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The homogenization of a heterogeneous mixture of two pure fluids with different
densities by molecular diffusion and stirring induced by buoyancy-generated motions,
as occurs in the Rayleigh–Taylor (RT) instability, is studied using direct numerical
simulations. The Schmidt number, Sc, is varied by a factor of 20, 0.1 � Sc � 2.0, and
the Atwood number, A, by a factor of 10, 0.05 � A � 0.5. Initial-density intensities
are as high as 50% of the mean density. As a consequence of differential accelerations
experienced by the two fluids, substantial and important differences between the
mixing in a variable-density flow, as compared to the Boussinesq approximation, are
observed. In short, the pure heavy fluid mixes more slowly than the pure light fluid:
an initially symmetric double delta density probability density function (PDF) is
rapidly skewed and, only at long times and low density fluctuations, does it relax
to a Gaussian-like PDF. The heavy–light fluid mixing process asymmetry is relevant
to the nature of molecular mixing on different sides of a high-Atwood-number RT
layer. Diverse mix metrics are used to examine the homogenization of the two fluids.
The conventional mix parameter, θ , is mathematically related to the variance of the
excess reactant of a hypothetical fast chemical reaction. Bounds relating θ and the
normalized product, Ξ , are derived. It is shown that θ underpredicts the mixing,
as compared to Ξ , in the central regions of an RT layer; in the edge regions, θ is
larger than Ξ . The shape of the density PDF cannot be inferred from the usual mix
metrics popular in applications. For example, when θ, Ξ � 0.6, characteristic of the
interior of a fully developed RT layer, the PDFs can have vastly different shapes.
Bounds on the fluid composition using two low-order moments of the density PDF
are derived. The bounds can be used as realizability conditions for low-dimensional
models. For the measures studied, the tightest bounds are obtained using Ξ and mean
density. The structure of the flow is also examined. It is found that, at early times,
the buoyancy production term in the spectral kinetic energy equation is important
at all wavenumbers and leads to anisotropy at all scales of motion. At later times,
the anisotropy is confined to the largest and smallest scales: the intermediate scales
are more isotropic than the small scales. In the viscous range, there is a cancellation
between the viscous and nonlinear effects, and the buoyancy production leads to a
persistent small-scale anisotropy.

1. Introduction
Molecular mixing in response to stirring by turbulence is an important process in

many practical applications. If the microscopic densities of the fluids participating
in the mixing are very different we refer to such flows as variable-density (VD)
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flows in contrast to the Boussinesq approximation in which the densities are
commensurate. In a VD flow the velocity field is no longer solenoidal and the
specific volume, a function of the amount of each material present, is a dependent
variable. VD mixing is encountered in atmospheric and ocean flows, astrophysical
flows, combustion and many flows of chemical engineering interest (Givi 1989). Many
of these flows are driven by acceleration (e.g. gravity in geophysical and astrophysical
flows) which, because of the large density differences, leads to large differential fluid
accelerations.

Here, a simple form of multi material mixing between two miscible fluids with
different microscopic densities (Besnard et al. 1992, Livescu & Ristorcelli 2007),
driven by a constant external acceleration, as occurs in the Rayleigh–Taylor (RT)
instability, is studied.

The paper is motivated by the need to understand the new physics associated
with mixing in the presence of differential acceleration effects. It is also motivated
by the very limited data that exist for the derivation and testing of closures for VD
RT transition and turbulence. The properties of the turbulence and mixing in such
VD flows, when they have been studied, are typically obscured by the presence of
inhomogeneities due to edge effects and walls. The current investigation focuses on the
nonlinear dynamics and statistics of buoyantly driven turbulence in the statistically
homogeneous problem. The physical situation we study is similar to the buoyantly
generated turbulence in the Boussinesq approximation studied by Batchelor, Canuto
& Chasnov (1992). Here, the high-Atwood-number VD problem is treated. As such,
the new nonlinearities due to very large density variations in the advective terms
of the Navier–Stokes equations are important. The statistical form of the equations
for this problem, except for the inhomogeneous flux terms, also describes the RT
mixing layer. Thus, the current homogeneous simulations include the same buoyancy
generation and the same nonlinear cascade mechanisms as occur in the RT layer.
The present configuration is also more computationally effective than the RT case:
the statistical variability of the volumetric ensembles, as opposed to RT in which
the ensemble is planar, are substantially reduced. The inhomogeneous RT transport
terms, that do not occur in this configuration, are important at the edges of the
layer. In principle, the current homogeneous simulations describe the core of a fully
developed (wide) RT layer after a time at which enough mixing occurs such that
little pure fluid reaches the centreline. This time can be inferred by inspection of the
centreline density kurtosis given by Ristorcelli & Clark (2004).

The current VD problem was first addressed in Sandoval (1995) and Sandoval,
Clark & Riley (1996); their study focused on the hydrodynamics statistics of the flow.
Our interest is: (i) in the statistics of the active scalar field; (ii) useful measures of the
state and rate of the material mixing; and (iii) changes in the structure of the flow
induced by the differential accelerations. Metrics related to the hydrodynamics have
been discussed in the earlier companion paper, Livescu & Ristorelli (2007, hereinafter
referred to as LR). Summaries of RT simulation studies can be found in the overviews
of Dalziel, Linden & Youngs (1999) and Young et al. (1999) and references therein.
Additional commentary may be found in Ristorcelli & Clark (2004). Throughout this
study, several observations and analogies with the RT problem are made; all such
extensions presented here have been verified with the 30723 RT data of Cabot &
Cook (2006) as shown in Livescu et al. (2008). Nevertheless, the results presented are
more general and have application to other VD flows.
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1.1. The variable-density-flow model

This paper treats active mixing in low-speed flows in which the turbulent Mach
number is small and the fluids participating in the mixing are incompressible. In this
case, the macroscopic specific volume is related to the mass fractions of the two fluids
by

v =
1

ρ
=

Y1

ρ1

+
Y2

ρ2

, (1.1)

where Y1 +Y2 = 1. Here, ρ1 and ρ2 are the constant ‘microscopic densities’ of the pure
fluids, i.e. ρ1 = m1/V1 and ρ2 = m2/V2. The subscript ‘2’ refers to the heavier fluid.

For compressible ideal gasses, the density can be expressed using the equation of
state:

ρ =
P

RT (Y1/W1 + Y2/W2)
. (1.2)

where Wi , i = 1, 2, are the molar masses of the two fluids and R is the
universal gas constant. The current approximation corresponds to the case where
P/T is approximately constant. The equation of state, (1.2), leads to (1.1) when
ρi = WiP/RT .

The primary non-dimensional parameter characterizing the differential acceleration
effects is the Atwood number:

A =
ρ2 − ρ1

ρ2 + ρ1

⇒ ρ2

ρ1

=
1 + A

1 − A
. (1.3)

For air interpenetrating helium, A = 0.75; for air and hydrogen, A = 0.85. Similar
Atwood numbers occur for mixing between liquid hydrocarbons and air. In the current
VD simulations the largest density intensities are iρ = ρrms/ρ̄ ∼ 0.5 at initialization.
In the Boussinesq limit, iρ ∼ 0; for select combustion flows, iρ ∼ 2.

The current flow can be understood as a pressure-gradient-driven flow in which
the differential accelerations of the two fluids are important. In this VD flow, it
is the very large mean pressure gradient due to buoyancy that, coupled with the
mass flux, creates turbulence and drives the material mixing (LR). Such fluid physics
occurs, more generally, in any acceleration-driven flow involving different-density
fluids.

1.2. Highlights of this study

In this paper, new mixing physics that might result from large differential fluid
accelerations, as occurs in pressure-gradient-driven VD flows, is investigated. Our
study makes contributions in the following areas.

(i) A detailed comparison of active scalar mixing in a VD flow is contrasted to
mixing in the Boussinesq (small density differences) case.

(ii) Comparison of mix metrics and their use in describing mixing in the VD case.
(iii) The effects of buoyancy on the energy spectrum and small-scale universality.
(iv) The generation of an archival database to develop closures for VD turbulence.
The first portion of the paper, § 2, provides the problem statement summarizing

the equations and the initial conditions. Section 3 details our study of the mix state
using different conventional mix metrics. Section 4 studies the mixing rate. Section 5
studies the small-scale motions and spectral structure of the buoyantly driven mixing.
Section 6 gives a summary of findings and 7 the conclusions. For the numerical
method see LR.
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2. Governing equations and simulation cases
The equations describing the mixing between two miscible fluids with different

microscopic densities, ρ1 and ρ2, are the Navier–Stokes equations and species mass
fraction transport equations. After non-dimensionalizing with ρ0 = 0.5(ρ1 + ρ2) and
reference velocity and length scales, U0 and L0, the equations can be written as (see
LR):

ρ∗
,t + (ρ∗u∗

j ),j = 0, (2.1)

(ρ∗u∗
i ),t + (ρ∗u∗

i u
∗
j ),j = −p∗

,i + τ ∗
ij,j +

1

Fr2
ρ∗gi, (2.2)

u∗
j,j = − 1

Re0Sc
(ln ρ∗),jj , (2.3)

with τ ∗
ij = (u∗

i,j +u∗
j,i −2/3u∗

k,kδij )/Re0. The primary dependent variables are the density
ρ∗, velocity in the xi-direction u∗

i , and pressure p∗. The superscript ∗ is used to denote
total instantaneous (mean plus fluctuation) values. The non-dimensional parameters
in (2.1)–(2.3) are the computational Reynolds number, Re0, Schmidt number, Sc, and
Froude number, Fr:

Re0 = ρ0L0U0/μ0, Sc = μ0

/
ρ0D0, F r2 = U 2

0 /gL0, (2.4)

with g, the magnitude of the acceleration due to gravity, taken to be constant. The
dynamic viscosity, μ0, and diffusion coefficient, D0, are constant and μ0 is the same
for both fluids. In the equations above, the non-dimensional instantaneous density
varies between 1−A(t) and 1+A(t) where A(t) is the instantaneous Atwood number.

In the subsequent sections, capital italic letters, overbars and angle brackets are
used to denote mean values. Angle brackets are preferred for longer expressions while
overbars are used for quantities named with greek letters. Lower-case letters (italic
or greek) or primes are used to denote fluctuations. As the density is not spatially
uniform, some of the results are presented using density-weighted (Favre) averages,
denoted with a tilde, and the corresponding fluctuations with double primes. Thus,
the instantaneous velocity, density, pressure and specific volume are decomposed as
u∗

i = Ui + ui = Ũi + u′′
i , ρ∗ = ρ + ρ, p∗ = P + p and v∗ = V + v, respectively. Note

that Ũi − Ui = ui − u′′
i = ai . The definitions for the normalized mass flux, ai , Favre

Reynolds stresses, Rij , and turbulent kinetic energy, k̃, and total kinetic energy, EK ,
are given below:

ai =
〈uiρ〉

ρ̄
= −〈u′′

i 〉, (2.5)

Rij = 〈ρ∗u′′
i u

′′
j 〉 = ρ̄〈uiuj 〉 − ρ̄aiaj + 〈ρujuj 〉, Rkk = 2ρ̄k̃, (2.6)

EK = 〈ρ∗u∗
i u

∗
i 〉/2. (2.7)

2.1. Solution method and initial conditions

Equations (2.1)–(2.3) are those governing the flow generated by the VD RT instability
(e.g. see Sandoval 1995; Cook & Dimotakis 2001). In this study, the equations are
solved in a triply periodic domain, corresponding to a statistically homogeneous
flow, and the averages are calculated as volume averages. Such a configuration
eliminates the complications due to the presence of non-periodic boundaries while
allowing fundamental turbulence studies in the presence of buoyancy and VD effects
in the context of mixing between initially segregated materials. In addition, more
data are available for statistics calculations in the present configuration than for an
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inhomogeneous problem, greatly reducing the statistical variability. In physics, the
flow corresponds to the inner region of a fully developed Rayleigh–Taylor mixing
layer. In modelling, this is a benchmark problem which any turbulence model for the
VD RT should handily predict. In flow physics, this benchmark problem allows the
study of the peculiar nature of the mixing between two different-density fluids and,
thus, the results presented are more general than the RT problem.

The density field is initialized as random blobs of pure fluids, corresponding to
a double-delta PDF. The velocity field is initialized with a zero solenoidal part and
dilatational part given by:

ui = − 1

Re0Sc
(ln ρ∗),i , (2.8)

which satisfies (2.3).
Equations (2.1)–(2.3) are solved using a pseudospectral algorithm. The equations are

integrated in time using a second-order Adams–Bashforth method in conjunction with
a pressure projection method which integrates the momentum equations in two steps:
first without the pressure terms and then adding these terms to restore the correct
divergence of velocity. The aliasing errors introduced by calculating the nonlinear
terms in real space are partially controlled using truncation and ensuring that the
amount of energy in the wavenumbers affected by aliasing is small. More details
about the numerical approach, including improvements over standard methods, are
given in LR.

A few comments regarding the mean pressure gradient in VD flows are now given.
In VD turbulence with arbitrary boundary conditions, the two first-order moments,
the mean pressure gradient, Pi , and the mean specific volume, V , are dynamical
variables evolving as the mixing proceeds. For the present triply periodic simulations:

P,i =
ρ̄

1 − 〈ρv〉 (gi + 〈uiuj,j 〉 − 〈vp,i〉 + 〈vτij,j 〉) Ui,t = 0 , (2.9)

ρ̄V = 1 − 〈ρv〉. (2.10)

In the Boussinesq case, both P,i = ρ̄gi and V are constant. For periodic boundary
conditions, the VD mean pressure can be determined only to a constant gradient,
which is a free parameter. This is chosen, as given by (2.9) such that the energy
conversion of potential to kinetic energy is maximized (see LR). Note that the
addition of a spatially constant mean pressure gradient to the equations does not
change their translational invariance and the fluctuations remain periodic.

2.2. Simulation cases

Table 1 provides relevant information for the cases studied. For all cases, g =
(0, 0, −1). There are two Reynolds numbers, Re0 and a static buoyancy Reynolds
number, Re0b. Re0 is a non-dimensional viscosity as it is changed by changing μ0.
Re0b is formed from an effective velocity related to the buoyancy forces and the initial
integral scale of the density field. The static buoyancy Reynolds number expresses
the ratio of buoyancy and viscous forces at the time g is first applied. The velocity
is calculated based on the potential energy corresponding to a height equal to the
density integral scale. The dimensional potential velocity is

√
L0ρ

Ag, with L0ρ
the

dimensional initial density integral scale, so that

Reb0
=

ρ0

√
L3

0ρ
Ag

μ0

= Re0

√
L3

ρA/Fr2, (2.11)
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Case number A 1/Fr2 Sc Re0 Reb0
〈ρ2〉/ρ2|t=0 〈ρv〉|t=0 Resolution

1Base 0.05 1.0 1.0 250 11 0.0024 −0.0024 2563

1Fr 0.05 10.0 1.0 250 35 0.0024 −0.0024 2563

1Re1 0.05 1.0 1.0 833 37 0.0024 −0.0024 2563

1Re2 0.05 1.0 1.0 1667 73 0.0024 −0.0024 5123

2Sc0 0.25 1.0 0.1 250 26 0.057 −0.061 2563

2Sc1 0.25 1.0 0.5 250 26 0.057 −0.061 2563

2Base 0.25 1.0 1.0 250 26 0.057 −0.061 2563

2Sc2 0.25 1.0 2.0 250 26 0.057 −0.061 2563

2Re1 0.25 1.0 1.0 833 87 0.06 −0.064 5123

2Re2 0.25 1.0 1.0 1667 174 0.061 −0.0066 10243

3Sc1 0.5 1.0 0.5 250 37 0.22 −0.29 2563

3Base 0.5 1.0 1.0 250 37 0.22 −0.29 2563

3Sc2 0.5 1.0 2.0 250 37 0.22 −0.29 5123

Table 1. parameters for the DNS cases.

where Lρ = L0ρ
/L0. In general, the higher Reb0, the larger the maximum kinetic

energy of the flow generated.
The cases described in table 1 were chosen to investigate the influence of the

Atwood, Reynolds, Schmidt and Froude numbers. There are three base cases (1Base,
2Base, 3Base) corresponding to the Atwood numbers 0.05 (Boussinesq limit), 0.25
and 0.5. The rest of the cases have one value of the parameters Sc, Re and Froude
numbers changed, compared to the base cases. Cases with the same last number in
the name have the same value of the respective changed parameter (i.e. both cases
1Re1 and 2Re1 have Re0 = 833). In addition, the Froude number was changed for
case 1Fr to match A/Fr2 from case 3Base. Thus, cases 1Re1, 1Fr and 3Base have
about the same Reb0

, but different Re0, A or Fr . To reduce statistical variability, each
simulation is repeated several times with initial conditions generated using different
random number seeds. All data presented represent averages over 5 to 10 realizations.
The high-Reynolds-number cases 1Re2 and 2Re2 were performed only up to the time

when the kinetic energy peaks, t/tr ≈ 2.5, where tr =
√

Fr2/A (see LR).

3. VD mixing: assessing the mixing state
A comprehensive study of various mix metrics, in the context of the density PDF

and the question of ‘how much pure and mixed fluids is present’ is now undertaken.
To simplify the presentation, the pure heavy, pure light and mixed fluids are called
black, white and grey, respectively. The grey fluid can be either (i) ‘fully mixed’ if the
two fluids are completely mixed in equal proportion so that the density is (ρ1 + ρ2)/2
or (ii) ‘partially mixed’ otherwise.

3.1. The θ mix metric

The quantity θ = 1− 〈ρ2〉/〈ρ2〉nm, is commonly used as a mixing-state metric (Youngs
1991; Linden, Redondo & Youngs 1994; Dalziel et al. 1999; Ristorcelli & Clark
2004). Youngs (1991) and Linden et al. (1994) use

θ =
〈f1f2〉

〈f1〉〈f2〉 (3.1)
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Figure 1. Mixing progress as indicated by the evolution of the normalized density variance.

as the mix progress variable, where f1 = (ρ − ρ1)/(ρ2 − ρ1) and f2 = (ρ2 − ρ)/
(ρ2 − ρ1), so that

θ = 1 − 〈ρ2〉
(ρ̄ − ρ1)(ρ2 − ρ̄)

= 1 − 〈ρ2〉
〈ρ2〉nm

. (3.2)

The subscript nm refers to the no-mix value of the quantity in question; 〈ρ2〉nm =
(ρ2 − ρ̄)(ρ̄ − ρ1). For the present flow, the no-mix value is 〈ρ2〉nm ≈ 〈ρ2〉|t=0. Figure 1
shows the evolution of θ for the cases considered. In scaled time, mixing is slower for
cases with larger Reb0

or higher Sc numbers, even though the kinetic energy is higher.
Note that the A, Re0 and Fr influences can be collapsed using the one parameter,
Reb0

, as figure 1 indicates. Note also that as Reb0
is increased, the relative change in

θ is smaller (compare cases 1Base, 1Re1 and 1Re2 or cases 2Base, 2Re1 and 2Re2)
suggesting a weakening dependence on the Reynolds number at higher Reynolds
numbers. This is consistent with the fully developed VD RT results obtained by
Cabot & Cook (2006).

3.2. Mixing state described using the fast reaction analogy

The scalar field is composed of regions of pure fluids and mixed fluid: white, black or
grey. One way to differentiate among the mixed regions is to consider a hypothetical
fast reaction and measure the amount of product, which is to say the amount
of fully mixed fluid (Cook & Dimotakis 2001). Thus, fully mixed fluid contains a
stoichiometric mixture of the two fluids. Any grey region is then composed of product
(fully mixed fluid) and excess reactant; the excess reactant may be either one of the
two pure fluids, but not both. If the excess reactant is not zero (i.e. the region is not
completely homogenized at the stoichiometric proportion) we call the region partially
mixed. If a reaction of the type ν1W + ν2B → (ν1 + ν2)P , with W (white) the light
fluid and B (black) the heavy fluid, is considered, the product mole fraction is defined
by:

XP =

⎧⎪⎪⎨
⎪⎪⎩

ν1 + ν2

ν2

ρ∗ − ρ1

ρ2 − ρ1

for ρ∗ �
ν1ρ1 + ν2ρ2

ν1 + ν2

,

ν1 + ν2

ν1

ρ2 − ρ∗

ρ2 − ρ1

for ρ∗ �
ν1ρ1 + ν2ρ2

ν1 + ν2

.

(3.3)
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Figure 2. Mixing progress as indicated by the evolution of the normalized averaged product
mole fraction Ξ .

Thus, 〈XP 〉 represent the average product in the domain or, equivalently, the mole
fraction of the fluid at the fully mixed mean density. We consider 〈XP 〉 to be one of
the more useful lower-order metrics describing the mix state.

The formulae above were derived using the binary mixture relations X1 =
(ρ∗/ρ1)Y1 = (ρ2 − ρ∗)/(ρ2 − ρ1) and X2 = (ρ∗/ρ2)Y2 = (ρ∗ − ρ1)/(ρ2 − ρ1) (see e.g.
Williams 1985). Maximum product is obtained as XPmax

= XP (ρ∗ = ρ̄). For the
present case, assuming ν1 = ν2 = 1 and XPmax

= 1.
In the classical RT configuration, the averages are horizontal area averages, and

〈XP 〉 varies with height. A useful state metric that allows comparison at different
heights is defined as (Cook & Dimotakis 2001; Cook & Zhou 2002):

Ξ =
〈XP 〉
XPmax

. (3.4)

Figure 2 shows the evolution of Ξ , or equivalently 〈XP 〉 for the current homogeneous
RT. At early times, Ξ depends on both Reb0

and Sc numbers. The Ξ variation shows
that, in scaled time, mixing is slower for cases with higher Reb0

or Sc numbers. As is
the case with θ , the influences of A, Re0 and Fr are collapsed using only the intial
Reb0

. The results confirm that at higher Reb0
, the change in initial buoyant Reynolds

number has an ever smaller influence on the mixing progress, again suggestive of
the fully developed RT results of Cabot & Cook (2006). At late times, Ξ becomes
independent of Reb0

, and only Sc plays a role in the asymptotic evolution.

3.3. Relations between θ, 〈XP 〉 and Ξ

Analytic connections can be made between θ, 〈XP 〉 and Ξ . The excess reactant (either
white or black) mole fraction is Xe = 1 − XP . In the regions where the light fluid is
in excess of the stoichiometric value, ν2X1 − ν1X2 � 0 and Xe = X1 − (ν1/ν2)X2. In
the regions where heavy fluid is in excess of the stoichiometric value, ν2X1 − ν1X2 � 0
and Xe = X2 − (ν2/ν1)X1. The excess reactant mole fraction is then:

Xe =

⎧⎪⎪⎨
⎪⎪⎩

ν1ρ1 + ν2ρ2 − ρ∗(ν1 + ν2)

ν2(ρ2 − ρ1)
for ρ∗ �

ν1ρ1 + ν2ρ2

ν1 + ν2

,

−ν1ρ1 + ν2ρ2 − ρ∗(ν1 + ν2)

ν1(ρ2 − ρ1)
for ρ∗ �

ν1ρ1 + ν2ρ2

ν1 + ν2

.

(3.5)
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For example, if there are 100 molecules in a control volume and 40 of them are white
and 60 black then, if ν1 = ν2 = 1, XP = 0.8 and Xe = 0.2 and the formula above
reduces to:

Xe =

∣∣∣∣ρ1 + ρ2 − 2ρ∗

ρ2 − ρ1

∣∣∣∣ . (3.6)

The excess reactant and its variance are then written as:

Xe =

∣∣∣∣ ρ̃ − ρ

ρ2 − ρ̄ − ρ̃

∣∣∣∣ =

∣∣∣∣ ρ̃ − ρ

ρ̄ − ρ1 + ρ̃

∣∣∣∣ , (3.7)

〈
X2

e

〉
=

〈ρ2〉 + ρ̃2

〈ρ2〉nm + ρ̃2
, (3.8)

given only the variance of density and its mean, we can predict the variance of the
excess reactant. Here, ρ̃ = (ρ2 + ρ1)/2−ρ̄ is the difference between the average density
and the average density if the two fluids are present in equal amounts. In the RT
layer, ρ̃ depends on height. On re-arranging, we obtain an expression for θ:

θ =
(
1 −

〈
X2

e

〉) (
1 +

ρ̃2

〈ρ2〉nm

)
. (3.9)

Given ρ̄, there is a one to one correspondence between the conventional measure θ

and 〈X2
e〉. Using Xe = 1 − XP and the definition of XPmax

, θ can be written as:

θ =
1 −

〈
X2

e

〉
XPmax

(
2 − XPmax

) =
2〈XP 〉 −

〈
X2

P

〉
2
〈
XPmax

〉
− X2

Pmax

= Ξ
2 −

〈
X2

P

〉
/〈XP 〉

2 − XPmax

. (3.10)

For the present simulations, ρ̃ = 0 and 〈X2
e〉 and θ become:

〈
X2

e

〉
=

〈ρ2〉
(ρ2 − ρ̄)(ρ̄ − ρ1)

, (3.11)

θ = 1 −
〈
X2

e

〉
= Ξ

(
2 −

〈
X2

P

〉
〈XP 〉

)
. (3.12)

For the non-dimensionalization used here (ρ2 + ρ1)/2 = 1, but for the sake of
generality this equality is not used in the derivations.

3.4. Differences between θ, 〈XP 〉 and Ξ in the RT layer

The differences between θ, 〈XP 〉 and Ξ in the RT mixing layer are now discussed. In
the asymptotic VD RT layer, Ξ∞ varies between 0.6 and 1.0 (Livescu et al. 2008). The
normalized integral of Ξ across the layer is about 0.8 (Cabot & Cook 2006). In the
fully developed experimental RT layer for the Boussinesq case, a number of values
are reported: Ramaprabhu & Andrews (2004) give θ∞ = 0.7 and from Muenshke,
Andrews & Schilling (2006) θ∞ = 0.6. For the Boussinesq simulations of Ristorcelli
& Clark (2004) and Dalziel et al. (1999), θ∞ = 0.8. At earlier times, slowly varying
smaller values are seen in simulations and experiments, θ ≈ 0.5−0.7. Bounds relating
θ, 〈XP 〉 and Ξ are now derived.

Centre of the RT layer

If ρ̄ ≈ (ρ1 + ρ2)/2, which is true near the RT layer centreline and for the present
simulations, then XPmax

≈ 1. In this case, since 〈X2
P 〉/〈XP 〉 � 1, we find that θ �

Ξ ≈ 〈XP 〉. The equality corresponds to fully mixed or fully segregated fluids. Thus,
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in regions with approximately equal amounts of the two fluids, θ always overpredicts
the amount of mixing compared to Ξ , or 〈XP 〉 (see also figure 3).

Rigorous analytical bounds can also be derived for the difference between these
measures when XPmax

≈ 1. As in this case Ξ ≈ 〈XP 〉, all the relations derived below
are the same in terms of 〈XP 〉. From (3.10), we obtain:

θ = 2Ξ − Ξ 2 −
〈
X′2

P

〉
. (3.13)

The minimum value for 〈X′2
P 〉 is zero and is obtained when the product (fluid in

stoichiometric proportion) is uniformly distributed. Note that XP = 〈XP 〉 + X′
P . The

maximum value of XP is 〈XP 〉(1 − 〈XP 〉) and corresponds to the fluid composed only
of fully mixed and pure fluid (white or black). In this case, 〈X2

P 〉 = 〈XP 〉, as XP is
either 1 or 0. Thus, for XPmax

≈ 1, we obtain two inequalities for θ:

2Ξ − Ξ 2 � θ � Ξ. (3.14)

For example, if Ξ = 0.8 then 0.8 � θ � 0.96 with any value in the interval being
possible. If Ξ = 0.6 then 0.6 � θ � 0.84. Conversely, the first inequality can be
rewritten for Ξ , after examining the roots of the associated second-order polynomial:

θ � Ξ � 1 −
√

1 − θ. (3.15)

For θ = 0.8, 0.6, seen in different RT experiments, Ξ � 0.55, 0.36. We note that
for the present simulations, Ξ ≈ 0.62 corresponds to θ = 0.8 with slight differences
among the cases.

Edges of the RT layer

At the edges of the RT layer, ρ∗ � (ρ1 + ρ2)/2 everywhere or ρ∗ � (ρ1 + ρ2)/2
everywhere, 〈XP 〉 = XPmax

, Ξ = 1 and θ � 1 (the equality corresponds to pure fluid).
In these regions, θ always underpredicts the amount of mixing compared to Ξ . The
lower bound for θ is obtained when the region consists of fully mixed or pure fluid
points only, so that 〈X2

P 〉 = 〈XP 〉. Thus,

1 � θ �
1

2 − XP

=

⎧⎪⎨
⎪⎩

ρ2 − ρ1

2(ρ2 − ρ̄)
at the spike side,

ρ2 − ρ1

2(ρ̄ − ρ1)
at the bubble side.

(3.16)

As 〈XP 〉 → 0, the right bound becomes 0.5. However, this value is never reached, as
θ = 1 when 〈XP 〉 = 0.

Ξ underpredicts, in general, the extent of the mixing layer, since Ξ = 1 near the
edges of the RT layer and there can be significant amount of grey fluid in these
regions. As a consequence, Ξ is not used to calculate the width of the RT layer; e.g.
Cook & Dimotakis (2001) define the extent of the mixing layer as the vertical integral
of XPmax

.
In general, 〈XP 〉 is an independent mix measure which complements the mixed and

pure fluid quantities and indicates the average mole fraction of the fully mixed fluid.
Near the edges of the RT layer, the amount of product 〈XP 〉 is related to the density
average so that the layer width based on the 〈XP 〉 profile is the same as that based on
the ρ̄ profile. As 〈XP 〉 varies between 0 (for no mixing) and 1 (for complete mixing),
it can also be used as a mix progress variable.

General comment on RT layer mixing prediction

The limitations of assessing the mixing state based on lower-moment metrics such
as θ are easily seen: across the layer, θ is approximately constant not in any way
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Figure 3. Comparison of the mix metrics for cases (a) 1Fr (pluses), 3Base (no symbols) and
3Sc2 (triangles) and (b) 2Base (no symbols), 2Sc2 (triangles) and 2Re1 (circles).

giving a notion of the radically different amounts of white, black or grey. For example
at the top of the layer, the density PDF is spiked at the black end and includes some
grey. In the centre of the layer, the density PDF is quasi-Gaussian and the fluid grey.
At the bottom of the layer, the PDF is spiked at the white end with some grey. Such
PDF characteristics are seen in the coarse-grained simulations of Youngs (1994) and
Linden et al. (1994) and experimentally by Wilson & Andrews (2001). In short, there
is no connection between θ and the local pure or mixed fluid.

3.5. Pure-fluid fraction

Most mix measures currently used in the RT literature attempt to indicate
(unsuccessfully, as is further demonstrated) how much mixing has taken place or
perhaps how much is left before the fluid is homogeneous. It is also useful to know
the amount of pure fluid present and how it might be predicted or bounded by
low-order moments of the PDF. The pure fluid is usually defined as having a density
within 5% of either pure fluid under consideration, i.e. the pure heavy fluid has a
density higher than ρB = ρ2 − 0.05(ρ2 − ρ1) and the pure light fluid has a density
below ρW = ρ1 + 0.05(ρ2 − ρ1). Although the discussion below uses this value, the
methodology and the conclusions are general.

Figure 3 compares Ξ , θ , the percentage of mixed fluid, %m, fully mixed fluid,
%f m, and the percentage of pure heavy, %B , and light, %W , fluids. Note that
%m + %B + %W = 1, and %m = %f m + %pm, where %pm is the percentage of
partially mixed fluid. In the interior of the RT layer and the present simulations, %m

is always greater than Ξ . This is because %m counts the excess reactant in the regions
where Xe is less than the pure fluid value. Conversely, Ξ or 〈XP 〉 is always larger
than %f m. Consistent with the explanation above, θ � Ξ (θ = Ξ iff t = 0, inf )
and θ always overpredicts the mixed fluid. Figure 3 shows that, in general, there is
no connection between θ and %f m, %m, %W or %B . In addition, θ is related to the
variance of the excess fluid, (3.9), and does not predict the average of fully mixed
fluid, 〈XP 〉, nor the percentages of mixed, fully mixed or pure fluid. This is clearly
seen in figure 3; there is no pure fluid left long before the mixing process decays and
θ = 1. The amount of pure fluid is determined by the tails of the density distribution
and, thus, cannot be predicted by measures such as Ξ or θ that are related to the
low-order moments of the density distribution.
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Figure 3(a) also shows that at higher A, the pure light- and heavy-fluid evolutions
become different, with the pure light fluid disappearing faster than the pure heavy
fluid (see cases 3Base and 3SC2). This an important VD effect, not seen in the
Boussinesq case, and is examined below. The evolutions of the pure light and heavy
fluid are about the same for low A cases, irrespective of the value of Reb0

(see case
1Fr). The buoyancy Reynolds number collapse the evolutions of θ and Ξ , indicating
that low-order moments of the density PDF behave similarly in the variable density
and Boussinesq cases (after proper scaling).

3.6. Bounds for pure and mixed fluids based on mix measures

To emphasize that the usual mix measures do not predict %W , %B , %m or %f m,
rigorous quantitative bounds are derived. These bounds can be used to characterize
the fluid composition or as realizability constraints in low-dimensional models, when
low-order moments of the density PDF may be the only information available. The
bounds derived below are formally the same for the two pure fluids as the usual
mix measures use second-order moments and they cannot detect the PDF asymmetry
which occurs in VD mixing.

Bounds on pure and mixed fluids given ρ̄ and θ

The density PDF corresponding to the smallest and largest amounts of pure fluid is
discrete, but depending on the values of ρ̄ and θ can have values in several different
points. A simple case, which is probably most relevant in practice, is when ρ̄ < ρB

and 〈ρ2〉 < (ρ̄ −ρ1)(ρB − ρ̄) (equivalently θ > (ρ2 − ρB)/(ρ2 − ρ̄)). Using the definition
of ρB , the second condition is θ > 0.1. The sample space of the ensemble with the
maximum number of pure heavy fluid events is {ρ̄−〈ρ2〉/(ρB − ρ̄), ρB}. The minimum
number of pure heavy fluid points is zero and corresponds to density and normalized
variance events clustered around ρ̄ and θ . Given the values of ρ̄ and θ , the percentage
of black fluid is between the bounds:

0 � %B �
(1 − θ)〈ρ2〉nm

(ρB − ρ̄)2 + (1 − θ)〈ρ2〉nm

, (3.17)

with similar inequalities for the light fluid. Here and near the centreline of the RT
layer, (3.17) reduces to:

0 � %B �
1 − θ

1.81 − θ
, (3.18)

and is independent of the Atwood number. Similar formulae can be obtained for the
amount of mixed fluid. A simple case is when ρW < ρ̄ < ρB and 〈ρ2〉 < (ρ̄−ρW )(ρB−ρ̄).
Using the definitions of ρW (ρB the second condition becomes θ > 0.19), the maximum
fraction of mixed fluid points is 1. The minimum number of mixed fluid points
corresponds to the density PDF consisting of the events {ρW, (ρ+ρB)/2, ρB}, so that

4
−(1 − θ)〈ρ2〉nm + (ρ̄ − ρW )(ρB − ρ̄)

(ρB − ρW )2
� %m � 1 , (3.19)

which, for the homogeneous case or the interior of the RT layer, becomes

θ − 0.19

0.81
� %m � 1. (3.20)

For θ = 0.8 (e.g. Dalziel et al. 1999), it yields 0 � %B � 0.2 and 0.75 � %m � 1.0;
for θ = 0.6 we obtain 0 � %B � 0.33 and 0.51 � %m � 1.0.
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Bounds on pure and mixed fluids given ρ̄ and 〈XP 〉
If XP � 0.1 and ρ̄ < ρB , then the sample space of the ensemble with the

maximum number of ρ � ρB points (pure heavy fluid) contains only the three
events {ρ1, (ρ1 + ρ2)/2, ρB}. The minimum number of pure heavy fluid (black) points
is zero and all events are clustered around ρ̄ and 〈XP 〉 values. This yields the bounds

0 � %B �
2(ρ̄ − ρ1)/(ρ2 − ρ1) − 〈XP 〉
2(1 − 2(ρ2 − ρB)/(ρ2 − ρ1))

, (3.21)

with similar inequalities for the light fluid. Any value for %B between the bounds
is possible based on the constraints considered. For example, if ρ̄ = (ρ1 + ρ2)/2,
corresponding to the inner region of the RT layer and the present simulations, using
the definition of ρB the right bound becomes (1 − 〈XP 〉)/1.8. For 〈XP 〉 = 0.8, it yields
0 � %B � 0.11. For 〈XP 〉 = 0.6, 0 � %B � 0.22.

Similarly, bounds can be found for the percentage of mixed fluid, when ρ̄ and 〈XP 〉
are known. Assuming that 〈XP 〉 > 0.1 and ρW < ρ̄ < ρB , the sample space of the
ensemble with the minimum number of ρW < ρ < ρB mixed fluid events contains
only the three possible events {ρW, (ρ1 + ρ2)/2, ρB}, while the maximum value for %m

is 1. Thus,

1
2
(ρ2 − ρ1)(ρB − ρW )(〈XP 〉 − 1) + (ρB − ρ0)(ρ̄ − ρW ) + (ρ0 − ρW )(ρB − ρ̄)

2(ρ0 − ρW )(ρB − ρ0)
� %m � 1,

(3.22)
where ρ0 = (ρ1 + ρ2)/2. For this flow or interior of the RT layer, the left inequality
becomes (〈XP 〉 − 0.1)/0.9 � %m. For 〈XP 〉 = 0.8, it yields 0.78 � %m � 1.0. For
〈XP 〉 = 0.6, 0.56 � %m � 1.0.

3.7. The density probability density function

The density PDF is essential to understanding the mixing state. The mix measures
described above are low-order integrals of the PDF. Figure 4 shows the density PDF
at select times according to the values of the different mix measures. There are two
items that are noteworthy and even surprising and will be discussed in more detail:

(i) Even though the simulations were started with equal amounts of pure fluid, the
PDF is rapidly skewed at high Atwood numbers. The distribution is symmetrical for
low Atwood numbers.

(ii) There is no unique connection between θ, Ξ, θρv and the underlying physical
mixing state as indicated by the density PDF. The metric θρv , based on 〈ρv〉, is
discussed below.
Figure 4 shows that the density PDF starts as symmetric double-delta corresponding
to two pure fluids at the outset (modulo initial diffusion layers). As the fluids start
mixing the PDF becomes very asymmetric for the higher A cases.

The density PDF evolution does not collapse with Reb0
, unlike the collapse of

the low-order moments θ and Ξ . The shape of the PDF is qualitatively different at
low and high A numbers and cannot be captured by a rescaling of the rest of the
parameters considered. Later, as density events far from the mean become rare, the
flow becomes Boussinesq-like and the PDF takes a symmetric quasi-Gaussian shape.
At high Atwood numbers, large-density events are more frequent than low-density
events. The rate of mixing at high Atwood numbers is very different, depending on
whether the light or the heavy fluid is sampled: pure light fluid mixes faster than the
pure heavy fluid.
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Figure 4. Density PDF at different times for (a) case 3Base and (b) case 3Sc2. The
non-dimensional times t/tr = 0, 1.7, 2.4, 2.5, 3.0 and 3.8 in (a) and t/tr = 0, 2.1, 2.5,
2.8, 3.0 and 4.9 in (b) correspond to %m = θρv = θ = Ξ = 0.8. The thick lines give the PDF
when θ = 0.8 for two different simulations at two different times t/tr = 3.0 for case 3Sc2 and
at t/tr = 2.5 for case 3Base. The PDFs are normalized such that the density varies between
0 and 1.

The mix metrics studied vary from zero to unity and are commonly thought of as
indicating the amount of mixing that has occurred. While low-order moments, like
θ , are obtained from the PDF, the shape of the PDF cannot be inferred from such
measures. Nor, as can be seen in figure 4, does the state of the mixing, as predicted
by similar values of the mix metrics, correspond to the same PDF. Figure 4 compares
the density PDFs at the times when %m = θ = Ξ = 〈XP 〉 = θ〈ρv〉 = 0.8. The PDF
is still bi-modal when the partially mixed fluid %m covers 80% of the field. The
PDF is no longer bi-modal when θρv = θ = 0.8 and when Ξ = 0.8%, the PDF is
quasi-Gaussian.

The values of θ∞ in the various RT experiments referenced above vary between 0.6
and 0.8. Intermediate time values are typically lower than the asymptotic ones. The
PDFs for several simulations for which θ = 0.65, a value more representative for the
laboratory RT layer, are given in figure 5. In general, there is no correlation between
θ and the PDF shape. It is seen that the same value of θ = 0.65 can include mix
states that contain either one or both pure fluids or neither pure fluid. At high A,
the PDF shape and skewness and existence of either pure fluids is sensitive to both
Re0 and Sc, while at low A the PDF is symmetrical for values of Re0, Sc and Fr

considered.
The asymmetry of the density PDF in the VD case is understood from the equation

for the skewness, S ≡ 〈ρ3〉/(〈ρ2〉3/2). Using (4.5) and

d

dt
〈ρ3〉 = − 3

2ReSc
〈ρ(ρ,j )

2〉. (3.23)

we obtain:

d

dt
S = −S

ερ

〈ρ2〉 − 3

4

〈ρ(ρ,j )2〉
〈ρ,kρ,k〉〈ρ2〉1/2

. (3.24)
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Figure 5. Density PDF at the time when θ = 0.65 for different simulations. The PDFs are
normalized such that the density varies between 0 and 1.

As the flow begins with S = 0, it is the second term, the production, that generates
the skewness of the PDF. The quantity 〈ρ(ρ,j )2〉 is weighted towards large squared
density gradient events occurring in lower than average density regions so that S > 0
at early times. In other words, the light fluid blobs become more fragmented at higher
A. As the mixing proceeds, the production term approaches zero and we obtain a
simple decay. Thus, at long times, the source term vanishes and the decay term
dominates, producing a relaxation to a symmetric PDF on the density eddy turnover
time scale.

For the Boussinesq case, the first important moment past the variance is the
kurtosis, Kρ . Ristorcelli & Clark (2004) monitor the evolution of the density PDF
at the centreline of the Boussinesq RT layer using the density kurtosis. For the
initial mixture of pure fluids the kurtosis is close to one, Kρ ∼ 1. The PDF becomes
Gaussian-like with Kρ = 3 after passing through Kρ = 1.8. Kρ = 1.8 corresponds to
a uniform distribution which is observed only in the Boussinesq case. For a VD flow,
the PDF never attains a uniform distribution, even when Kρ ∼ 1.8. From figure 6,
it seems that the influence of A, Re0 and Fr on the evolution of Kρ is captured by
Reb0

, similar to the other lower-order moments studied. Also, at least at earlier times,
the change in the evolution of Kρ decreases as Re0 increases, suggesting a limiting
behaviour at high Reynolds numbers. If Kρ → 3 is taken to indicate the rate at which
the PDF becomes Gaussian-like, then from figure 6 it seems that this decreases with
Reb0

or Sc. At early times, Reb0
has the opposite influence. Nevertheless, it is shown

below that even when the PDF is Gaussian-like, there can still be non-Boussinesq
effects.

The equation for the density PDF can be derived following standard procedures
(Pope 1985):

∂f

∂t
= − 1

ReSc

∂

∂ρ̂
〈ρ,jj |ρ=ρ̂〉f ]. (3.25)

Here, ρ̂ is the sample space variable and f is the PDF. The PDF equation is,
surprisingly, the same as that for the Boussinesq case, indicating that dilatational
effects do not explicitly affect the density PDF. The density gradients, however, do
vary substantially with the Atwood number. There are implicit dilatational effects on
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Figure 7. Mixing progress as measured by the evolution of the normalized
current Atwood number.

the density gradient field. Explicit dilatational effects play a role on the mixing rate,
as will be seen.

3.8. The current Atwood number

The buoyancy force is proportional to the density differences between different regions
of the flow. A local Atwood number is sometimes used as a measure suggestive of the
current buoyancy force. In the present context the maximum and minimum density
values in the field can be used to define an instantaneous Atwood number:

A(t) =
ρmax − ρmin

ρmax + ρmin

, (3.26)

where ρmax = ρmax(t) and ρmin = ρmin(t) are normalized by the initial value and plotted
in figure 7. The time when A(t) departs from its initial value signals the disappearance
of at least one of the pure fluids. The effective Atwood number is therefore based
on the width of the density PDF in contradistinction to the variance which is more
suggestive of the average buoyancy forces associated with the central portions of the
distribution.

Note that the kinetic energy, EK , peaks at about t/tr = 2.5 (LR), and that EK has
already undergone a significant increase before a sizeable decrease in the effective
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Figure 8. Mixing progress as measured by the evolution of the normalized density specific
volume correlation, θρv = 1 − 〈ρv〉/〈ρv〉|t=0.

Atwood number is obtained. There is still pure fluid for the high Reb0
case at the

time of the peak of the energy and turbulent Reynolds number. As we might expect,
A(t) is Schmidt-number sensitive. At long times, cases with the same Sc collapse; Sc

appears to be the only parameter setting the long-term mixing rate.
The instantaneous Atwood number defined above is related to the time-dependent

A used by George & Glimm (2005) and Liu et al. (2006) to collapse the growth rates
obtained in RT experiments. Thus, a local Atwood number is defined using the largest
and smallest (or the average 50% top largest and smallest) density values in each
horizontal plane. This local Atwood number is integrated in the vertical direction
and doubly integrated in time to replace At2 in the self-similar growth rate formula
h = αgAt2. For the present simulations, the time-dependent A defined by George &
Glimm (2005), A′(t), behaves similarly to the instantaneous Atwood number, A(t)
(not shown). As a result, in unscaled time, the quantity 2

∫
t

∫
s
A′(s1)ds1ds, decreases

with Sc and Re0 and increases with A and 1/Fr2. In scaled time, the double integral
remains the same if A/Fr2 is the same.

3.9. Density specific volume covariance, 〈ρv〉
The quantity 〈ρv〉 mediates the production of the mass flux in VD turbulence, see
§ 4. As the mass flux dictates the conversion rate of potential to kinetic energy (LR)
it follows that 〈ρv〉 is directly involved in the energy conversion. Because of the
dynamical importance of 〈ρv〉 in the mass flux equations, it appears useful and
convenient to investigate its use as a measure of the mixing state. Like 〈ρ2〉, the
covariance, 〈ρv〉, is always single-signed (see LR). A different proof has also been
given in Besnard et al. (1992):

−〈ρv〉 = −〈ρv∗〉 = −〈ρρ̄v∗〉/ρ̄ = −〈ρ(ρ∗ − ρ)v∗〉/ρ̄ = 〈ρ2v∗〉/ρ̄ > 0. (3.27)

In addition, 〈ρv〉 = 0 corresponds uniquely to the fully mixed state; thus θρv =
1 − 〈ρv〉/〈ρv〉|t=0 is a mix progress variable. Figure 8 shows the evolution of θρv .
In scaled time, molecular mixing is slower for cases with larger Reb0

or higher Sc

numbers, contributing to faster increase in the magnitude of the mass flux and faster
conversion of potential to kinetic energy. In general, the collapse of θρv is similar to
the other lower-order moments.
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Figure 9. Density specific volume correlation normalized by the density variance.

3.10. Non-Boussinesq effects and the independence of 〈ρv〉 and 〈ρ2〉
The density variance does not appear in the moment equations (§ 4) of a VD fluid
while 〈ρv〉 does. In a VD fluid without molecular mixing, 〈ρ2〉 and 〈ρv〉 are simply
related:

〈ρ2〉nm = (ρ2 − ρ̄)(ρ̄ − ρ1), 〈ρv〉nm = − (ρ2 − ρ̄)(ρ̄ − ρ1)

ρ1ρ2

= −〈ρ2〉nm

ρ1ρ2

. (3.28)

The relation above holds, to a good approximation, for the initial values given in
table 1. In the presence of molecular mixing, there is, however, no simple one to one
relation between 〈ρ2〉 and 〈ρv〉; this is because of the connection of 〈ρv〉 to the mean
specific volume. Taking moments of the Taylor series of v = v(ρ) about v∗ = V , it is
straightforward to show that

〈ρv〉 = −〈ρ2〉
ρ̄2

[
1 − iρ

〈ρ3〉
〈ρ2〉3/2

+ i2
ρ

〈ρ4〉
〈ρ2〉2

− i3
ρ

〈ρ5〉
〈ρ2〉5/2

+ · · ·
] (

iρ =
〈ρ2〉1/2

ρ̄

)
.

(3.29)
Keeping only the first term, we obtain the relationship for the Boussinesq case. For
the VD case, We need all the moments of the density PDF in order to determine 〈ρv〉.
The normalized moments are usually of order one and the series converges slowly
for large A, for which iρ ∼ 1. For a Gaussian (or, more generally, symmetric) PDF,
the odd terms are all zero and 〈ρv〉 always has larger magnitudes than 〈ρ2〉/ρ̄2. For
highly skewed fields, as occurs on either side of the RT layer (Ristorcelli & Clark
2004), the second term becomes important.

Figure 9 compares the density volume covariance with the density variance. The
ratio is seen as indicative of VD effects since the two quantities behave the same for
the Boussinesq case. Thus, it increases with the (effective) Atwood number, Re0, or
Sc and becomes small for small density intensities.

3.11. Bounds for pure and mixed fluids based on θρv

Based on the values of ρ̄ and θρv we can derive bounds for the allowed values of
the percentage of pure and mixed fluids. Assuming for simplicity that ρ̄ and V are
outside the pure heavy fluid values (i.e. ρ̄ < ρB and V > 1/ρB which leads to 1 − (1 −
θρv)〈ρv〉nm > 1/ρB), the sample space of the ensemble with the maximum number of
pure heavy fluid events is comprised of only the events {(ρB − ρ̄)/(ρBV − 1), ρB}. The
minimum number of pure heavy fluid points is zero as the instantaneous values of
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density and specific volume can be clustered around ρ̄ and V = 1 − (1 − θρv)〈ρv〉nm.
Thus, the percentage of black fluid is bounded by:

0 � %B �
ρBV (ρ̄V − 1)

ρ̄V − 1 + (ρBV − 1)2
, (3.30)

with similar inequalities for the light fluid. Near the centreline of the RT layer and
for the present simulations, (3.30) becomes:

0 � %B �
(1 + 0.9A)V (V − 1)

V − 1 + ((1 + 0.9A)V − 1)2
, (3.31)

with V = (1 − θρvA
2)/(1 − A2). Similar bounds can be found for %m by searching for

the density PDF distributions which give the maximum and minimum amounts. For
ρ̄ and V outside the pure fluid values, the sample space events {ρW,

√
ρWρB, ρB} give

the minimum value for the amount of mixed fluid leading to:

ρW + ρB − ρ̄ − VρWρB(√
ρB − √

ρW

)2
� %m � 1, (3.32)

which for the present flow and interior of the RT layer becomes

1 − V (1 − 0.81A2)

(
√

1 + 0.9A −
√

1 − 0.9A)2
� %m � 1. (3.33)

Unlike the bounds based on ρ̄ and θ , in this case the dependence on A is retained.
For θρv = 0.8 and A = 0.25, it yields 0 � %B � 0.23 and 0.74 � %m � 1.0; for
A = 0.5, it yields 0 � %B � 0.28 and 0.7 � %m � 1.0

4. Mixing rate
The feedback between the density and velocity fields in buoyantly driven VD

turbulence is illustrated. The moment equations that describe the evolution of the
statistics of the flow are used to explain the inter-relationship between molecular
scalar mixing, the stirring by fluctuating strain field and the generation of kinetic
energy. Phenomenological issues related (i) to PDF of the density gradients and their
relation to the mixing rate and (ii) the scaling of the stoichiometric surface area, are
presented. The eddy turnover length- and time-scale ratios of the density and velocity
fields are presented to explore the relevance of the usual Boussinesq case closure
notions for the VD mixing rate.

4.1. Equations of buoyantly driven VD mixing

Active scalar mixing can be described by measures related to the evolution of the
scalar fields from initially segregated materials with double delta PDF to a molecularly
mixed fluid with a quasi-Gaussian PDF. This evolution is most simply discussed using
the second moment equations:

ρ
d

dt
k̃ = aiP,i + 〈pd〉 − 〈ui,j τij 〉, (4.1)

ρ̄
d

dt
ai = −〈ρv〉P,i + ρ̄〈vp,i 〉 − ρ̄〈uid〉, −ρ̄εi, (4.2)

d

dt
〈ρv〉 = −2ρ̄〈vd〉 = −2ρ̄ερv. (4.3)
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Here 2ρ̄k̃ = Rnn = ρ̄〈ukuk〉 − ρ̄akak + 〈ρukuk〉 and d = uk,k = (1/ReSc) (ln ρ),kk . The
dilatational velocity field sets the mixing rate. In a VD flow, unlike the Boussinesq
case, molecular diffusion is always accompanied by a fluid particle velocity. The VD
mixing rate can be written as a positive semi-definite dissipative type quantity

ερv =
1

ReSc

〈
ρ,j

ρ∗3/2

ρ,j

ρ∗3/2

〉
, (4.4)

from which we might argue that mixing takes place faster in the lower-density fluid.
Some observations regarding the coupling of this VD system may be useful. The

mass flux, which mediates the transfer between potential and kinetic energies (LR),
determines the production of the kinetic energy, which stirs the fluid, (4.1). The mean
pressure gradient modulated by 〈ρv〉 generates the mass flux (4.2). Thus, 〈ρv〉, which
is determined by the mixing state, sets the stirring rate. For the Boussinesq case, the
role of 〈ρv〉 in generating the mass flux is played by 〈ρ2〉 and the mean pressure
gradient is replaced by the hydrostatic head in the mass flux equation. Because of its
connection to the dynamics of the stirring in the presence of a pressure gradient and
because it vanishes when the mixing is completed, it appears useful to use 〈ρv〉 as a
measure of the mixing state for VD flows, as considered above.

The absence of a one to one connection between 〈ρv〉 and 〈ρ2〉 is suggested by
the mechanisms by which they are mixed. In contrast to 〈ρv〉 (4.4), 〈ρ2〉 is atomically
mixed by the same mechanism as in the Boussinesq case:

d

dt
〈ρ2〉 = −D〈ρ,jρ,j 〉 = −2ερ. (4.5)

This, again, highlights the difference between VD and Boussinesq mixing and
underscores the importance of the dilatational field in setting the mixing rate for
the VD case.

4.2. Probability density function of the density gradient

The rate at which molecular mixing occurs, ερv (4.4), depends on the width of the
diffusion layers between the two fluids and can be assessed by the steepness of the
density gradients. Figure 10 shows the typical PDFs of the scaled density derivative,
ρ,j /ρ

∗3/2

in horizontal and vertical directions at different times.
The field is initially composed of regions of pure fluids, in which the density

derivative is zero except in thin mixing layers between the two fluids. This corresponds
to a PDF in which events near zero occur with highest frequency and large events
occur with low frequency (figure 10). The large initial density gradients are rapidly
smoothed by diffusion as indicated by the reduction of the width of the PDF at
t/tr = 0.5. As turbulent fluctuations grow, stirring brings together unmixed regions of
fluid, stretching, folding and compressing the diffusion layer. The PDF then becomes
wider by t/tr = 1 and now density gradient events of magnitude larger than when
the fluid was initially unmixed occur. At the same time, stirring competes with the
molecular mixing which decreases density gradients and tends to narrow the PDF so,
at late time, the PDF becomes narrow again.

In the vertical direction, large positive density gradient values occur more often than
negative values. These events correspond to heavy over light fluid events in which the
fluid blobs move towards each other. The mixing layers in between are compressed,
creating larger density gradients and increasing the rate of atomic mixing. Conversely,
when light fluid overlies heavy fluid, the relative compression of the diffusion layers is
reduced, as the fluid blobs move less frequently towards each other. In most light over
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Figure 10. Scaled density derivative PDF at different times for case 3Base in (a) horizontal
and (b) vertical directions.

heavy fluid configurations, the fluid blobs move in opposite directions, expanding the
mixing layers and reducing the molecular mixing rate.

4.3. Interfacial surface area

The rate at which the mixing progresses depends on the steepness of the density
gradients and also on the mixing-layer surface area. Material iso-concentration
surfaces stretched, rotated and folded by velocity gradients are smoothed out,
preferentially in large-curvature regions, by diffusion (Pope 1988). In a RT
configuration, knowledge about the iso-concentration surfaces can be used to
characterize the extent of the mixing layer, properties and location of the layer front,
and also the mixing state and progress. For example, the variation of the area of the
iso-density surfaces defined by ρ∗ = ρW and ρ∗ = ρB , gives information about the
evolutions of the pure heavy and light fluid front.

The area of the ρ∗ = ρa iso-density surface, Σ(ρa), in a control volume, can be
calculated as the product of the average density gradient magnitude evaluated at
ρ = ρa and the density PDF (Vervisch et al. 1995):

Σ(ρa) = 〈|∇ρ|ρ=ρa
〉 f (ρa). (4.6)

The stoichiometric, ρ∗ = (ρ1 + ρ2)/2 for ν1 = ν2 = 1, iso-density surface area per
unit volume, Σst , gives information about the mixing state and progress. Cabot &
Cook (2006) presented data suggesting that Σst scales with the square of the velocity
Taylor microscale, λu in a VD RT mixing layer. The scaling appears to include
contributions to the iso-density area owing to the overall growth of the mixing layer
as well as to the local stirring by the fluctuating strain. For the present flow in which
the total volume is constant, there is a better scaling with the inverse of the velocity
Taylor microscale. However, the velocity Taylor microscale scaling does not capture
the dependence of the interfacial area on the Schmidt number as might be expected
from the λu/λρ ∼ (Sc)1/2 scaling in flows with Sc �= 1. For the present simulations,
as suggested by (4.6), Σst scales with the inverse of the density Taylor microscale, λρ ,
(figure 11). It is clear, pursuing the different Schmidt-number cases, that the density
Taylor microscale with its dependence on the material diffusivity, is the appropriate
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Figure 11. Stoichiometric iso-density surface area per unit volume multiplied by the
horizontal (a) velocity Taylor microscale and (b) density Taylor microscale.

scaling for the iso-density area given the collapse of the data. Parenthetically, and in
contrast to the usual Kolmogorov heuristics, the velocity and density Taylor microscale
ratio varies with time and Reynolds number in non-stationary turbulence as observed
in Ristorcelli & Clark (2004) and Ristorcelli (2006). Such behaviour is not consistent
with either self-similarity (Ristorcelli & Clark 2004) or the scalings of fully developed
turbulence. Is is not known as to whether this is a legitimate non-equilibrium effect
or is due to Re not being high enough.

4.4. The time scale ratio and mixing rate models

For mixing in the Boussinesq case, the scalar and energy turnover time ratio,

rB(t) =
2ρ̄k̃ερ

〈ρ2〉ε =
3

5

λ2
u

λ2
ρ

1

Sc
(4.7)

is assumed constant (Warhaft & Lumley 1978; Livescu, Jaberi & Madnia 2000), in
simple mixing rate closures for ερ . See Ristorcelli (2006) for a historical summary. This
is expected to be useful for passive scalar homogeneous turbulence as the influence
of initial conditions vanishes. The time-scale ratio is proportional to the square of
the ratio of Taylor microscales of the velocity to scalar fields. In time units scaled by
k/ε, rB is the non-dimensional mix rate (Ristorcelli 2006).

The ‘Boussinesq’ time-scale ratio based on the density variance is shown in figure 12.
At early times, when the flow is at its most non-equilibrium, the time-scale ratio varies
considerably. This is especially true for cases with higher Atwood and Reynolds
numbers or smaller Schmidt numbers. In the decay stage, as the flow becomes
Boussinesq-like, rB(t) becomes similar, with values around the isotropic turbulence
value of 2, for the cases with Sc = 1.

In the VD case, the analogous time-scale ratio is

rV D(t) =
2kερv

〈ρv〉ε . (4.8)

Variations in rV D(t) are similar to those of rB(t) during the evolution of the flow
(figure 13), although, quantitatively, rV D and rB are different at higher A. It appears
that the constant-time-scale assumption is not useful, except in a rudimentary order
of magnitude sense, as a closure for the scalar dissipation.
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Figure 13. Time variation of rV D(t).

The ratio of integral length scales (figure 14) is used in phenomenological discussions
of mixing (see references in Ristorcelli 2006). The integral length scales are computed
from the κ−1 moment of the spectra of the velocity and density fields. As we might
expect, probably owing to the coupling between material and turbulence fields in
buoyantly driven flows, they are commensurate for the Sc = 1 cases. The cases
with Sc �= 1 are surprisingly different given that the integral length scale is a large-
scale quantity and the only difference in the simulations is the molecular diffusion
coefficient.

5. Turbulence structure
The influence of the buoyancy production mechanism on the turbulence structure

is examined in both physical and spectral spaces. This is of intrinsic fluid physics
interest as well as modelling interest for both LES procedures as well as single or
two-point moment closures.
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Figure 15. Vertical component of the anisotropy tensor.

5.1. Turbulence anisotropy

Since the buoyancy production is anisotropic, the normal stresses are also anisotropic
(figure 15). While the normal stresses anisotropy is large during the early stages, in the
late-time decay stage, it appears that the flow reaches an equilibrium between energy
production and viscous dissipation and pressure–strain redistribution so that the large
scales are never isotropic. This is also seen in the Boussinesq homogeneous simulations
of Batchelor et al. (1992) and Boussinesq RT turbulence (Cook & Dimotakis 2001;
Ristorcelli & Clark 2004; Cabot & Cook 2006).

Simple dimensional arguments supported by the spectral data indicate that mass
flux production becomes smaller than viscous dissipation and nonlinear transfer at
small scales (see below). However, at very early times, the sudden application of the
buoyancy force leads to anisotropy at all scales, as the flow is highly non-equilibrium.
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Figure 16. Vertical component of the dissipation anisotropy tensor.

Later, but still in the energy-growth stage, the viscous dissipation and the nonlinear
terms have opposite sign and similar magnitudes so that the buoyancy production
remains important at the smallest scales. It is pertinent to see if this is reflected in
the anisotropy of the small scales. The dissipation (or vorticity for solenoidal velocity
fields) anisotropy can be parameterized using the dissipation tensor:

dij =
εij

εkk

− 1
3
δij . (5.1)

Here εij is the dissipation of the Favre Reynolds stress 〈ρ∗uiuj 〉/2. Figure 16 shows
the evolution of the vertical component, d33. The dissipation anisotropy follows the
evolution of the large-scale anisotropy. It quickly increases initially and by t/tr = 0.2,
d33 reaches a peak with a magnitude slightly lower than b33. Then d33 decreases and
appears to reach an asymptotic value by t/tr = 5. For cases with larger maximum
Reynolds number, the asymptotic value is smaller.

In addition to the cancellation of nonlinear and viscous effects in the dissipation
range mentioned above and detailed in the next section, there is another mechanism
likely to contribute to the persistent anisotropy of the smallest scales. As the
Kolmogorov scale grows larger in the decay stage, the influence of the anisotropy
of the production occurring at larger scales is more readily felt. This can be seen
clearly by comparing the vertical and horizontal longitudinal structure functions,
Sn

lv
= Sn

3 = 〈(u3(x3 + r) − ur (x3))
n〉 and Sn

lh
= 1/2(Sn

2 + Sn
1 ) (figure 17). Consistent with

the results above, at early times S2
v and Sn

h are different at all scales. Later, the results
at small separation distances, r , become close, but they remain clearly different at
large scales. As the Kolmogorov scale grows, the dissipation scales become larger and
reach separation distances at which the buoyancy production has larger magnitude.

5.2. Spectral energy production and transfer

Various aspects of the flow are discussed in the context of the spectra of the density
and velocity fields. Two spectral length scales reflecting different dynamical balances
are derived and used to discuss the associated physical processes.

At early times, the density energy spectrum maintains its initial top-hat shape
(figure 18). The buoyancy production leads to a similar shape in the solenoidal energy
spectrum (see below). As the large blobs are stirred by the turbulent motions, the
top-hat shape disappears. As the Reynolds number increases, a modest inertial range
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appears to emerge with a −5/3 exponent, although it is difficult to draw definite
conclusions from the data.

For VD flows, there is a difference between kinetic energy per unit mass and per
unit volume. Following ideas from compressible turbulence studies (Cook & Zhou
2002; Livescu, Jaberi & Madnia 2002), the kinetic energies per unit mass and volume
can be written as:

Em = 1
2
〈uiui〉, Ev = 1

2
〈wiwi〉, wi =

√
ρ∗ui. (5.2)

The corresponding spectral forms are Ev = 〈ŵiŵ
†
i 〉, Em = 〈ûi û

†
i 〉, where ˆ denotes

Fourier transform and † the complex conjugate. For the cases considered, except at
very early times and at small scales, the differences between Em and Ev are small (not
shown).

The solenoidal and dilatational parts of the kinetic energy are written using the
Helmholtz decomposition: wi is divided into its compressible and divergence-free
parts (Livescu et al. 2002). As figure 19 shows, initially the kinetic energy resides
entirely in the dilatational component and its spectrum is determined by the density
initialization. As the flow evolves, solenoidal energy is rapidly generated and becomes
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Figure 19. Solenoidal (upper curves) and dilatational (lower curves) energy spectra at
different times for cases (a) 1Re2 and (b) 2Re2.

much larger than the dilatational part at all scales. Nevertheless, since the dilatational
velocity is set by the derivatives of the density field, Ed

m(κ) decreases more slowly than
Es

m(κ) as κ increases and the relative importance of the dilatational part is larger
at small scales. The solenoidal energy spectrum appears to be developing an inertial
range as the Reynolds number increases to its maximum.

To investigate the mechanisms of energy growth at different scales, the spectral
evolution of the energy is considered. The transport equation for wi is derived from
(2.1)–(2.3):

wi,t = Fvi + Nvi + Vvi, (5.3)

Fvi =
√

ρ∗ gi

F r2
− 1√

ρ∗ P,i, (5.4)

Nvi = −(wiuj ),j + 1
2
wiuj,j − 1√

ρ∗ p,i, (5.5)

Vvi =
1√
ρ∗ τij,j . (5.6)

Fvi , Nvi and Vvi represent buoyancy production, nonlinear and viscous effects. The
spectral equation for the energy per unit volume is then〈

ŵiŵ
†
i

〉
,t

=
〈
ŵiF̂

†
vi + ŵ

†
i F̂vi

〉︸ ︷︷ ︸
FV

+
〈
ŵiN̂

†
vi + ŵ

†
i N̂vi

〉︸ ︷︷ ︸
NV

+
〈
ŵiV̂

†
vi + ŵ

†
i V̂vi

〉︸ ︷︷ ︸
V V

. (5.7)

The spectral energy per unit mass equation can be derived similarly starting from
the instantaneous equations (2.1)–(2.3).〈

ûi û
†
i

〉
,t

=
〈
ûi F̂

†
mi + û

†
i F̂mi

〉︸ ︷︷ ︸
FM

+
〈
ûiN̂

†
mi + û

†
i N̂mi

〉︸ ︷︷ ︸
NM

+
〈
ûi V̂

†
mi + û

†
i V̂mi

〉︸ ︷︷ ︸
V M

, (5.8)

Fmi =
gi

F r2
− 1

ρ∗ P,i, (5.9)

Nmi = −(uiuj ),j + uiuj,j − 1

ρ∗ p,i, (5.10)

Vmi =
1

ρ∗ τij,j . (5.11)
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For the cases considered, the differences between the energy per unit mass and unit
volume formulations are small except at initial times when the density gradients are
largest and there has been little molecular diffusion. As the density field is smoothed
out by diffusion, the terms in (5.7) and (5.8) become close. Figure 20 shows the terms
in (5.7) at a typical time before the kinetic energy peak.

Initially, the velocity has only a dilatational component given by (2.8). Therefore,
at the initial instant the mass flux is zero, since 〈ρ∗ud

i 〉 = −(1/ReSc)〈ρ∗ρ,i/ρ
∗〉 = 0.

As the fluids start to move, the energy is generated at all scales by the anisotropic
production term in (5.7) and at intermediate and small scales, in addition, by the
nonlinear transfer term. The anisotropy generation at small scales and the subsequent
isotropization, suggested by the evolution of d33 and the structure functions presented
in the previous section, are explained below.

5.2.1. Spectral balances and wavenumber ranges

Two spectral length scales reflecting the different dynamical balances are now
derived. Using a simple scaling argument, the critical wavenumber reflecting the
balance between the buoyancy and nonlinear effects in the spectral energy per unit
volume equation is obtained from the solution of:

κBN = [A/(Fr2EK (κBN ))]1/2. (5.12)

Nonlinear effects dominate buoyancy effects at large wavenumbers, but only if the
energy spectrum does not decay faster than κ−2. Note that κBN is larger at higher
Atwood numbers or smaller Froude numbers. A wavenumber scaling reflecting the
balance of buoyancy and viscous forces is obtained from:

κBV =
[
Re0A/Fr2Eρ(κBV )1/2

/
EK (κBV )

]2/5
. (5.13)

Viscous forces dominate the buoyancy forces for κ > κBV . This increases with A or
Re and decreases with Fr . In the viscous range, the nonlinear and viscous terms in
(5.7) have opposite signs and similar magnitudes (figure 20) and it appears that the
buoyancy production, though small, has an important contribution to the left-hand
side of (5.7) in this spectral range at early times. Note that as the kinetic energy
grows, there is a lag between the viscous dissipation and energy production so that,
at very early times, the small scales become strongly anisotropic. Later, as explained
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below, as the nonlinear transfer term starts to contribute to the energy increase, the
anisotropy decreases. After the initial instant, as nonlinear effects start to dominate
the buoyancy production, the intermediate scales become almost isotropic. At the very
small scales, however, owing to the cancellation between the nonlinear and viscous
terms, the buoyancy production remains relatively important and there is a persistent
small-scale anisotropy even after the dissipation overcomes production during the
decay stage.

5.2.2. Time scale of non-equilibrium spectral processes

As the buoyancy force is applied suddenly, the buoyancy production sets the kinetic
energy increase at all scales at early times and the flow becomes anisotropic at all
scales (figure 21). Later, the nonlinear interactions pick up and contribute to the
increase in kinetic energy at intermediate and small scales. Thus, as seen in figure 21,
the anisotropy among the normal stresses decreases at these scales, consistent with
the structure functions ratio and d33 trends. Concomitantly, the pressure–strain terms
decrease the anisotropy at large scales, as seen in the b33 time variation. A legitimate
question to ask is then how fast does the energy reach the small scales through
the cascade process compared to the time scale associated with the increase in the
production term. In other words, how fast does the nonlinear term increase at small
scales compared to the buoyancy term.

One estimate of the energy-cascade-process time scale, τE , comes from Kraichnan
(1971), which assumes that an eddy with wavenumber κ0 is affected through a shearing
motion by all wavenumbers smaller than κ0:

τ 2
E ∼

(∫ κ0

0

EK (κ)κ2dκ

)−1

∼
(
EK (κ0)κ

3
0

)−1
. (5.14)

The production term in (5.7) increases at small scales through its cascade process. A
simple estimation of the time scale, τB , associated with this process leads to:

τB ∼ 1

Fr2

(∫ κ0

0

(EK (κ))1/2(Eρ(κ))1/2κdκ

)−1

∼
(
EK (κ0)Eρ(κ0)κ

4
0

)−1/2
. (5.15)
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Assuming that Em and Ev have the same κ dependence and the density spectrum
behaves like Eρ ∼ κ−n, then the ratio of the time scales is:

τE/τB ∼ 1

Fr2
κ (1−n)/2 (5.16)

For any Froude number, if the density spectrum is steeper than κ−1, τE/τB goes to
zero as κ → ∞. In short, the rate of increase of small-scale energy is faster through
nonlinear cascade processes than buoyancy production. At early times, the small
scales are strongly anisotropic owing to the sudden application of the buoyancy force.
Owing to the finite amount of time required for the nonlinear transfer term to start
to act at progressively smaller scales, larger scales become isotropic faster, as seen in
figure 21. Near the viscous range, the energy increase is retarded by an increase in the
viscous dissipation and the anisotropy persists. The progressive decrease in anisotropy
at intermediate wavenumbers is not seen in the ratio of the longitudinal structure
functions (figure 17) as this behaviour is masked by the contribution from the single-
point correlation to the structure function. A similar isotropization mechanism may
occur in the inner regions of the RT layer, so that at long times, the intermediate-scale
anisotropy is small. This is consistent with the high-Reynolds-number simulations of
Cabot & Cook (2006). The isotropization of the intermediate scales may seem to
be indicative of the emergence of an inertial range. However, this flow during the
growth stage, as well as RT turbulence, is highly non-stationary with a continuous
increase of energy at all scales. Therefore, the classical high-Reynolds-number picture
with an inertial range in which the nonlinear transfer term is small and the viscous
scales become decoupled from the large scales may not apply. The question of how
an inertial range would look in buoyantly driven turbulence seems to remain open.
We note, in addition, that, whenever there is a cancellation between nonlinear and
viscous forces, as happens in the viscous range, or if the buoyancy effects are suddenly
increased, as may happen at the edges of the RT layer or under variable accelerations,
the anisotropic effects of the buoyancy production should be felt up to the smallest
scales of motion.

6. Summary of findings
Simulations of the mixing produced by buoyancy-generated motions in an unstably

stratified medium, as occurs in the VD RT layer, have been conducted. The medium
is composed of two miscible fluids with different densities and the same diffusivities.
Simulations with Atwood number in the range 0.05 � A � 0.5, capturing the transition
from Boussinesq-like evolution to important non-Boussinesq effects, are studied.
The effects of molecular diffusion, as parameterized by the Schmidt number, are
investigated over a twenty-fold variation, 0.1 � Sc � 2. For the high-initial-Reynolds-
number case, turbulent Reynolds numbers of the order of Ret = 2380 (or Reλ = 210
in the vertical direction) occurred in the simulations.

The VD mixing-simulation results permit several big picture fluid physics
generalizations. The most unexpected and surprising result is the large skewness
of the density PDF during mixing in a VD flow, not seen in the Boussinesq case: the
light pure fluid mixes much more rapidly than the heavy pure fluid.

Molecular mixing in a VD fluid. Density fields are initialized with symmetric bi-modal
double delta PDFs with equal amounts of the two pure fluids. At low Atwood number,
as might correspond to the Boussinesq case, the density PDF remains symmetrical as
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the stirring and mixing proceeds. At high Atwood numbers, the PDF rapidly becomes
skewed before decaying to uni-modal Gaussian-like distribution. The generation of
skewness is due to the 〈ρ(ρ,j )2〉 covariance which is close to zero for symmetric
Gaussian-like density PDFs and for mixing in the Boussinesq case. Physically, this
means that the heavy fluid undergoes less stirring and (consequently) less molecular
mixing than the light fluid.

That this might be the case is suggested by the expression for the mean molecular
mix rate

ερv = D
〈

ρ,k

ρ∗3/2

ρ,k

ρ∗3/2

〉
, (6.1)

which implies that larger ρ∗ events are accompanied by less mixing (for a given ρ,k).
Because of the rapidity of the mixing of the light fluid, heavy pure fluid events

are more frequent than light pure fluid events. This indicates that, though the PDF
skewness generation mechanism 〈ρ(ρ,j )2〉 is weighted to large-density events (by
number and size), stirring, ρ,i ui,j ρ,j , associated with the generation of (ρ,j )2 is
much smaller in the large-density regions. It is conjectured that the inertia of the
heavy fluid reduces the rate at which it is broken up by stirring, leading to smaller
(ρ,j )2. Thus, heavy pure fluid blobs stay pure longer than the light fluid blobs.

Consequences for RT. For mixing in the high-Atwood-number RT layer, about
which very little is known, this suggests that very different amounts of molecular
mixing occur on different sides of the layer, leading to a longer penetration distance
for the pure heavy fluid than the pure light fluid. This is probably the cause of the
higher growth rates of the spikes versus the bubbles that was observed experimentally
at high A by Dimonte & Schneider (2000). The bubble–spike anomaly is related to
the production of the density skewness and the rate of molecular mixing

d

dt
S = −S

ερ

〈ρ2〉 − 3

4

〈ρ(ρ,j )2〉
〈ρ,kρ,k〉〈ρ2〉1/2

, ερv = D
〈

ρ,k

ρ∗3/2

ρ,k

ρ∗3/2

〉
. (6.2)

This asymmetry is also seen in the medium Atwood simulations of Cabot & Cook
(2006) as discussed in Livescu et al. (2008).

Mix metrics. The density PDFs show, as expected, that there is no correlation
between lower-moment metrics and a unique mix state. This was made clear by
comparing the density PDF for different cases when, as is characteristic of some
laboratory RT measurements, θ = 0.65. The PDFs for the cases when %m = θ =
Ξ = θ〈ρv〉 = 0.8 also made this point clear. The PDFs obtained for the different
cases at times %m = θ = Ξ = θ〈ρv〉 = 0.8 can have any shape; they can have either
or neither pure fluids. In addition, the density PDF depends on all the parameters
considered, A, Re0, Fr and Sc. In contradistinction, the lower-order moments, θ and
Ξ , appear to depend only on Reb0

and Sc. Thus, the lower-order-moment evolutions
in the VD case can be recovered from corresponding low A simulations (e.g. with
Fr appropriately changed). Nevertheless, higher-order moments and the shape of the
density PDF qualitatively change as the Boussinesq approximation is no longer valid.

Therefore, comparing integral quantities of the PDFs (low-order moments) between
the VD and Boussinesq cases could lead to the false conclusion that there is no
substantial difference in the mix states. As demonstrated, such moments cannot
indicate anything about the presence or absence of pure fluid which corresponds
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to events near tails of the PDF. Such events are not rare in the mixing of initially
segregated pure fluids in which the PDFs are patently not quasi-Gaussian.

Relations between mix metrics. The commonly used θ mix parameter is related to the
variance of the excess reactant:

θ = 1 − 〈ρ2〉
〈ρ2〉nm

= 1 − 〈ρ2〉
(ρ̄ − ρ1)(ρ2 − ρ̄)

, (6.3)

θ =
(
1 −

〈
X2

e

〉) (
1 +

ρ̃2

〈ρ2〉nm

)
= Ξ

2 −
〈
X2

P

〉
/〈XP 〉

2 − XPmax

, (6.4)

where ρ̃ = (ρ1 + ρ2)/2 − ρ̄. For the homogeneous case and in the central regions of
the RT layer,

θ |H = 1 −
〈
X2

e

〉
(6.5)

and θ � Ξ (with Ξ = 〈XP 〉). Rigorous analytical bounds have been derived relating
these quantities. For example, if Ξ = 0.8, then 0.8 � θ � 0.96.

Consequences for RT. From the expression above relating θ and Ξ , some comments
for the RT layer were made. Near the centreline of an RT layer, the relations derived
for the homogeneous case hold, and θ always over-predicts the mixing with respect to
that predicted by Ξ . At the edges of an RT layer, θ always underpredicts the amount
of mixing with respect to Ξ .

A VD mix metric. Owing to the appearance of 〈ρv〉 in the moment equations for VD
turbulence (and the absence of 〈ρ2〉), a new VD mix measure

θρv = 1 − 〈ρv〉/〈ρv〉nm, 〈ρv〉nm = − (ρ2 − ρ̄)(ρ̄ − ρ1)

ρ1ρ2

, (6.6)

is proposed.
The transport equation for the density PDF is formally the same as for the

Boussinesq case and the dilatational effects do not appear explicitly. However, the
dilatation sets the right-hand side of the 〈ρv〉 equation which directly affects the
mixing and the energy conversion mechanism. Conversely, for the Boussinesq case,
the density variance mediates the energy conversion mechanism and the density
variance equation is formally the same for the VD fluid. This again emphasizes the
difference between mixing in a Boussinesq fluid as compared to a VD fluid.

Bounds on pure and mixed fluid quantities. Using only two lower-order moments,
(θ, ρ̄) or (〈XP 〉, ρ̄), or (θρv, ρ̄), bounds on the composition of a general VD fluid
were established. These bounds are valid for the RT layer as well. For example, if
ρ̄ = (ρ1 + ρ2)/2, then for 〈XP 〉 = 0.8, 0 � %B � 0.11, 0.78 � %m � 1; for θ = 0.8,
it yields 0 � %B � 0.2, 0.75 � %m � 1; and for θρv = 0.8 and A = 0.5, it yields
0 � %B � 0.28, 0.7 � %m � 1. Any values in such intervals are possible. The
tightest bounds are obtained when (ρ̄, 〈XP 〉) are known. These bounds can be used as
realizability constraints and also to characterize the mixing state in low-dimensional
models, in which low-order moments are typically the only information available.
Nevertheless, first- and second-order moments cannot capture the skewness or the
tails of the underlying density PDF, and bounds derived from only two such moments
are formally the same for the pure light and pure heavy fluids.

Consequences for RT. In the RT layer, limitations evaluating the molecular mixing
based on lower-moment metrics such as θ are clear: at the top of the layer the PDF
is spiked at the black end and includes some grey. In the centre of the layer- the
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PDF is quasi-Gaussian and the fluid grey. At the bottom of the layer, the PDF is
spiked in the white with some grey. Yet across the layer, θ varies slowly, not giving an
indication of the radically different amounts of white, black or grey. See Linden et al.
(1994), Youngs (1994) and Wilson & Andrews (2001) for examples of such PDFs
given by coarse-grained simulations.

Reynolds-number dependence. The evolution of mix variables changes little if the static
Reynolds number increases above some critical value that depends on the Schmidt
number. It is also observed that the higher the initial Reb0

, the larger the maximum
k, Ret reached and, counter-intuitively, the less molecular mixing that takes place (for
a given Sc).

Rate of molecular mixing. The density derivative PDF becomes asymmetric in the
vertical direction, with wide tails, indicating that there are rare events corresponding
to very large density-gradient magnitude. The frequency and size of these events,
which correspond to fluid blobs moving towards each other, become larger with Sc

and Reb0
and significantly increase the resolution requirements.

Interfacial area scaling. For the cases considered, it is found that the interfacial surface
area per unit volume of the ρ∗ = (ρ1 + ρ2)/2 iso-density scales with the inverse of the
density Taylor microscale: Σst ∝ λ−1

ρ .

Turbulence modelling. The eddy turnover time scales of 〈ρ2〉 and 〈ρv〉 are not constant
during the evolution of the flow, showing that the usual simple models for scalar
dissipation are not useful for this flow. Furthermore, at higher Atwood numbers, the
two time scales are different; this is probably due to the suggested lack of a one
to one relation between 〈ρ2〉 and 〈ρv〉 when there is a significant density difference
present. Recall that the mixing mechanisms for 〈ρ2〉 and 〈ρv〉,

ερ = D〈ρ,k ρ,j 〉, ερv = D
〈

ρ,k

ρ∗3/2

ρ,k

ρ∗3/2

〉
,

are different only when there are large density differences: i.e. ρrms/ρ̄ ∼ 1.

Schmidt-number-dependence of the integral length-scale ratio. The ratio of the integral
length scales of the velocity and density fields is observed to be very sensitive
to Schmidt number. For simulations with Sc = 1, the two integral scales are
commensurate. For the Sc �= 1, cases, they are surprisingly different. Given that
the integral length scale is a large-scale quantity and that the only difference is
the molecular diffusion coefficient, why this occurs is a mystery. The conundrum is
compounded by the Taylor microscale ratio which, being a smaller-scale quantity,
shows much less sensitivity to the Schmidt number.

Comment on the spectral energy balance. Inspection of the spectral energy equation
indicates that in the viscous range, during the growth stage, the nonlinear transfer
terms and the viscous terms are the same magnitude and, since they are of opposite
sign, the anisotropic buoyancy production retains its relative importance even though
it has small magnitude. Thus, during the growth stage, the normal stresses are
anisotropic at the smallest scales, with some 50% of the energy in the vertical
direction. The dissipation itself becomes more isotropic, substantiating the explanation
above. The relative magnitude of the terms in the spectral kinetic energy equation
was discussed by deriving expressions for critical wavenumbers which express the
balance of various terms and time scales for cascade processes. Also observed was the
isotropization of the intermediate scales as the nonlinear spectral transfer dominates
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buoyancy production. The persistent viscous range anisotropy may have substantial
relevance for LES type closures.

7. Conclusions
Surprising and substantial differences between the mixing processes in a VD flow,

as opposed to the Boussinesq approximation, are found. It is observed that the pure
heavy fluid mixes more slowly than pure light fluid and, as a consequence, an initially
symmetric bi-modal double delta density PDF is rapidly skewed as the light pure
fluid rapidly vanishes and only at long times does it relax to a symmetric Gaussian-
like PDF. In the Boussinesq case, the density PDF is symmetrical throughout the
mixing process as the light and heavy fluids mix at the same rate. For the VD RT
configuration this suggests that molecular mixing proceeds differently on the two
sides of the RT layer. Experiments to date have not investigated this possibility. In
fact, it appears that there is only one laboratory RT experiment, Wilson & Andrews
(2001), that measures the density PDF at different vertical locations.

The current simulations were motivated by several interests: (i) the need to
understand if material mixing in a VD flow is phenomenologically different from
that for the Boussinesq case and if this difference is important; (ii) to examine
the changes in the turbulence structure as it couples with the material mixing in a
buoyantly driven flow; and (iii) to provide a data set for the quantities, many of
which are difficult to obtain experimentally, required by various type of closure. The
results presented are, by and large, general and apply to a wide class of VD flows;
they have also been verified with the in-homogeneous 30723 VD RT simulation of
Cabot & Cook (2006) as shown in Livescu et al. (2008).

Diverse mixing metrics, describing both the state of the mix and their relation to
the density PDF are studied. There is no fundamental or unique connection between
such low-order metrics and the underlying physical mix state as is made clear by the
very different forms of the PDF and the amount of pure and mixed fluids present.
Nevertheless, these metrics may be the only ones available in low-dimensional models.
Therefore, analytical bounds were derived to ascertain the range of fluid compositions
that such metrics imply. The bounds can be used as realizability constraints in low-
dimensional models or to characterize the flow configuration.

The traditional RT mix parameter, θ , is shown to be related to the variance of the
unmixed fluid (the excess reactant in a hypothetical fast reaction) and not connected to
the amount of mixed fluid. Analytical bounds between θ and Ξ have also been derived.
A new mix measure, based on 〈ρv〉 and related to the mean specific volume, appropri-
ate for VD turbulence and appearing in the Favre-averaged second-moment equations,
was proposed. Bounds on fluid composition given only 〈ρv〉 and ρ̄ were derived.

The rate at which mixing occurs depends on both the magnitude of the density
gradients and the interfacial surface area. The PDF of the vertical derivative of the
density is asymmetric at higher A, as in the ‘heavy over light fluid’ configuration,
the magnitude of the density gradients increases considerably. This affects the shape
of the fluid blobs and substantially increases the resolution requirements at high
Atwood numbers. The stoichiometric density surface area was found to scale with
density Taylor microscale for the Schmidt numbers considered in this study (Sc =
0.1, 0.5, 1, 2).

The large scales of the flow remain anisotropic at all times owing to the buoyancy
production. It is shown that buoyancy production is small compared to nonlinear
and viscous effects in the spectral energy equation at high wavenumbers, so that the
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intermediate scales, in a high-Reynolds-number flow, become isotropic shortly after
the sudden application of the buoyancy force. However, if Sc is not very small, there
is a persistent anisotropy of the smallest scales during the growth stage, as in the
viscous range there is a cancellation between the viscous and nonlinear effects and
buoyancy production remains important.

To summarize: (i) mixing in a Boussinesq flow is not a relevant model for mixing
in a VD flow except when the density PDF is of the uni-modal Gaussian type, the
density fluctuations small, and no pure fluid is present; (ii) mixing in the Boussinesq
case becomes a useful model if all that is required is low-order integral measures of
the density PDF and no measures of the fluid composition; (iii) given two low-order
moments of the density PDF it is possible to establish useful bounds on the fluid
composition; (iv) in a VD flow mixing becomes asymmetric, with the pure light fluid
disappearing faster than the pure heavy fluid; and (v) buoyancy production changes
the turbulence structure with persistent anisotropy of the smallest scales.

Computational resources were provided through the Institutional Computing
Project, Los Alamos National Laboratory. This work was performed under the
auspices of US Department of Energy.
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