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Abstract. The development of the Rayleigh-Taylor mixing layer is studied using data from an
extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k
compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This
includes a suite of simulations with grid size of 10242 × 4608 and Atwood number ranging from
0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well
as large Atwood number effects, and a high resolution simulation of grid size 40962 × 4032 and
Atwood number of 0.75. After the layer width had developed substantially, additional branched
simulations have been run under reversed and zero gravity conditions. While the bulk of the
results will be published elsewhere, here we present preliminary results on: 1) the long-standing
open question regarding the discrepancy between the numerically and experimentally measured
mixing layer growth rates and 2) mixing characteristics.

1. Introduction
Rayleigh-Taylor instability (RTI), which is generated at the interface between a heavy and light
fluid, subjected to a constant gravitational field in an unstable configuration, is of fundamental
importance in a multitude of applications ranging from fluidized beds, oceans and atmosphere,
to inertial, magnetic, or gravitational confinement fusion, and to astrophysics [1, 2]. Although
this instability has been subjected to intense research over the last 50 years, until recently,
numerical studies have been restricted to coarse mesh calculations. On the other hand, it is
notoriously difficult, in laboratory experiments, to accurately characterize and control the initial
conditions and provide the detailed measurements needed for turbulence model development and
validation. Thus, a large number of open questions remain unanswered about this instability
and even first order global quantities, such as the layer growth, are not completely understood
and still give rise to intense debate [3, 4]. Nevertheless, today’s petascale computers allow fully
resolved simulations of RTI at parameter ranges comparable to those attained in laboratory
experiments, but providing, in carefully controlled initial and boundary conditions studies, much
more information than the physical experiments. These extremely high resolution simulations
are enabling a look at the physics of turbulence and turbulent mixing in unprecedented detail,
hopefully contributing to a significant advance in our understanding of these phenomena.

The primary non-dimensional parameter characterizing differential acceleration effects is the
Atwood number, A = ρ2−ρ1

ρ2+ρ1
, where ρ1, ρ2 are densities of the light and heavy fluids, respectively.

The Atwood number ranges from 0 to 1. For air inter-penetrating helium, for which the density
ratio is ρ2

ρ1
≈ 7, the Atwood number is A ≈ 0.75. For air and hydrogen, A = 0.85. Similar Atwood

numbers occur for mixing between liquid hydrocarbons and air. In contrast, the Boussinesq
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approximation corresponds to A → 0 and a value of 0.05 is usually taken to define this limit.
Most previous numerical studies address the low to moderate A case (e.g. [5, 6, 1, 2, 3]) and
no Direct Numerical Simulations have been published for A > 0.5. Yet, the development of the
instability and the mixing itself are fundamentally different at high and low A [3]. For example,
our previous results in an idealized triply-periodic buoyancy driven flow show that the mixing is
asymmetric at large density ratios, with the pure light and heavy fluids mixing at different rates
[7, 8]. At high A, due to the tight coupling between the density and velocity fields, even when
the two fluids are incompressible, new cubic nonlinearities arise in addition to the quadratic
non-linearities of the incompressible Navier-Stokes equations. Moreover, the velocity field is no
longer solenoidal and the specific volume, a function of the amount of each material present, is
a new dependent variable. We refer to such flows as variable-density (VD) flows.

In this paper we present preliminary results from an extensive new set of very high resolution
Direct Numerical Simulations of Rayleigh-Taylor instability, covering the range of Atwood
number from 0.04 to 0.9. In particular, one of the simulations, at A = 0.75 and grid size
40962 × 4032, is the largest fully resolved instability simulation performed to date. Some
results concerning the base case A = 0.04 simulation have been discussed in Ref. [3] and
preliminary results from some of the simulations have been presented in Ref. [9]. Nevertheless,
the simulations are still being analyzed and the final results will be published elsewhere.

The paper is organized as follows. Section 2 presents the governing equations and numerical
approach. Results concerning the instability growth and mixing characteristics across the
Rayleigh-Taylor (RT) layer are discussed in section 3. A summary and concluding remarks
are provided in section 4.

2. Governing equations and numerical methodology
The RTI simulations presented address the case of miscible incompressible materials. Thus,
the two pure fluids have constant, but different, microscopic densities. In this case, the specific
volume and density of the mixture are related to the microscopic densities, ρl, and mass fractions,
Yl, l = 1, 2, of the two pure fluids by the relation

v =
1

ρ
=
Y1

ρ1
+
Y2

ρ2
(1)

which simply states that the total mass inside of a control volume is the sum of the masses of
the two fluids. Here Y1 + Y2 = 1 and the index “2” refers to the heavier fluid.

The resulting flow due to the instability development can be described by continuity and
momentum transport equations. For binary mixtures with Fickian diffusion, the species mass
fraction transport equations and relation 1 lead to a formula for the velocity divergence in terms
of the derivatives of the density field. In non-dimensional form, these equations are [3, 7, 5, 10]:

∂

∂t
ρ+ (ρuj),j = 0 (2)

∂

∂t
(ρui) + (ρuiuj),j = −p,i + τij,j +

1

Fr2
ρgi (3)

uj,j = − 1

Re0Sc
(lnρ),jj (4)

The viscous stress is Newtonian with

τij =
ρ

Re0
[ui,j + uj,i −

2

3
uk,kδij ] (5)
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and the mass diffusion Fickian, with constant diffusion coefficient, D. Note that Eqs. (2)-(3)
are the usual continuity and momentum transport equations for compressible flows. Equations
(2)-(4) can be rigorously derived from the fully compressible Navier-Stokes equations by letting
P, T →∞ such that p/(RT )→ constant. The latter condition ensures that the microdensities of
the two fluids are constant. If the densities of the two fluids are commensurate, then the mixture
density is close to its average value and Eqns. (2)-(4) lead to the Boussinesq approximation (see
Ref. [7] for the derivation).

In Eqns. 2-4, ui is the velocity in direction i, ρ is the mixture density, and p is the pressure.
The non-dimensional parameters in equations (2)-(4) are the computational Reynolds number,
Re0, Schmidt number, Sc, and Froude number, Fr:

Re0 = L0U0/ν0, Sc = ν0/D, F r2 = U2
0 /(gL0) (6)

with g, the magnitude of the gravitational acceleration, taken to be constant. Here gi are the
components of the unit vector in the direction of gravity, g = (0, 0,−1). The independent
variables are the time t and space variables, xi. The kinematic viscosity, ν0 = µ/ρ, and mass
diffusion coefficient, D, are assumed constant. Note that, in general, the dynamic viscosity, µ,
is a weaker function of density; the assumption ν0 constant ensures a uniform Sc throughout
the flow. The reference density, ρ0, is chosen such that the density of the light fluid is 1.0.
The domain size in the horizontal direction is L0 = 2π and ∆v/∆h=0.8, where ∆v and ∆h

are the mesh sizes in the vertical and horizontal directions, respectively. In order to minimize
the computational requirements, the simulations start with a small dimension in the vertical
direction and the vertical mesh size is increased as the mixing layer width grows. The final sizes
in the vertical direction at the time of printing are Lv = 22.6 (4608 grid points) for the 10242×Nz

simulations and Lv ≈ 5.0 (4032 grid points) for the 40962×Nz simulation. The Froude number
is chosen such that the mesh Grashoff number, Gr ≡ 2Ag∆3

h/ν
2
0 = 2ARe2

0/(Fr
2N3

h), where Nh

is the number of grid points in one of the horizontal directions, is below 1 (a value of 0.88 was
used in all simulations).

Equations (2)-(4) have periodic boundary conditions in the horizontal direction and slip wall
conditions are applied in the direction of gravity.

All simulations presented here have been performed with the CFDNS code [11]. A brief
description of the numerical method can be found in Ref. [3]. In order to ensure the accuracy
of the numerical solution, extensive resolution studies have been performed.

The density is initialized to follow an error function profile in the vertical direction, which is
consistent to the solution to the pure diffusion equation:

ρ = 0.5 (1 + Erf [Yvz + ζ(x, y)]) (ρ2 − ρ1) + ρ1, (7)

with the slope coefficient Yv chosen such that 8 grid points lie across the initial mixing layer.
Various spectra are used for the perturbation ζ(x, y), to test the influence of the initial conditions.
For each A considered, a base case has been run with the initial perturbation spectrum shape
being a top-hat centered around the most unstable mode of the linear problem. All base cases
have Sc = 1 and Re0 = 500. In order to examine the influence of the molecular transport
properties, simulations with Sc > 1 and/or Re0 6= 500 have also been carried out.

3. Results
To test various hypotheses related to the RT layer growth and elucidate the long-standing
discrepancy between the experimentally and numerically measured growth rates, explore the
turbulence and mixing characteristics, and provide data for model development and testing, we
have performed fully resolved, very high resolution simulations of Rayleigh-Taylor instability
with the CFDNS code [11]. These simulations are the largest fully resolved simulations of the
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Figure 1. Three-dimensional visualization of the density field at early time, viewed from a) top
and b) bottom, showing the asymmetry of the Rayleigh-Taylor mixing layer at A = 0.75, with
the development of bubbles on the heavy fluid side and spikes on the light fluid side. From the
40962 × 4032 simulation.

Rayleigh-Taylor instability to date and cover the range of Atwood numbers, A = 0.04 − 0.9,
in order to study small departures from the Boussinesq approximation as well as large Atwood
number effects, which are even less understood (figure 1).

After the layer width had developed substantially, additional branched simulations have been
run under reversed and zero gravity conditions (figure 2). This ”gravity reversal” occurs in
practical situations (e.g. ICF or pulsating stars), however there are no fully resolved simulations
to date in this configuration.

Figure 2. a) Layer width on the heavy fluid side (or ”bubble height”), hb, and b) maximum
turbulent kinetic energy across the mixing layer from the base A = 0.5 simulation, on
a 10242 × 4608 mesh. The main simulation (forward gravity) is branched into additional
simulations with zero gravity and reversed gravity at time ≈ 2.5.

After the gravity changes, the layer still continues to grow for some time due to the inertia
(figure 2). Nevertheless, the gravity reversal leads to significant small scale turbulence production
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(figure 3). In general, the existent turbulence models do not capture well this process, so that the
gravity reversal simulations represent an important test case for turbulence model development.

Figure 3. Snapshots of the density field from an A = 0.5 simulation. a) gravity, b) reversed
gravity. The images are taken at the same time.

While the bulk of these results are still being analyzed and will be published elsewhere, here we
present some preliminary results regarding the instability growth rate and mixing characteristics.

3.1. Mixing layer growth rates
The temporal evolution of the RT layer width is an important question in applications and one
metric to gauge the efficacy of various models and numerical simulations. Although certain
classes of initial conditions (e.g. if long wavelengths are present in the initial perturbation) may
have a long lasting influence on the growth rate, it is generally agreed that at long times, if
the turbulence growth is unrestricted, the turbulent mixing layer grows quadratically in time
[12, 1, 2]:

h = αAgt2 + 2
√
αAgh0t+ h0 (8)

The quadratic growth has been known for a long time as a dimensionally consistent result
confirmed by experimental data [13, 14, 15, 16]. This formula, including various consistent
ways for extracting the value of α, is further discussed in Ref. [3, 9]. Nevertheless, the
value of the growth rate α is still hotly debated and there is a large discrepancy between the
values reported by numerical simulations and many experiments, which constitutes a long-
standing open question. To compound this open question, most numerical studies to date
are under-resolved simulations relying on numerical errors to stabilize the Gibbs phenomenon.
In addition, it is notoriously difficult, experimentally, to accurately characterize the initial
conditions and provide the detailed measurements needed for turbulence model development and
validation. The leading hypotheses for the discrepancy between the reported α values stem from
these drawbacks– too large diffusion in the numerical simulations and undesired perturbations
corrupting the initial conditions in the experiments. In our fully resolved simulations, we found
little change in the value of α when varying the values of the molecular transport properties, if
these are small enough. Small values for the molecular transport properties ensure small cut-off
scales due to diffusion effects and, consequently, a large range of dynamically relevant scales of
motion. We have also performed simulations with various initial perturbation spectra (figure 4).
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Figure 4. Rayleigh-Taylor bubble growth rate αb =
·h2b

4Aghb
from several simulations with

A = 0.04 and different initial perturbation spectra, shown in the legend. The light fluid side
mixing layer growth rate has strong sensitivity to the Atwood number; the light fluid side growth
rate is usually discussed in the previous studies.

The preliminary analysis of these results points to two possible explanations for the higher
growth rates measured in various experiments (either one or both explanations can apply): 1)
experimental set-up too small and thus the measurements represent only the early time behavior
or 2) layer growth affected by the lateral walls due to large wavelengths present in the initial
perturbation spectrum. To exemplify, figure 4 presents results from several simulations with
top-hat initial perturbation spectra and different spectrum widths and/or amplitudes. Even
though the early time behavior may suggest different growth rates, the long time results show
the same asymptotic value for α. In a separate paper, we will survey the existent experimental
studies and compare the experimental growth rates with the present results, using similar time
non-dimensionalizations.

In addition, figure 4 also shows that simulations with specific perturbation spectra reproduce
the higher αb values seen in many experiments. Thus, when the simulation is initialized with a
k−3 perturbation spectrum, values of αb ≈ 0.065 are obtained. Similar αb values are seen in all
cases when a high amplitude, low wavenumber component is added to the initial perturbation
(not shown here). While our results are preliminary, there are at least two experimental
studies with carefully controlled initial conditions supporting the hypotheses above [17, 18].
Nevertheless, both of these hypotheses represent serious obstacles in characterizing the practical
behavior, due to the lack of generality of the early time evolution and of the interaction with
the walls. Using the present dataset, we will address the case of the instability development in
a (laterally) confined domain as well as Atwood number effects on the instability growth, in a
separate study.
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Figure 5. a) Density PDF and b) density surface density function Σ, at several positions across
the mixing layer at A = 0.75, at the latest time of the 40962 × 4032 simulation. The vertical
position is normalized by the bubble height, hb.

3.2. Mix metrics and the mixing layer asymmetry
One of the more remarkable issues being explored with the new data set, first reported in
Ref. [8] is the marked difference in the mixing between different density fluids as opposed to
mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq
approximation. Thus, at large density ratios, the mixing becomes asymmetric, with the pure
heavy fluid mixing more slowly than the pure light fluid. The existence of this asymmetry is
significant in practical applications. For example, it is important to know both how long it
takes for a pollutant to mix with the surrounding fluid and also how much is likely left at a
certain time. Predicting this based on Boussinesq analogies, as it is usually done, can severely
misrepresent the mixing of the pollutant. One consequence of the mixing asymmetry for the
Rayleigh-Taylor layer is that the penetration distance of the pure heavy fluid is larger than
that of the pure light fluid [3]. Figure 5 a) shows the Probability Density Function (PDF) of
the density at several locations across the mixing layer at A = 0.75. The density PDF varies
considerably across the RT mixing layer. At the top of the RT layer the PDF is spiked at the
heavy fluid end and includes some mixed fluid. At the bottom of the layer the PDF is spiked
at the light fluid end. The PDF is clearly asymmetrical with respect to the centerline and the
amount of pure heavy fluid reaching the centerline is larger than that of pure light fluid. At
the edges of the layer, the consequence of the mixing asymmetry is even more obvious: the two
edges develop into spikes on the light fluid side and bubbles on the heavy fluid side. This can
be seen in figure 1, which shows the density field from the 40962× 4608 simulation at A = 0.75.
The asymmetry of the layer can also be inferred from figure 5 b), which shows the area of the
ρ∗ = ρ iso-density surface, Σ(ρ) =< |∇ρ∗|ρ∗=ρ > PDF (ρ) [19], at several vertical locations
across the mixing layer. On the light fluid side (z/hb < 0), the dominant iso-surface has much
larger surface area than on the heavy fluid side, indicating significantly more fragmentation.

In general, all mix metrics in use today for RT turbulence are constructed from lower order
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moments of the density PDF. A comprehensive discussion of these metrics, including rigorous

bounds, can be found in Ref. [8]. Thus, the usual mix measure θ = 〈f1f2〉
F1F2

[5] depends on the

mean and variance of the density. Here f1 = ρ∗−ρ1
ρ2−ρ1 , f2 = ρ2−ρ∗

ρ2−ρ1 and Fl = 〈fl〉, l = 1, 2. While

the density variance does appear in the dynamical equations in the Boussinesq limit [8], the
moments equations at higher density ratios do not contain any term depending on 〈ρ2〉. From
the point of view of the dynamical equations, a more appropriate mix metric at high A would
be constructed from the density specific volume covariance, θρv = 1− b/bnm where b = 〈ρv〉 and

the no-mix value of b is bnm = (ρ̄−ρ1)(ρ2−ρ̄)
ρ1ρ2

. Figure 5 shows that the two metrics are close at
A = 0.04, as expected, but they are different at high A and differences increase with A. Thus,
there is a qualitatively different behavior across the RT layer, as θ and θρv predict more mixing
at the opposite sides of the layer. Nevertheless, both metrics have relatively large values across
the whole layer, which misrepresents the density PDF. Nor they can capture any asymmetry in
the underlying PDF. To compound the difficulty in characterizing the mixing state using low
order moments of the density PDF, figures e) and f) show the same metrics across the mixing
layer after the gravity was set to zero or reversed, at A = 0.5. The values are similar to those
obtained for the base A = 0.5 case, although the mixing state is qualitatively different (figure
2). Other mix measures, e.g. using a fast reaction analogy, 〈XP 〉 [5], or the time-dependent
Atwood number used in Ref. [20], while useful in certain instances, are still only low order
representations of the underlying density PDF.

4. Summary and Concluding Remarks
We have presented preliminary results from high Reynolds number, high resolution Direct
Numerical Simulations of Rayleigh-Taylor instability using the CFDNS code [11] on the 0.5
Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National
Lab. This includes a suite of simulations with Atwood number ranging from 0.04 to 0.9 and grid
size of 10242×4608 and a high resolution simulation of grid size 40962×4032 and Atwood number
of 0.75. The reference cases have the initial perturbation spectrum as a narrow band around
the most unstable mode of the linear problem. After the layer had developed substantially, the
simulations have been branched, by reversing gravity and also setting the gravity to zero. In order
to study the dependence on initial conditions, we have also performed a multitude of simulations
with various initial perturbation spectra, different amplitudes of the initial perturbation, and
also with several different values for the molecular viscosity and diffusivity.

While the bulk of the results are still being analyzed and will be published elsewhere, here we
have presented preliminary results concerning two issues with significant practical importance:
1) the higher growth rates measured in experiments compared to previous numerical simulations
and 2) mix metrics and mixing asymmetry.

Unlike most previous numerical simulations of RTI, which are under-resolved and rely on
numerical errors to stabilize the Gibbs phenomenon, the present simulations fully resolve all the
dynamically relevant scales of motion and use physical viscous and mass diffusion mechanisms.
Thus, we can effectively vary the values of the molecular transport properties to assess their
effects and the results show little dependence of the growth rate on these values, if they are
small enough. Nevertheless, simulations with different spectra of the initial perturbation point
to two hypotheses for the higher growth rates measured in various experiments (either one or
both explanations can apply): a) experimental set-up too small and thus the measurements
represent only the early time behavior or b) layer growth affected by the lateral walls due to
large wavelengths present in the initial perturbation spectrum. While our results are preliminary,
there are at least two experimental studies with carefully controlled initial conditions supporting
the hypotheses above [17, 18]. Nevertheless, both of these hypotheses represent serious obstacles
in characterizing the practical behavior, due to the lack of generality of the early time evolution
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Figure 6. Several mix measures across the RT layer at a) A = 0.04, b) A = 0.5, c) A = 0.75,
d) A = 0.9, e) A = 0.5, zero gravity, and f) A = 0.5, reversed gravity.
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and of the interaction with the walls.
At high density ratios, the usual mix measure employed to characterize the mix state within

the Rayleigh-Taylor mixing layer, θ, is no longer quasi-constant across the layer. Even more,
the behavior is exactly the opposite as that obtained for a similar metric based on the density-
specific volume correlation. This metric, θρv, actually appears in the moment equations, so it
would seem more appropriate at high A than θ. Nevertheless, none of these measures can tell
much about the pure or partially mixed fluid or the underlying density PDF, which changes
widely across the mixing layer.

Mixing is qualitatively different in VD flows compared to the Boussinesq limit, with the
pure heavy fluid mixing more slowly than the pure light fluid [8]. This can be clearly seen
in the density PDF and the density surface density function across the RT layer which are
asymmetrical with respect to the centerline, showing that molecular mixing proceeds differently
on the two sides of the RT layer. Experiments to date have not investigated this possibility.
One consequence of the mixing asymmetry is that the penetration distance of the pure heavy
fluid is larger than that of the pure light fluid. The mixing asymmetry is likely also related to
the bubble-spike anomaly (higher growth rate on the spike side compared to the bubble side),
which was observed experimentally.
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