OTD leverages 

he fact that we are often interested in the leading sensitivity vec- 

ors, and it provides a computationally feasible approach for solv- 

ng only those dominant sensitivity vectors, without requiring to 

xplicitly compute the full sensitivities at any point. The reduction 

rocedure is as follows: 

1. Modeled sensitivities are computed in factorized format by 

solving Eqs. (14) and (15) . These two equations are evolved in 

addition to Eq. (4) , and the values of ξ , U , and Y are stored at

resolved time steps t i ∈ [0 , t f ] . Eq. (4) is initialized with a com-

bination of the initial temperatures, equivalence ratios ( φ0 ), etc . 

Each simulation with a different initial condition is denoted by 

a case here. Eqs. (14) and (15) are initialized by first solving the 

SE ( Eq. (5) ) for a few time steps, and then performing singu- 

lar value decomposition of the sensitivity matrix S = B �V T and 

assigning U = B and Y = V �. 

2. At each resolved time step and for each case, we compute the 

eigen decomposition of 
≈
S T 

≈
S ∈ R 

n r ×n r as 
≈
S T 

≈
S = A 	A 

T , and define 

w ∈ R 

n r ×1 = (�λi | a i | ) / (�λi ) ∈ R 

n r . The w vectors are basically

the average of eigenvectors of 
≈
S T 

≈
S matrix weighted based on 

their associated eigenvalues. This prevents us from dealing with 

each eigenvector ( a i ) separately. We use the normalized sensi- 

tivities ( 
≈
S i j = 

α j 

ξi 

∂ξi 
∂α j 

) of species with mass fractions greater than 

a threshold, e.g. 1.0e-6. This results in elimination of some of 

the rows of 
≈
S associated with small mass fraction species at 

each time step. As shown in Sections 3 and 4 , the first sorted 

eigenvalue ( λ ) is usually orders of magnitude larger than the 
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Fig. 1. Modeling sensitivity matrix S(t) as a multiplication of two low-ranked matrices U(t) and Y (t) which evolve based on Eqs. (14) and (15) . 

Fig. 2. Model reduction for hydrogen-oxygen: (a) eigenvalues calculated by PCA, I-PCA and f-OTD, (b) sorted reactions and species based on their associated χ values. 

Ignition data is gathered for stoichiometric mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with T 0 = 1200K. 
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n

others which means w(t) ≈ | a 1 (t) | . Each element of w, i.e. w i ,

is positive and associated with a certain reaction ( i th reaction). 

The larger the w i value, the more important reaction i is. We 

define χi as the highest value associated with w i through all 

resolved time-steps and cases. 

3. The elements of χ vector are sorted in descending order to 

find the indices of the most important reactions in the detailed 

model. Species are also sorted based on their first presence in 

the sorted reactions, i.e. species who first shows up in a higher 

ranked reaction would be more important than a species who 

first participate in a lower ranked reaction. This results in a re- 

action and species ranking based on χ vector e.g. Fig. 2 (b). 

4. In the last step, we choose a set of species by defining a thresh-

old χε on the element of χ vector and eliminate species whose 

associated χi are less than χε . We also get rid of the reactions 
t

4 
which include the species. As our skeletal model reduction is 

reaction based, any non-reactive species with non-zero mass 

fraction in the initial condition should be manually added to 

the skeletal model. 

In summary, we sort the reactions to find the most important 

pecies. These species and the reactions which connect them to- 

ether, create our reduced models. In combustion systems, pertur- 

ations with respect to “fast’’ reactions generate very large sen- 

itivities for short time periods which vanish as t → ∞ . On the 

ther hand, perturbations with respect to “slow’’ reactions gen- 

rate smaller and more sustained sensitivities. As our approach 

s based on the instantaneous observation of sensitivities, both 

slow’’ and “fast’’ reactions can leave an imprint on the instanta- 

eous normalized reaction vector ( w ) if their imprints are larger 

han the threshold value (χε ) . However, if the sensitivities asso- 



A.G. Nouri, H. Babaee, P. Givi et al. Combustion and Flame 235 (2022) 111684 

Fig. 3. Model reduction for hydrogen-oxygen: comparison of the predicted temperature and some species mass fraction profiles from different models for stoichiometric 

mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with T 0 = 1200K. 

Fig. 4. Model reduction for hydrogen-oxygen: temporal variation of w (t) for the ignition of a stoichiometric mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with 

T 0 = 1200K. 
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iated with “fast’’ and “slow’’ reactions from all times and loca- 

ions would be combined with each other before dimension re- 

uction, as commonly done in PCA-type approaches, the smaller 

ensitivities associated with “slow’’ reactions could have been out- 

eighted by the large sensitivities associated with “fast’’ reactions. 

n fact, this concern is the primary motivation for using f-OTD 

ather than PCA-type skeletal reduction approaches. 

. Model reduction with f-OTD: application for 

ydrogen-oxygen combustion 

In this section, the process of eliminating unimportant reac- 

ions and species from a detailed kinetic model with f-OTD is de- 

cribed, and its differences with PCA are highlighted. The Burke 

odel [49] for hydrogen-oxygen system which contains n s = 10 

pecies, 1 and n r = 54 irreversible (27 reversible) reactions is con- 

idered as the detailed model. The reduction process is performed 

y analyzing only one case for the ignition of an adiabatic, stoi- 

hiometric hydrogen-oxygen mixture at atmospheric pressure and 

 0 = 1200K, with integration of both the SE ( Eq. (5) ) and f-OTD

quations ( Eqs. (14) and (15) ). Exact sensitivities from SE are com- 

uted for two purposes, i) finding PCA eigenmodes and eigenval- 

es, and ii) analyzing the performance of f-OTD by comparing the 

nstant eigenvalues of 
≈
S T 

≈
S at each t , from f-OTD against those ob- 

ained by solving the SE. The latter is equivalent to performing in- 
1 This kinetic model has 13 species (H, H 2 , O, OH, H 2 O, O 2 , HO 2 , H 2 O 2 , N 2 , AR, 

E, CO, CO 2 ) in which N 2 , CO, and CO 2 do not participate in the reactions. 

o

c

t

5 
tantaneous PCA (I-PCA) on the full sensitivity matrix. The I-PCA 

hows the optimal reduction of the time-dependent sensitivity ma- 

rix, and we show that the eigenvalues of f-OTD closely approxi- 

ate the r most dominant eigenvalues of I-PCA. 

Figure 2 (a) compares top eigenvalues of f-OTD with PCA (static) 

nd I-PCA (instantaneous). It is shown that the top PCA eigenval- 

es are time invariant, and close to each other. In contrast the 

rst f-OTD eigenvalue is orders of magnitude larger than the oth- 

rs during the course of ignition, i.e. from t= 0 to t= 30 μs (until

ost of the heat is released). Moreover, f-OTD eigenvalues match 

ith I-PCA with increasing number of modes ( r). This means that 

he modeled sensitivities converge to the exact values by adding 

ore modes, in this case addition of top 6 modes. The results also 

how that with f-OTD ( r= 5), the time variation of top eigenvalues 

s captured well, while the second dominant eigenvalues deviates 

rom I-PCA solution in the main non-equilibrium reaction layer and 

he post heat release region. Figure 2 (b) portray the reaction and 

pecies rankings for ignition problem. Note: inert species AR and 

E in Fig. 2 (b) are not important in pure hydrogen-oxygen ignition 

nd can be eliminated. The f-OTD-Burke model is generated by re- 

oving these two species and their associated reactions from the 

urke model with n s = 8 and n r = 46. Figure 3 demonstrates f-OTD- 

urke ability in reproducing the species evolution using the Burke 

odel, for a stoichiometric mixture ( φ0 = 1 . 0 ) of hydrogen-oxygen 

t p= 1atm and T 0 = 1200K. Figure 4 portrays the temporal evolution 

f w(t) . As each element of w(t) is associated with a reaction, any 

hange in the shape of this temporal vector signifies a change in 

he importance of reactions during the course of ignition. For ex- 
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Fig. 5. Model reduction for hydrogen-oxygen: first eight eigenmodes of S T S calculated by PCA, from combined analysis over the time interval 0 to 5.0e-6 secs. The analysis 

is associated with the ignition of a stoichiometric mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with T 0 = 1200K. 
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Fig. 6. Skeletal model reduction for ethylene-air: ignition delays calculated by dif- 

ferent detailed kinetic models for an atmospheric ( p= 1atm) stoichiometric mixture 

( φ0 = 1.0) of ethylene-air. USC, UCSD, CRECK, and AramcoMech2 are in good agree- 

ment with each other. 
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λ

2 Temperature at d T /d t| max 
mple the first reaction (H+O 2 → O+OH) is the most important one 

t t= 5.0e-6, but by marching in time and passing the peak of the 

eat release region, other reactions ( e.g. reactions 2–10 which are 

pecifically radical recombination reactions like OH+OH → O+H 2 O) 

lso become important. Our model reduction approach ranks re- 

ctions based on their all time maximum value on w. The f-OTD 

pproach detects reactions even if their importance become visible 

nstantly. Such reactions cannot be detected in static model reduc- 

ion techniques such as PCA. 

Figure 5 shows the first 8 eigenmodes of S T S matrix ( Eq. (8) )

nd their associated eigenvalues from PCA. The parameters λ1 −
4 have a same order of magnitudes and a 1 − a 4 introduce sim- 

lar important reactions. Reactions 22 and 28 are not considered 

mportant by observing only a 1 − a 4 . However, it was shown in 

ig. 4 that these reactions are effective during t ∈ [3.0e-5,3.5e-5]. 

he next step in model reduction with PCA is to define threshold 

alues λε and a ε to select important reactions and species as de- 

cribed in Section 2.1 . This task is beyond the scope of this study. 

. Skeletal reduction: application for ethylene-air burning 

Several detailed kinetic models for ethylene-air burning are 

vailable in literature, and are developed at the University of Cali- 

ornia, San Diego (UCSD) [4] , the University of Southern California 

USC - a subset of JetSurf) [2] , the KAUST (AramcoMech2) [50] , and

he Politecnico of Milan (CRECK) [5] . Figure 6 indicates that the ig- 

ition delays as predicted by all these models are in a reasonable 

greement with each other. Moreover, it is shown in Ref. [51] that 

SC ignition delays are closer to experimental data in comparison 

ith the other three models. Therefore, here we consider USC as 

ur detailed kinetic model, and extract a series of skeletal models 

ia comparison with this baseline. 

.1. Problem setup and initial conditions 

Simulations are conducted of an adiabatic, atmospheric pres- 

ure ( p= 1atm) reactor for 6 cases with different initial temper- 

tures T 0 ∈ [140 0,20 0 0] and equivalence ratios φ ∈ [0.5,1.0,1.5] for 

thylene-air mixture. The USC model [2] with 111 species and 1566 

rreversible (784 reversible) reactions is the detailed model based 

n which all the skeletal models (f-OTDs) are generated. Only three 
6 
-OTD modes ( r= 3) are employed to model the sensitivity ma- 

rix. Simulations with SK31 [1] , SK32 [52] and SK38 [1] , which 

re also skeletal models generated from two versions of USC (op- 

imized and unoptimized), are considered. The comparisons are 

ade based on three criteria: i) ignition delay, ii) premixed lam- 

nar flame speed, iii) non-premixed extinction strain. The flame 

peeds and the extinction curves are generated by Cantera [48] . 

.2. Skeletal models 

Figure 7 (a) portrays the evolution of eigenvalues of 
≈
S T 

≈
S for one 

f the cases with T 0 = 1400K and φ0 = 1.0. The value of λ1 (t) is two

rders of magnitude larger than λ2 (t) during the course of igni- 

ion, except around temperature inflection point 2 ( T in f ) in which 

1 (t) is six orders of magnitude larger than λ2 (t) . This means that 
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Fig. 7. Skeletal model reduction for ethylene-air: (a) eigenvalues of 
≈
S 

T ≈
S with r= 3 for ignition simulation initialized with T 0 = 1400K and φ= 1.0. λ1 (t) is orders of magnitude 

larger than the others during ignition. (b) Species ranking with χε associated with f-OTD models. Only first 50 species in USC model are presented here. 

Fig. 8. Skeletal model reduction for ethylene-air: (a) predicted ignition delays, (b) flame speeds, and (c) extinction strains for skeletal models generated from USC. Ignition 

delays are generated with φ0 = 1.0, flame speeds with T 0 = 300K, both at 1atm pressure. Extinction curves are generated for ethylene-air diffusion flame at 1atm pressure and 

T 0 = 300K. 

o

n

i  

r

t

S  

b

r

g

s

fi

o

c

e

n

m

S

nly one of the modes of 
≈
S T 

≈
S is dominant during the ignition phe- 

omenon and contains more than 95% of the energy of the dynam- 

cal system ( λ1 (t) / �i λi (t) > 0 . 95 ). Figure 7 (b) shows the species

anking based on the process described in Section 2.2.2 . Similar 

o the species ranking of hydrogen-oxygen system presented in 

ection 3 , H, OH, O and O 2 appear as the most important species

ased on their associated values on χ vector for the most sensitive 

eaction, which is H+O 2 → OH+O. Different skeletal models can be 

enerated by putting different threshold χε on χ and eliminating 

o

7 
pecies with χ < χε and their associated reactions. Our goal is to 

nd a model which can reproduce the results of USC model based 

n the criteria mentioned in Section 4.1 with a pre-determined ac- 

uracy, e.g. less than 5% error. Table 1 provides the details of mod- 

ls generated with varying threshold values of χε . 

Figures 8 (a) and 9 (a) demonstrate that f-OTD models with 

 s ≥ 32 perfectly predict the ignition delays for the stoichiometric 

ixture. The SK32 model under-predicts the ignition delays while 

K38 and SK31 (with slightly different rate constants from USC) 

ver-predict the ignition delays, and the relative error associated 
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Fig. 9. Skeletal model reduction for ethylene-air: relative errors in (a) predicted ignition delays, and (b) flame speeds for skeletal models generated from USC. Ignition delays 

are generated with φ0 = 1.0, flame speeds with T 0 = 300K, both at 1atm pressure. 

Fig. 10. Skeletal model reduction for ethylene-air: Evolution of (a) C 2 H 4 , (b) HCO, (c) HCCO, and (d) CO 2 mass fractions as predicted by different models in Table 1 with 

T 0 = 1400K, φ= 1.0, and at 1atm pressure. f-OTD models with n s ≥ 32 show strong ability in reproducing USC results. 
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Table 1 

Model Characteristics. 

Model χε n s n r 

USC – 111 1566 

SK38 – 38 474 

SK32 – 32 412 

SK31 – 31 348 

f-OTD-1 3e-2 28 324 

f-OTD-2 2e-2 32 386 

f-OTD-3 1e-2 38 472 

f-OTD-4 3e-3 43 570 

f-OTD-5 2e-3 46 610 

e

M

m

t

P

c

i

t

r

s

f

a

ith these three models are usually higher than f-OTD models 

ith n s ≥ 32 . Figure 8 (b) and 9 (b) compare the laminar premixed

ame speeds as predicted by different models initialized with 

 0 = 300K. The f-OTD-2, SK31 and SK32 show largest deviations 

rom the USC model. The f-OTD models with n s ≥ 38 and SK38 

ave the best flame speed predictions, while f-OTD models show 

etter comparisons at lower and upper bounds of φ0 . Figure 8 (c) 

ompares the extinction strain rates. All f-OTD models show 

ood agreements in estimating these rates. This is the toughest 

anonical flame feature to predict. The SK38 model under-predicts 

he maximum temperatures indicating the influence of optimized 

ate constants in Ref. [2] . 

Figure 10 portrays the species mass fraction evolution for some 

ey species in a mixture initialized with φ0 = 1.0 and T 0 = 1400K. 

his figure highlights the ability of f-OTD-2 (with 32 species) in 

redicting ignition. Moreover, all f-OTD models (with n s ≥ 32 ) pro- 

ide a better estimate for the maximum mass fraction of species 

hown in Fig. 10 as compared with SK32 model. 

Observing the results in Fig. 8 , it is clear that f-OTD-1 is not a

ood skeletal model for USC. This is attributed to the elimination of 

 2 O, CH 2 OCH 2 , CH 3 O, and H 2 O 2 in this 28 species model. Although

-OTD-1 cannot predict the ignition delay accurately, it performs 

easonably well in estimating laminar flame speeds and maxi- 

um temperatures for extinction. As mentioned above, f-OTD-2 
8 
stimates the ignition delays and extinction strain rate reasonably. 

oreover, its flame speed predictions also match those via SK32 

odel. We recommend this model when 10 % of relative error is 

olerable in predicting ignition delays and laminar flame speeds. 

redictions with f-OTD-3, f-OTD-4, and f-OTD-5 for all the test 

ases are so close to USC, and become more precise by increas- 

ng n s . Comparing f-OTD-3 with f-OTD-5 based on their applica- 

ions in reproducing USC model and their computational costs, we 

ecommend the former. As Fig. 9 shows, f-OTD-3 predicts the re- 

ults of USC with less than 5 % relative error. Here are some dif- 

erences/similarities between participating species in f-OTD models 

nd SK32 and SK38: 
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Fig. 11. Skeletal model reduction for ethylene-air: comparison of (a) ignition delay, (b) flame speed, and (c) extinction strain as predicted by the detailed model (USC) and 

the f-OTD-3 skeletal model. Ignition delays are generated for φ0 = 1.0, and flame speed and extinction simulations are performed with T 0 = 300K. 
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• f-OTD-2 and SK32 (generated by DRG) both with 32 species 

have 27 species in common. f-OTD-2 has C, C 2 H, C 2 O, C 4 H 6 ,

CH 2 OCH 2 but SK32 has C 2 H 6 , C 3 H 6 , CH 3 CHO, aC 3 H 5 , nC 3 H 7 . 

• f-OTD-3 and SK38 (generated by PCA) both with 38 species 

have 36 species in common. f-OTD-3 contains C 3 H 3 and pC 3 H 4 

while SK38 has aC 3 H 5 and iC 4 H 3 . 

• f-OTD-3 has 30 species in common with SK32. 

Figure 11 demonstrates the ability of f-OTD-3 in predicting ig- 

ition delay, laminar flame speed and extinction strains for three 

ifferent pressures: 0.5atm, 1.0atm, and 3.0atm. f-OTD-3 shows 

trong ability in reproducing USC results. In this regard, it should 

e mentioned that the USC model contains certain reactions which 

re tuned for atmospheric pressure conditions. Thus, any large ex- 

ursions from 1atm, e.g. 0.1 or 10atm, require manual selection of 

lternate set of rate parameters; the process we have tried to avoid 

ere. We believe the range of pressure, i.e. 0.5 to 3atm (pressure 

atio of 6) provides a decent test of fall-off pressure effects in our 

esults. 

.3. Normalized or non-normalized sensitivities for f-OTD 

As mentioned earlier, f-OTD analyzes the eigen decompostion of 

 

T 
≈
S instantly instead of S T S in PCA ( Eq. 8 ). Using normalized sen-

itivities ( 
≈
S i j = 

α j 

ξi 

∂ξi 
∂α j 

) can produce numerical issues where mass 

ractions ( ξi ) approach zero. In this study we used the normalized 

ensitivities of species with mass fractions greater than a thresh- 

ld, e.g. 1.0e-6. This results in elimination of some of the rows of 
≈
S 

t each time step. 

Another approach is to analyze the eigen decompostion of S T S

nstead of 
≈
S T 

≈
S in f-OTD. This approach does not need a thresh- 

ld for species mass fractions, and results in almost exactly the 

ame skeletal models (f-OTD 

∗s models). f-OTD-1 ∗, f-OTD-3 ∗ are ex- 

ctly the same as f-OTD-1 and f-OTD-3, while f-OTD-2 ∗, f-OTD- 

 

∗, and f-OTD-5 ∗ have only one species difference with f-OTD-2, 

-OTD-4, and f-OTD-5, respectively. f-OTD-2 ∗ uses C 4 H 2 but f-OTD- 

 uses C 2 O instead, f-OTD-4 ∗ uses H 2 C 4 O but f-OTD-4 uses aC 3 H 4 

nstead, and f-OTD-5 ∗ uses CH 2 OH but f-OTD-5 uses C 2 H 3 CHO in- 

tead. Moreover, the test results do not show significant differences 

or this one species difference. 

. Conclusions 

Instantaneous sensitivity analysis with f-OTD is described and 

mplemented for a systematic skeletal model reduction. A key fea- 

ure of the f-OTD approach is that it factorizes the sensitivity ma- 

rix into a multiplication of two low-ranked time-dependent ma- 

rices which evolve based on evolution equations derived from the 

overning equations of the system. Modeled sensitivities are then 
9 
ormalized and the most important reactions and species of a de- 

ailed model are ranked in a systematic manner based on the cor- 

elations between normalized sensitivities. It is also shown that 

nalyzing the correlations between the non-normalized sensitivi- 

ies also result in almost the same skeletal models. The signifi- 

ance of the f-OTD approach in model reduction is described for 

ydrogen-oxygen combustion, and its application for skeletal re- 

uction is demonstrated for ethylene-air burning. The generated 

keletal models are compared based on their ability to predict ig- 

ition delays, flame speeds and diffusion flame extinction strain 

ates. f-OTD demonstrates strong ability in eliminating unimpor- 

ant species and reactions from the detailed model in an efficient 

anner. We recommend using f-OTD-2 and f-OTD-3 as skeletal 

odels for USC with 10 % and 5 % relative errors, respectively, in 

stimating USC ignition delays and laminar flame speeds. 

The extension of this study would include sensitivity analysis 

ased on the most effective thermochemistry parameters e.g. acti- 

ation energies, formation enthalpies, and transport properties e.g. 

eat and mass diffusivities. Most importantly, as shown recently 

33] , f-OTD can be used in solving PDEs for multi-dimensional 

ombustion problems in a cost-effective manner — by exploiting 

he correlations between the spatiotemporal sensitivities of dif- 

erent species with respect to different parameters. This analysis 

an be especially insightful for problems containing rare events e.g. 

eflagration-detonation-transition by providing more insight about 

he global effective phenomena. Moreover, the f-OTD provides an 

xcellent setting for development of reduced schemes in other 

echanisms, for example thermonuclear reactions [53] . 
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