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ABSTRACT

The stable numerical integration of shocks in compressible flow simulations relies on the reduction or elimination of Gibbs phenomena
(unstable, spurious oscillations). A popular method to virtually eliminate Gibbs oscillations caused by numerical discretization in under-
resolved simulations is to use a flux limiter. A wide range of flux limiters have been studied in the literature, with recent interest in their
optimization via machine learning methods trained on high-resolution datasets. The common use of flux limiters in numerical codes as plug-
and-play blackbox components makes them key targets for design improvement. Even for deterministic dynamical models, numerical uncer-
tainty is introduced via coarse-graining required by insufficient computational power to solve all scales of motion. Conventional flux limiters
are deterministic and lack the capacity to address uncertainties, both aleatoric (inherent randomness) and epistemic (modeling uncertainty
due to limited knowledge), which arise in coarse-grained numerical simulations. Here, we introduce a conceptually distinct type of flux lim-
iter that is designed to handle the effects of randomness in the model and uncertainty in model parameters. Unlike traditional single-function
flux limiters, these new probabilistic flux limiters incorporate multiple flux limiting functions, each applied with a learned probability drawn
from high-resolution data to mitigate the effects of uncertainty in numerical simulations. This approach departs from traditional single-
function limiters by explicitly modeling and incorporating uncertainty into the shock capturing process. Using the example of Burgers’ equa-
tion as a testbed, we show that a machine learned, probabilistic flux limiter may be used in a shock capturing code to more accurately capture
shock profiles. In particular, we show that our probabilistic flux limiter outperforms standard limiters and can be successively improved upon
(up to a point) by expanding the set of probabilistically chosen flux limiting functions.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0254069

I. INTRODUCTION

Numerical methods for simulating fluid flows are inherently lim-
ited by the need to discretize the originally continuous flow equations.
Since fully resolving all the dynamically relevant spatiotemporal scales
is not feasible for most practical applications on today’s computers,
fluid dynamics computations are generally limited to the use of coarse
meshes.

One of the most evident drawbacks of using coarse meshes arises
when shocks form in compressible flows. This issue is significant in
applications such as high-energy-density physics,1 high-speed aerody-
namics and hypersonic flight,2 and supersonic combustion, detonation
engines, or astrophysics, where accurate shock capture is critical. The
physical width of the shock may be orders of magnitude smaller than
the mesh spacing, which results in spurious oscillations in solution
fluxes about the shock, unless an additional dissipation mechanism is
provided to artificially widen the shock so it becomes representable on
the actual mesh. This problem becomes more acute for higher order

schemes, which are desirable in smoother regions of the flow due to
their lower truncation errors but which have less dissipation to regular-
ize the coarse mesh equations around the shock. This type of oscilla-
tion due to the Gibbs effect3 does not occur for first-order flux
approximations.

To resolve the tension between the benefit of using high-order
derivatives when possible with the need to reduce the Gibbs effect, flux
limiters were introduced in so-called shock capturing methods.4–8 A
flux limiter, /, interpolates between low- and high-order derivatives
depending on the flux ratio between grid points in a numerical flow
simulation, ri ¼ ui�ui�1

uiþ1�ui
, (here, ui denotes a flow variable at grid loca-

tion i). In regions of sharp differences between flow variables, first-
order differences are favored in the interpolation to reduce spurious
oscillations, but in smooth solution regions, high-order derivatives are
favored to provide more accurate computation of flow quantities.

A wide range of flux limiters has been studied in the literature.9

Many of these limiters were designed to fit within the 2nd-order TVD
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region.10 Full containment of a flux limiter within the 2nd-order TVD
region is a sufficient, but not necessary, condition to eliminate the pos-
sibility of Gibbs effects in 2nd-order shock capturing schemes [see dis-
cussion around Eqs. (2.15) and (2.16) in Ref. 10] Some standard flux
limiters, such as the van Albada limiter, work well but do not fit within
this region. Similarly, machine learned flux limiters for the coarse-
grained Burgers’ equation have a unique functional appearance and lie
outside the 2nd-order TVD region, yet still outperform other limiters
in accuracy.11 All limiters previously considered in the literature9,11

consist of a single flux limiting function, /ðrÞ, used to deterministically
interpolate between first- and high-order fluxes. None of the existing
methods account for the randomness (e.g., parameter sensitivities12

and subgrid variability13) in the problem.
This article is a first attempt to account for the probabilistic

nature of the problem. Our primary contribution in this article is the
introduction of a new, probabilistic conception of flux limiters.

In the presence of incomplete, imperfect knowledge (sometimes
called epistemic uncertainty) about the operators involved in integrat-
ing non-linear flows, and especially in a high-consequence decision-
making context, it makes sense to adopt a conservative posture to
uncertainty quantification (UQ). This, in turn, naturally leads to UQ
being posed as an optimization or machine learning problem, as this
can facilitate estimates of bounds on the quantities of interest in the
system, in our case a flux limiter.

Often, the UQ objective is to determine or estimate the expected
value of some measurable quantity of interest, given an input distribu-
tion and a response function. However, in practice, the true response
function and input distribution are rarely known precisely.
Commonly, there may be some knowledge about the probability distri-
bution and response function (perhaps through measurements per-
formed with some degree of statistical confidence) such that the true
input distribution and response function are bounded by knowledge of
the system. This information can then be encapsulated in a probability
measure—what a Bayesian probabilist would call a prior—so that we
can perform (an optimization or) sampling to (calculate or) estimate
(bounds on) the expected value of the quantity of interest by trans-
forming the problem coordinates into a hypercube that includes the
original coordinates X and the probability P associated with the posi-
tion on X as defined by the probability measure.14,15

With this in mind, here we consider coarse-grained flow simula-
tions to be non-deterministic, since they necessarily ignore subgrid
information. Below, we discuss a framework for implementing a type
of shock capturing method that uses a (simple) probabilistic structure
for a shock capturing scheme, where a fluid simulation is thought of as
a probabilistic operator on data sampled from a distribution.

Specifically, we introduce a new type of flux limiter—a probabilis-
tic flux limiter (see Fig. 1). We have taken the approach of using con-
cepts from uncertainty quantification to learn optimal flux limiters in a
Monte Carlo context. The resulting probabilistic flux limiter consists
of a set of flux limiters with associated probabilities, ð/m; pmÞ :

�
m 2 ½1;…;ND�g, where

PND
m pm ¼ 1. In contrast to standard, deter-

ministic flux limiters (Fig. 1, top panel), each evaluation of a probabil-
istic flux limiter (Fig. 1, bottom panel) randomly selects one of ND

limiters from a probability distribution to be used in the flux
computation.

Below, with the example of Burgers’ equation16–18 we demon-
strate that probabilistic flux limiters may be learned for coarse-grained

fluid simulations from high-resolution data. We further show that
they outperform other non-probabilistic flux limiters from the litera-
ture, including deterministic machine learned flux limiters. We use
Burgers’ equation as a benchmark problem due to its exact solvability,
allowing precise evaluation of limiter performance. While our focus
here is on flux limiters, our approach can be readily extended to slope
limiters.

II. METHODS

To evaluate the performance of probabilistic flux limiters, we
employ a numerical framework based on the 1D viscous Burgers’
equation. This choice allows us to rigorously test shock-capturing per-
formance under controlled conditions with an exactly solvable bench-
mark problem. The equation is discretized on a coarse grid, and we
simulate shocks using a second-order shock capturing scheme with
flux limiters. Our machine learning approach is designed to optimize
the probabilistic flux limiter by minimizing discrepancies between
coarse-grained simulations integrated with flux limiter scheme and
high-resolution ground truth data. To facilitate handling the data, the
coarse grid discretization is a subset of the points on the fine grid.

A detailed framework for our machine learned flux limiter theory
was introduced in.11 Below, we first summarize the deterministic,
second-order shock capturing method that we used, show how we
parameterized the flux limiter, and how we optimized the discretized
limiter. We then go on to show how to modify this approach for a
probabilistic flux limiter.

For low- and high resolution, respectively, we choose Lax–
Friedrichs (LF)

FIG. 1. A probabilistic flux limiter expands the flux limiter concept from an individual,
deterministic interpolating function (top panel) to a set of interpolating functions
applied probabilistically with probabilities drawn with replacement from a distribution
learned from high-resolution data (bottom panel). In the example shown here, the
probabilistic limiter consists of two flux limiters randomly selected with probability p
and 1� p for each flux computation.
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f lowi61
2
¼ f LFi61

2
¼ 1

2
FðuiÞ þ Fðuiþ1Þ7a

Dx
Dt

ðui61 � uiÞ
� �

;

a ¼ maxu

���� @F@u
����;

(1)

and Lax–Wendroff (LW) fluxes

f highi61
2
¼ f LWi61

2

¼ 1
2

FðuiÞ þ Fðuiþ1Þ7 Dt
Dx

@F
@u

ui61
2ð Þ

� �
ðFðui61Þ � FðuiÞÞ

� �
;(2)

where F ¼ u2
2 � � @u

@x is the flux defined for Burgers’ equation. We now
write the conservative form of Burgers’ equation as

uiðtnþ1Þ ¼ uiðtnÞ � Dt
Dx

DFi; (3)

with

DFi ¼ DFi
1 þ /ðriÞDFi

2 þ /ðri�1ÞDFi
3; (4)

where DFi
1, DF

i
2, and DF

i
3 are written explicitly as

DFi
1 ¼ f LFiþ1

2
� f LFi�1

2
;

DFi
2 ¼ f LWiþ1

2
� f LFiþ1

2
;

DFi
3 ¼ � f LWi�1

2
� f LFi�1

2

� 	
:

(5)

We discretize the flux-limiter that we will optimize, /ðrÞ, in
piecewise linear segments, where the kth segment has the form

/kðrÞ ¼ /0 þ b1ðr2 � r1Þ þ b2ðr3 � r2Þ þ � � � þ bkðr � rkÞ
þ 0kþ1 þ � � � þ 0K ; (6)

and r 2 ½rk; rkþ1Þ, k 2 1;…;Kf g, /0 ¼ 0, and bi are slope coeffi-
cients. Note that for r � 0, /ðrÞ ¼ 0 and for r ¼ rK , all terms in Eq.
(6) are non-zero. Below, we use vector notation, b ¼ ½b1; b2;…;
bk; bkþ1;…; bK �T for slope coefficients. Equation (6) can be rewritten
as /kðrÞ ¼ bTDrk with Drk defined as

Drk ¼ r2 � r1; r3 � r2;…; r � rk; 0;…; 0½ �T: (7)

To optimize the discretized flux-limiter in Eq. (6), we define the
mean squared error between N input–output pairs, oið uic

� 
Þ; gi� 


C ¼ 1
2

XN
i¼1

ðoið uic
� 
Þ � giÞ2; (8)

as the cost. Here, gi is the high-resolution fluid velocity at the corre-
sponding ith coarse grid position at time tnþ1, N is the number of
coarse grid points, and oi is the shock-capturing method’s prediction
of the fluid velocity at time tnþ1 from data at the previous time step. oi
is a functional of a subset of data points uic

� 
 ¼ ui1c ; u
i2
c ; u

i3
c ;…;

�
uiNc
c g indicated relative to the ith grid position at time step tn. Here, we

used Nc ¼ 6 data points at time tn to predict a data point gi at tnþ1,
i.e., uic

� 
 ¼ ui�3; ui�2; ui�1; ui; uiþ1; uiþ2f g. Thus, oið uic
� 
Þ is the

integration obtained with the flux-limiter method defined in Eqs. (1),
(2), (6) given a set of 6-points uic

� 


oið uic
� 


; tnþ1Þ ¼ uiðtnÞ � Dt
Dx

DFið uic
� 


; bif g; tnÞ: (9)

Here, DFið uic
� 


; bif g; tnÞ, defined via Eqs. (4) and (5), is the difference
of the two fluxes. The minimum of the cost function, Eq. (8), can be
computed exactly by finding the unique root, b, of the equation
@L
@b ¼ 0, that is,

XN
i¼1

ui � gi � Dt
Dx

DFi

� �
� Dt
Dx

� �
DsiDF

i
2;3 ¼ 0: (10)

In Eq. (10), DFi ¼ DFð uic
� 


; bif g; tnÞ is defined via Eqs. (4) and (5).
Dsi ¼ ½Dri;Dri�1� is a K � 2 matrix with Dri defined in Eq. (7).
DFi

2;3 ¼ ½DFi
2;DF

i
3�T with components DFi

2 and DFi
3 defined via Eq.

(5). Solving Eq. (10) reduces to solving a linear equation A � b ¼ C
that yields b ¼ A�1 � C. Here, A ¼ DrF � ðDrFÞT and C ¼ Dx

Dt

PN
i¼1

�Oi
GDr

i
F , where DrF is a K � N matrix with each column DriF a

K � 1 vector defined as DriF ¼ ðDsiÞðDFi
2;3Þ. Finally, Oi

G ¼ ui � gi
� Dt

DxDF
i
1. Note that DF

i
1 is defined via Eq. (5) and we recall that K is

the size of the discretized flux limiter (i.e., the size of b). Hence, each
matrix A (or C) is a function of N training data points. We chose to
discretize the flux limiter such that each segment contained an equal
number of training data points.

In Ref. 11, we investigated the machine learning of deterministic
flux limiters and found solutions obtained by optimizing with respect
to a range of parameters, including coarse graining, the total degrees of
freedom of the limiter, and the viscosity, ðCG;K; lÞ. This was essen-
tially a meta-analysis given the costs, C (8), across the full parameter
ranges. Below, we extend this machine learning approach to optimiz-
ing probabilistic flux limiters (see Fig. 2).

If we define our coordinate space, X , by ðCG;K; lÞ, then trans-
formation into measure space gives us ðX ;PÞ, with P defined by
ðPCG; PK ; PlÞ. In this approach, our previous, deterministic flux limit-
ers11 were described by a probability distribution that was composed
of a single Dirac delta function in each direction in measure space
(and hence was deterministic). The number of Dirac delta functions
used was ND ¼ ð1; 1; 1Þ, or more compactly, ND ¼ 1.

In the current work, we extend our flux limiters to have a proba-
bilistic nature by defining our probability measure to be composed of
up to ND ¼ 3 Dirac delta functions per direction. As we will assume
we have incomplete information on l, but can specify CG and K
exactly, we have ND ¼ ð1; 1; 3Þ. From here onward, as we only have
uncertainty in l, we will use the compact form of ND, and will denote
P simply with p :¼ Pl as a fourth coordinate. The resulting probabil-
istic flux limiter can then be thought of as a set of piecewise-linear flux
limiters with associated selection probabilities, ð/m; pmÞ : m 2�
½1;…;ND�g, with

PND
m pm ¼ 1. Each limiter /m :¼ /mðCG;K; lÞ

can then be optimized on the coordinate hypercube defined by
ðCG;K; l; pÞ.

For the probabilistic flux limiters, ð/m; pmÞ : m 2 ½1;…;ND�
� 


,
that we consider here, withND ¼ 1; 2; 3, we have

DF � DFð uic
� 


; bmi
� 


; pmf g; lmf g; tnÞ; (11)

replacing DF in Eq. (9).

A. Dataset

High-resolution data were generated by solving Burgers’ equation
with a fine spatial resolution (Dx ¼ 2:5� 10�3 on a domain
x 2 ½�1; 1�) and a small time step (Dt ¼ 10�4 for a time interval
t 2 ½0; 0:4�). Random initial conditions with smooth profiles were
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used to ensure a diverse set of solutions, including steep gradients and
shocks. The dataset consists of 60 distinct Burger’s high-resolution
simulations evolved from 60 random initial conditions. Among these
60 simulations, 50 simulations (80%) were allocated for training and

the remaining ten simulations (20%) reserved for testing. For
each simulation, coarse-grained data were derived by subsampling
the HR data using a coarse-graining within the range CG ¼
½2; 3;…10� to represent different levels of resolution. For each CG sim-
ulation, the total number of training data points that enter the cost
function is thus 160M divided by the corresponding CG factor.
During training, the cost function decreased to small values, indicating
good convergence.

B. Probabilistic solutions

Figure 3 captures the results of an optimization of a probabilistic
flux limiter over a parameter space with CG ¼ ½2; 3;…; 10�,
K ¼ ½2; 3;…; 38�, and l ¼ ½0:002; 0:03� with probabilities pi ¼ ½0; 1�
with the constraint p ¼ p1 þ p2 þ p3 ¼ 1 and ND ¼ 3. Mean and var-
iance constraints defining the range of viscosities lm were tuned to be,
respectively, 4:0e�3 and 1:0e�4. Typically, stable solutions were
attained [see Fig. 3(a)–3(c)] after approximately 60 iterations of the
optimizer.

The three blue curves in Fig. 3(a) main plot and inset represent
the three corresponding pairs (li, pi), where we use the same line style
for each pair. The dominant contributions to the optimized limiters
came from (l1, p1) and (l2, p2) while the remaining pair (l3, p3) con-
tributed at a lower probability to the solution.

Explicit values for the endpoints of the linear segments and the
slopes of the piecewise-linear flux limiting functions are presented in
Tables VII and VIII in the Appendix. The optimization for the limiter

FIG. 2. Cartoon of the hypercube of inputs for the optimization of a probabilistic flux
limiter. A mean constraint on viscosity (l) is visualized as a fulcrum, and a variance
constraint on l is seen as a spring. Inputs to a flux limiter are specified by coarse
graining (CG), total degrees of freedom of the limiter (K), and probability-weighted
viscosity ðl; pÞ. In this figure, the probability distribution of possible flux limiters is
modeled by a discrete distribution of l composed of ND ¼ 2 Dirac delta functions
optimized over the parameter space ðCG; K; l; pÞ with PND

m pm ¼ 1. In the text,
we explore distributions of l with up to ND ¼ 3.

FIG. 3. Optimization of a probabilistic flux limiter with ND ¼ 3. (a) Optimized forms of the three flux limiting functions /1, /2, and /3 after 60 iterations, the thicker the line the
larger the probability. The probability distribution of the three corresponding viscosity values, l1;l2, and l3 [also shown in (b)] as a function of training iteration are depicted in
the inset. (b) Plot of the three viscosity values l1;l2, and l3, bin number K, and coarse graining CG vs iteration step. (c) Value of the cost function vs iteration step.
Optimization was performed on the entire parameter space CG ¼ ½1; 2;…; 10�; K ¼ ½2; 3;…; 38�; l ¼ ½0:002; 0:03] with p ¼ p1 þ p2 þ p3 ¼ 1.
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in Fig. 3 was performed over the entire computational parameter
range, giving a limiter that worked best on average in this parameter
space. An additional probabilistic flux limiter is depicted in the
Appendix, Fig. 5. For the optimization in Fig. 5, the coarse graining
parameter was constrained to CG ¼ 8. Note the differences found
toward the tail (large r) of the flux limiters in Figs. 3 and 5, resulting
from the tighter constraint on CG.

We studied probabilistic flux limiters obtained for the cases ND 2
½1; 2; 3� (i.e., sets of one, two, or three flux limiting functions with asso-
ciated selection probabilities) and compared these probabilistic flux
limiters with van Leer and van Albada 2 (note that the ND ¼ 1 case
was studied in Ref. 11 and was shown to outperform 12 flux limiters,
including van Leer and van Albada 2, from the literature. In Tables I
and II, we present mean squared errors (MSEs) measuring the shock
capturing prediction oif g as compared to ground truth, high-
resolution data gif g

emean ¼ 1
2N

XN
i¼1

ðoi � giÞ2: (12)

In Tables III and IV, we present MSE between a sinusoidal solu-
tion to Burgers’ equation and the shock capturing prediction. For
ND ¼ 1, our learned limiter performs as well or better than the deter-
ministic van Leer and van Albada 2 limiters across a wide range of
coarse-graining factors (CG ¼ 2 to 10).11 For ND ¼ 2, the learned
probabilistic limiter shows a marked improvement in shock represen-
tation for smaller viscosities (l 2 ½0:002; 0:01�) where sharper gra-
dients are more prevalent. For ND ¼ 3, the learned limiter achieves the
highest accuracy across the full range of tested viscosities
(l 2 ½0:002; 0:03�), with diminishing returns compared to ND ¼ 2.
This diminishing gain suggests that two dominant limiters are often
sufficient for accurate reconstructions.

For ND > 1, we obtain at least two pronounced contributions to
the total probability distribution. ForND ¼ 2, our optimization yielded
two Dirac delta functions with strong (i.e., high probability) contribu-
tions of pi � 0:5 each, while for ND ¼ 3 our optimization is shown in
Fig. 3 with two flux limiters with strong contributions and one flux
limiter with stable but smaller probability, p3 � 0.

In Table V, we evaluated MSE obtained from five charac-
teristic viscosities, l (left column), on test cases with sinusoidal
initial conditions, using machine-learned probabilistic flux limit-
ers (for ND ¼ 1; 2; 3). These errors are compared to traditional
van Leer and van Albada 2 methods, with a coarse graining of
CG ¼ 8. The optimization of learned flux limiters was thus con-
strained by CG ¼ 8, with other parameters varying within K ¼
½2; 3;…; 38� and li ¼ ½0:002; 0:03�. We used CG ¼ 8, correspond-
ing to dt ¼ 8� 1:0e�4 and dx ¼ 8� 2:5e�3. The lower bound
case of l ¼ 0:002 is depicted in the top row. The viscosity
(l ¼ 0:00498) was average of the three associated viscosities
obtained with the ND ¼ 3 flux limiter. This was also the case
with ND ¼ 2 flux limiters. The next viscosity (l ¼ 0:00625) was
derived from ND ¼ 1 flux limiter, and the final two l values
were selected from the lower and upper bounds of the viscosities
used over which we trained the probabilistic flux limiter. Details
of the probabilistic flux limiters’ optimized characteristic param-
eters are shown in Table VI.

In Fig. 4, we plot solutions to the analytically solvable sine wave
problem obtained using probabilistic flux limiters for ND 2 ½1; 2; 3� in
comparison with ground truth (blue connected circles), van Leer, and
van Albada 2 for l ¼ 0:002. Note that this plot captures a sufficiently
large time such that the shock has evolved to be sharp. All machine
learned probabilistic flux limiters outperformed van Leer and van
Albada 2 limiters, with the ND ¼ 3 case (black dashed line) perform-
ing with the highest accuracy. This result was consistent across all

TABLE I. Mean reconstruction errors (emean) obtained on the test set (data not trained and random initial conditions) using machine learned probabilistic flux limiters
(ND ¼ 1; 2; 3) as compared to van Leer and van Albada 2. Learned flux limiters were optimized on the entire parameter range of K ¼ ½2; 3;…; 38�, CG ¼ ½2; 3;…; 10�, and all
li ’s are constrained to be in the interval li ¼ ½0:002; 0:03�.

FLs van Leer van Albada 2 ND ¼ 1 ND ¼ 2 ND ¼ 3

Mean Error 0.71 � 10�3 0.0768 � 10�3 0.0762 � 10�3 0.0758 � 10�3 0.0753 � 10�3

TABLE II. Mean reconstruction errors (emean) obtained on the test set (data not trained and random initial conditions) using machine learned probabilistic flux limiters
(ND ¼ 1; 2; 3) as compared to van Leer and van Albada 2 for CG ¼ 8. Learned flux limiters were optimized while constraining the coarse graining to CG ¼ 8 and the other
parameters are in the ranges K ¼ ½2; 3;…; 38�, and li ¼ ½0:002; 0:03�.

FLs van Leer van Albada 2 ND ¼ 1 ND ¼ 2 ND ¼ 3

Mean Error 0.71 � 10�3 0.0768 � 10�3 0.0764 � 10�3 0.0761 � 10�3 0.0754 � 10�3

TABLE III. Mean reconstruction errors (emean) obtained with sinusoidal initial condition using machine learned probabilistic flux limiters (ND ¼ 1; 2; 3) as compared to van Leer
and van Albada 2. Learned flux limiters were optimized on the entire parameter range of K ¼ ½2; 3;…; 38�, CG ¼ ½2; 3;…; 10�, and all li ’s are constrained to be in the interval
li ¼ ½0:002; 0:03�.

FLs van Leer van Albada 2 ND ¼ 1 ND ¼ 2 ND ¼ 3

Mean Error 0.926 � 10�3 0.235 � 10�3 0.367 � 10�3 0.194 � 10�3 0.189 � 10�3
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considered values of l, spanning the entire range from lower bound to
upper bound, as detailed in Table V.

It is important to note that when ND ¼ 1, the learned limiter per-
formed very well for the larger viscosity band but had a marginally
lower performance compared to van Albada 2 across the entire time
interval [0, 0.4] at small viscosities. Specifically when l ¼ 0:002, van
Albada 2 provided a slightly better solution than ND ¼ 1 at early times
before shocks occurred. For ND ¼ 1; 2; 3, the same optimized solu-
tions were employed across all study cases. In contrast, distinct solu-
tions utilizing van Leer and van Albada 2, along with corresponding
ground truths, were derived for each l. Thus, we expect that there
should be one viscosity for which the ND ¼ 1 limiter should match
very well the ground truth data. On the other hand, the ND > 1 limit-
ers exhibit smaller overall errors over the whole range of viscosities
and greater generalizibility potential when the viscosity is scaled by the
ground truth viscosity (see below).

For sinusoidal initial conditions, the learned probabilistic flux
limiters provided accurate shock reconstructions, maintaining stability
across the full range of tested viscosities. Furthermore, by scaling the
effective viscosities (lm) of the learned probabilistic flux limiters to
match test cases, the probabilistic framework retained accuracy even
outside its original training domain. This demonstrates the generaliz-
ability of probabilistic flux limiters to untrained cases.

To assess the practical feasibility of probabilistic flux limiters, we
compared their computational cost and memory footprint against
standard deterministic limiters. While probabilistic flux limiters intro-
duce an additional step of probabilistic selection, our implementation
maintains a comparable computational cost to standard flux limiters,
with only a marginal increase in overhead (	5%–7%) due to the stor-
age of learned probability distributions. Importantly, the accuracy
improvements gained by using probabilistic flux limiters justify this
minor computational tradeoff, particularly in under-resolved regimes
where traditional methods struggle.

C. Robustness and generalizability

In Table V, we studied a fixed probabilistic flux limiter learned
across various viscosities l. In the Appendix, Table IX, we show that,
by scaling the li values associated with a probabilistic flux limiter with
the l value of the high-resolution simulation, we can further extend
the domain of application of the limiter. This demonstrates the benefit
of viscosity scaling outside the optimal range expected from our
machine learning procedure.

The ND ¼ 3 case consistently showed the best performance:
mean profile indicating a sharper shock than the deterministic limiters
with smaller standard deviation, demonstrating its effectiveness in
handling coarse-grained simulations. Even though we plotted standard
deviation bands taken from 100 test runs, the widths of the bands were
barely distinguishable from the unaveraged lines plotted for the non-
probabilistic flux limiters.

The ND ¼ 3 case, in both Tables V and IX, slightly outperformed
the ND ¼ 2 case, while the traditional flux limiters of van Leer or van
Albada 2, i) had lower accuracy than that produced with machine
learned probabilistic flux limiters, and ii) showed “kinks” in the shock
reconstructions as compared to the smooth shock reconstructions
obtained by our probabilistic limiters. These kinks occurred when
l was sufficiently small. For instance, van Albada 2 exhibited oscilla-
tions for l ¼ 0:002, whereas the oscillations disappeared at higher

TABLE IV. Mean reconstruction errors (emean) obtained with sinusoidal initial condition using machine learned probabilistic flux limiters (ND ¼ 1; 2; 3) as compared to van Leer
and van Albada 2 for CG ¼ 8. Learned flux limiters were optimized while constraining the coarse graining to CG ¼ 8 and the other parameters are in the ranges
K ¼ ½2; 3;…; 38�, and li ¼ ½0:002; 0:03�.

FLs van Leer van Albada 2 ND ¼ 1 ND ¼ 2 ND ¼ 3

Mean Error 0.926 � 10�3 0.235 � 10�3 0.063 � 10�3 0.031 � 10�3 0.024 � 10�3

TABLE V. MSE [Eq. (12)] comparing high-resolution and flux limiter-based simulations averaged over t ¼ ½0; 0:4� and x ¼ ½�1; 1� for five different l with sinusoidal initial condi-
tions. Here, we compare machine learned probabilistic flux limiters (ND ¼ 1; 2; 3) to van Leer and van Albada 2 for a coarse-graining CG ¼ 8. The learned probabilistic flux lim-
iter was optimized over the ranges K 2 ½2; 3;…; 38� and li 2 ½0:002; 0:03�. The left column represents viscosities of a set of high-resolution (ground truth) simulations taken
from the range of viscosities that the probabilistic flux limiter was trained on. Numbers in bold show the superior performance. Note that all of the best performance results were
for machine learned limiters. For small viscosities (upper three rows), probabilistic flux limiters with ND ¼ 3 were best able to capture the sharper shocks.

l van Leer van Albada 2 ND ¼ 1 ND ¼ 2 ND ¼ 3

0.002 2.33 � 10�3 0.60 � 10�3 0.62 � 10�3 0.46 � 10�3 0.42 � 10�3

0.004 98 2.08 � 10�3 0.46 � 10�3 0.41 � 10�3 0.27 � 10�3 0.24 � 10�3

0.006 25 1.89 � 10�3 0.44 � 10�3 0.37 � 10�3 0.20 � 10�3 0.17 � 10�3

0.02 1.02 � 10�3 0.23 � 10�3 0.001 � 10�3 0.03 � 10�3 0.046 � 10�3

0.03 0.73 � 10�3 0.16 � 10�3 0.11 � 10�3 0.25 � 10�3 0.29 � 10�3

TABLE VI. Optimal selection probabilities, pi , and associated viscosities, li , of prob-
abilistic flux limiter functions used in Table V.

ND ¼ 1 ND ¼ 2 ND ¼ 3

p l1 p l1�2 p l1�3

1 0.006 25 0.09 0.005 62 0.09 0.005 11
0.91 0.004 92 0.08 0.004 39

0.83 0.005 02
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viscosities (e.g., l ¼ 0:1). As a control run, we examined van Albada 2
solutions with larger l values (e.g., l ¼ 0:1, larger viscosity) and these
“oscillations” disappeared. In contrast, probabilistic flux limiters main-
tained smooth, monotonic profiles across all tested viscosity ranges,
demonstrating their robustness even under challenging conditions.

The improvement in performance going from ND ¼ 2 toND ¼ 3
was significantly less than the improvement going from ND ¼ 1 to
ND ¼ 2. This (and consistently obtaining p3 � 0) suggests that the
ND ¼ 3 Dirac delta function case well approximates a distribution that
is sufficient to produce an optimal probabilistic limiter for the system
under consideration. While higher-order cases (ND > 3) could theo-
retically be explored, the current results suggest that ND ¼ 3 effectively
balances accuracy and training cost for the studied problem. By
leveraging their probabilistic structure, probabilistic flux limiters are
not only robust to variations in input conditions but also adaptable to
new scenarios. While static shocks serve as a rigorous benchmark due
to their exact solvability, our probabilistic flux limiter framework is not
restricted to this situation. We have validated the applicability of our
trained flux limiter to moving shocks, demonstrating steady recon-
struction errors of�1:87� 10�5.

III. DISCUSSION

In this paper, we presented a conceptually new type of flux limiter
that we refer to as a probabilistic flux limiter since its use consists of
drawing randomly from a set of flux limiting functions,
/m :¼ /mðCG;K; lÞ, optimized on the parameter hypercube defined
by ðCG;K; l; pÞ. Unlike deterministic flux limiters, probabilistic flux
limiters leverage probabilistic selection to dynamically adapt to varying
flow conditions, providing a robust framework for uncertainty quanti-
fication in coarse-grained simulations.

We quantified the effectiveness of machine learned probabilistic
flux limiters for integrating a coarse-grained, one-dimensional
Burgers’ equation in time. High-resolution training data with diverse
initial conditions allowed us to optimize probabilistic flux limiters for a
wide range of flows. Probabilistic flux limiters were trained on coarse-
grained data taken from a high-resolution dataset with random initial
conditions. With the learned probabilistic flux limiter, we then inte-
grated on unseen cases of both random and sinusoidal initial
conditions.

Our results consistently showed that the learned probabilistic flux
limiters can more accurately capture the overall coarse-grained evolu-
tion of the flow, and, in particular, shock formation relative to conven-
tional flux limiters, e.g., van Leer and van Albada 2. We chose only
these two common limiters from the literature for comparison since in
our previous machine learning application of flux limiters to numerical
solutions of the Burger’s equation, they proved the most accurate com-
pared to ten other flux limiters.11

Note that in Fig. 3(b), the optimal coarse-graining over all possi-
ble coarse-grainings was 2 for this case. This should be considered as
distinct from fixing CG ¼ 2 and optimizing over other parameters.
Further, the optimal K, in this case, was at the upper bound of the
parameter space. By extending the parameter space, we could poten-
tially have found better performance, but most of the segments in the
limiter were found in the range r � 1, and it was likely that they would
only marginally improve the limiter that was found.

The improvement that one finds as ND is incremented decreases.
This demonstrates that although there was significant improvement,
there were also diminishing returns as ND was increased from 2 to 3.

FIG. 4. Shock reconstruction in the case of Burgers’ equation learned with ND 2
½1; 2; 3� Dirac delta functions as compared to van Leer and van Albada 2 cases.
Ground truth is plotted as blue connected circles (HD). The inset is a magnification
of the solution at the upper left of the shock. Note that the probabilistic flux limiters
in this figure are plotted as gray (ND ¼ 2) and black (ND ¼ 3) bands indicating
mean plus and minus standard deviation. The probabilistic flux limiter with ND ¼ 3
used in this plot is given in Tables VII and VIII.

FIG. 5. Probabilistic flux limiter with coarse graining constraint. A probabilistic flux
limiter obtained with ND ¼ 3 and constraint CG ¼ 8. Top inset is parameter conver-
gence with respect to optimization iteration and bottom inset is probability p1; p2; p3
corresponding to the weights of the three Dirac delta functions as a function of opti-
mization iteration.
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We learned probabilistic flux limiters for ND up to 3, which
seemed to provide a sufficient number of Dirac delta functions to
approximate the optimal probabilistic flux limiter for the system studied
in this manuscript. The results obtained in this paper suggest potential
applications of probabilistic flux limiters for better shock capture in
more complex flow simulations. Flux limiters are widely used in com-
putational fluid dynamics solvers for applications that involve shock
waves, such as high-speed aerodynamics, supersonic combustion in
ramjets, and defense applications. Our probabilistic flux limiter extends
these methods by incorporating uncertainty, which accounts for subgrid
phenomena in under-resolved simulations. As simulations in hyper-
sonic flight, high-energy-density physics, and multi-material shock
interactions grow in complexity, our method provides a robust frame-
work for improving shock resolution and stability. While probabilistic

flux limiters offer significant advantages, certain tradeoffs remain.
Scaling to high-dimensional problems and optimizing for real-time
applications are active research areas. Additionally, while our results
demonstrate robust performance across viscosity regimes, further vali-
dation on multi-material shock interactions is needed. These challenges
are being addressed in our ongoing work extending probabilistic flux
limiters to Euler and Navier–Stokes simulations in higher dimensions.
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TABLE IX. MSE obtained for five different viscosities l, similar values as shown in Table V, on the test case of a sinusoidal initial condition using machine learned probabilistic
flux limiters (ND ¼ 1; 2; 3) as compared to van Leer and van Albada 2 for CG ¼ 8. Optimal flux limiters were learned while constraining the coarse graining to CG ¼ 8 and the
other parameters are in the ranges K ¼ ½2; 3;…; 38�, and li ¼ ½0:002; 0:03�. Unlike the results shown in Table V for ND ¼ 1; 2; 3 Dirac delta functions (where the learned flux
limiters were trained at different l than they were applied), here, these MSE were obtained with the limiter trained for the l in the far left column. Bold numbers indicate superior
performance.

l van Leer van Albada 2 ND ¼ 1 ND ¼ 2 ND ¼ 3

0.002 2.33 � 10�3 0.60 � 10�3 0.49 � 10�3 0.32 � 10�3 0.29 � 10�3

0.004 98 2.08 � 10�3 0.46 � 10�3 0.41 � 10�3 0.27 � 10�3 0.24 � 10�3

0.006 25 1.89 � 10�3 0.44 � 10�3 0.037 � 10�3 0.024 � 10�3 0.021 � 10�3

0.02 1.02 � 10�3 0.23 � 10�3 0.19 � 10�3 0.11 � 10�3 0.08 � 10�3

0.03 0.73 � 10�3 0.16 � 10�3 0.14 � 10�3 0.08 � 10�3 0.06 � 10�3

TABLE VII. Coordinates of three flux limiters in the case ND ¼ 3. Results obtained over the entire search range of CG ¼ ½2; 3;…; 10�; K ¼ ½2; 3;…; 38�; and li ’s are con-
strained to be in the interval li ¼ ½0:002; 0:03�.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22
r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39

65 0.0 0.23 0.38 0.49 0.57 0.64 0.69 0.73 0.77 0.80 0.83 0.86 0.88 0.90 0.92 0.94 0.96 0.97 0.99 1.00 1.01 1.05
1.07 1.09 1.11 1.13 1.16 1.13 1.19 1.22 1.27 1.33 1.41 1.52 1.69 1.96 2.51 4.15 10.00

65 0.0 0.24 0.40 0.51 0.59 0.65 0.70 0.74 0.78 0.81 0.84 0.86 0.89 0.91 0.93 0.94 0.96 0.98 0.99 1.00 1.02 1.04
1.05 1.07 1.09 1.11 1.13 1.15 1.18 1.22 1.26 1.32 1.40 1.50 1.66 1.92 2.45 4.03 10.00

65 0.0 0.24 0.40 0.51 0.59 0.65 0.70 0.74 0.78 0.81 0.83 0.86 0.89 0.91 0.93 0.94 0.96 0.98 0.99 1.00 1.02 1.03
1.05 1.06 1.08 1.10 1.12 1.15 1.18 1.21 1.26 1.31 1.39 1.49 1.65 1.91 2.42 3.98 10.00

TABLE VIII. Slopes of flux limiters in the case ND ¼ 3. Results obtained over the entire search range of CG ¼ ½2; 3;…; 10�; K ¼ ½2; 3;…; 38�, and li ¼ ½0:002; 0:03�. pi ’s are
in the interval pi ¼ ½0; 1� obeying unit sum for probability.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20 b21
b22 b23 b24 b25 b26 b27 b28 b29 b30 b31 b32 b33 b34 b35 b36 b37 b38

65 5.14 �3.01 1.11 �0.46 0.27 0.28 0.16 0.15 �0.06 0.25 0.26 �0.27 0.39 �0.19 0.15 0.42 0.10 �0.22 0.46 �0.11 0.15
0.07 0.24 �0.46 0.58 �0.25 0.41 0.01 0.02 0.19 0.02 0.18 0.12 0.01 0.27 0.24 0.34 �0.14

65 4.93 �2.88 1.04 �0.45 0.55 �0.05 0.20 0.07 0.38 �0.38 0.31 0.61 �0.47 0.05 0.45 0.20 �0.29 0.09 �0.05 0.10 0.60
�0.60 0.56 �0.04 �0.28 0.80 �0.61 0.43 0.26 �0.03 0.09 0.30 0.03 0.10 0.22 0.04 0.32 �0.15

65 4.86 �2.90 1.24 �0.55 0.47 �0.08 0.13 0.17 �0.08 0.42 0.39 0.19 �0.46 0.53 0.05 0.10 �0.07 0.15 �0.01 0.31 0.07
0.02 0.05 0.33 �0.20 0.16 �0.32 0.36 0.01 0.10 0.19 0.03 0.20 0.08 0.30 �0.05 0.32 �0.14
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APPENDIX: PARAMETERS OF OPTIMIZED FLUX
LIMITERS

Closed forms of the flux limiting functions (iteration 65) for
ND ¼ 3 are found in Tables VII and VIII.

We show in Fig. 5 the flux limiting functions and probabilities
(lower inset) at the termination of the optimization procedure for
ND ¼ 3 with the constraint CG ¼ 8. The yellow curve in the upper
inset of Fig. 5 represents the change in bin number K along with
corresponding viscosity l1; l2; l3 and probability p1; p2; p3, respec-
tively, in thick, medium, and thin solid lines (both insets).

The errors compared against several high-resolution simula-
tions with different viscosities are shown in Table IX. In this case,
the training was performed with the same viscosity as the high-
resolution case. For this application, increasing the number of Dirac
delta functions in the description of the ML limiter always leads to
lower errors.
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