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A B S T R A C T

The identification of processes that locally and approximately dominate dynamical system behavior has enabled
significant advances in understanding and modeling nonlinear differential dynamical systems. Conventional
methods of dominant process identification involve piecemeal and ad hoc (non-rigorous, informal) scaling
analyses to identify dominant balances of governing equation terms and to delineate the spatiotemporal
boundaries (boundaries in space and/or time) of each dominant balance. For the first time, we present an
objective global measure of the fit of dominant balances to observations, which is desirable for automation, and
was previously undefined. Furthermore, we propose a formal definition of the dominant balance identification
problem in the form of an optimization problem. We show that the optimization can be performed by various
machine learning algorithms, enabling the automatic identification of dominant balances. Our method is
algorithm agnostic and it eliminates reliance upon expert knowledge to identify dominant balances which
are not known beforehand.
. Introduction

Observations of nonlinear dynamical systems can exhibit heteroge-
eous patterns of non-asymptotic dominant balances when subjected
o asymmetric initial and/or boundary conditions. A dominant bal-
nce (Callaham et al., 2021) is a subset of governing equation terms
hich locally and statistically dominates the remaining equation terms
y at least an order of magnitude. The dominant balances in observa-
ions of nonlinear systems are often non-asymptotic (Barenblatt, 1996).
on-asymptotic dominant balances do not permit equation truncation

hrough formal methods with well defined convergence properties.
ighly nonlinear differential dynamical systems with asymmetries im-
osed by initial and/or boundary conditions often exhibit multiple
ominant balances delineated by boundaries in space and/or time.

One example of the importance of dominant balance identifica-
ion is illustrated by d’Alembert’s ‘‘zero drag’’ paradox (d’Alembert,
752), which took over 150 years to be resolved by Prandtl (Prandtl,
904). d’Alembert argued that, since frictional forces in fluid flow are
ery small, they can be neglected everywhere in the fluid. However,
’Alembert’s argument meant that balls and cylinders flying through
he air should experience zero drag. The paradox arose because fric-
ional forces in fluid flows are often small, yet drag forces are virtually
mnipresent in observations. The root of the paradox is the assumption

∗ Corresponding author.
E-mail address: bkaiser@lanl.gov (B.E. Kaiser).

of a global and absolute, rather than relative and local, threshold for
the importance of frictional forces in fluid flow. Upon realizing these
properties of dominant balances, Prandtl resolved the paradox by posit-
ing that the frictional terms in the fluid dynamical governing equations
cannot be ignored within thin boundary layer regions on the surface
of immersed objects (see Fig. 1). The dominant balances identified
by Prandtl directly informed the development of aerodynamic stall
prediction and, indeed, the whole field of aerodynamics.

Crucially, the equation terms that constitute dominant balances are
dominant relative to the magnitude of the equation terms deemed
negligible within the same dominant balance region. All equation terms
in one dominant balance can be much smaller or larger than all
equation terms in another dominant balance. Setting a global magni-
tude threshold on equation terms beforehand is problematic because
dominant balances are useful as localized tools for diagnosing rele-
vant dynamical processes. Dominant balance identification can aid the
development of statistical models. This has been done in fields as
diverse as nonlinear waves, plasma dynamics, earthquake dynamics,
general relativity, quantum field theory, biochemical reaction–diffusion
dynamics, fibrillation dynamics, epilepsy, turbulent flows, fiber optics,
biofilm dynamics, weather, and climate dynamics (Strogatz, 1994; Blow
and Wood, 1989; Seminara et al., 2012; Vallis, 2017; Peixoto and Oort,
1992).
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Fig. 1. Illustration of the resolution of d’Alembert’s paradox. Prandtl observed that frictional terms, which may be negligibly small far from the surface of a body immersed
in a fluid flow, are not negligibly small near the surface of the immersed body.
Conventional methods for dominant balance identification involve
combining any available theoretical and/or empirical domain knowl-
edge with estimates of characteristic scales to identify dominant bal-
ances. Callaham et al. (2021) proposed an unsupervised machine learn-
ing method that effectively automates the tedious, piecemeal, and ad
hoc manner of conventional methods of dominant balance identifica-
tion. However, to effectively use their method, the dominant balances
must be known beforehand to choose the correct algorithm parameters.
What if the dominant balances are not known beforehand? Here, we
propose a definition of the dominant balance identification problem
as an optimization problem. We then propose a simple algebraic ver-
ification criterion to generically define the optimal. By defining the
problem and by proposing an optimization function consistent with
previous balance identification methods, this study will enable robust
and credible automation of dominant balance identification.

2. Problem formulation

Given the array of data 𝐄 = [𝐞1,… , 𝐞𝑁 ], consisting of 𝑁 observations
of the 𝐷 dimensional vector of equation terms 𝐞𝑛, we seek to label
each observation with a 𝐷 dimensional hypothesis vector 𝐡𝑛, where
ℎ𝑛𝑖 ∈ {0, 1} for each 𝑛th observation of the 𝑖th equation term. We
assume that the equation is closed, ∑𝐷

𝑖=1 𝑒𝑛𝑖 = 0, for all observations.
The entire array of data is labeled by 𝐇 = [𝐡1,… ,𝐡𝑁 ], and zeros in each
hypothesis vector 𝐡𝑛 indicate equation terms in 𝐞𝑛 that are neglected.
We choose a verification criterion (𝐄,𝐇), such that the optimal fit
hypotheses, 𝐇opt, can be obtained by varying the hypotheses 𝐇 to find

𝐇opt =

⎧

⎪

⎨

⎪

⎩

argmax
𝐇

(𝐄,𝐇) if max(𝐄,𝐇) > (𝐄, 𝟏)

𝟏 if max(𝐄,𝐇) ≤ (𝐄, 𝟏)
, (1)

where 𝟏 is an array of ones indicating all equation terms are re-
tained for the entire data array. We use the notation conventions of
Bishop (Bishop, 2006), where scalars are italicized, lower case bold
represents one dimensional arrays, and upper case bold represents two
or higher dimensional arrays.

We propose Eq. (1) as a definition of the dominant balance identifi-

cation problem, in which one seeks to partition the observations 𝐄 into

2

distinct regions each with different dominant balances, as labeled by
𝐇opt. The dominant balances within 𝐇opt can be assigned by conven-
tional ad hoc methods (Tennekes and Lumley, 1972), or they can be
assigned by using clustering algorithms to partition data into distinct
regions and subsequently by using dimensionality reduction algorithms
to select dominant balances for each region (Callaham et al., 2021).

3. The local magnitude score

To define a verification criterion, we propose to define optimal
dominant balances as balances that satisfy two conditions for each
region,

1. the magnitude difference between the selected dominant terms
and the negligible terms must be maximized;

2. the magnitude difference between the terms within the selected
dominant set must be minimized.

If the first condition is not satisfied, then all equation terms should
be retained, i.e., they are all equally dominant. These qualitative def-
initions are consistent with conventional ad hoc methods of scaling
analysis (Zohuri, 2017).

The local order-of-magnitude score, 𝑛(𝐞𝑛,𝐡𝑛), hereafter the local
magnitude score (LMS), pertains to a single observation of equation-
space. It is a measure of the magnitude gap between dominant terms
𝐡𝑛 ⋅ 𝐞𝑛 and negligible terms |𝐡𝑛 − 𝟏| ⋅ 𝐞𝑛 (terms that are selected as
dominant are labeled by ℎ𝑛𝑖 = 1 and the neglected terms are labeled
by ℎ𝑛𝑖 = 0, for the 𝑛th observation and the 𝑖th equation term).

To define the LMS we must first define the selected and neglected
sets of equation terms and their respective indices. Define F = {1,… , 𝐷}
as the index set (Munkres, 2000) of the indices of the full set of equation
terms in vector 𝐞𝑛, such that

𝐞𝑛 =
⋃

𝑖∈F
𝑒𝑛𝑖, (2)

for observation 𝑛 such that 1 ≤ 𝑛 ≤ 𝑁 . We refer to the binary
sets that represent the dominant terms as hypotheses because they
represent informal equation truncations that are not guaranteed to have
asymptotic properties. The hypotheses for the entire data set 𝐄 form an

array, 𝐇, which has the same dimensions as 𝐄, [number of samples ×
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number of equation terms]. The hypothesis vectors for each observation
can be expressed as

𝐡𝑛 =
⋃

𝑖∈F
ℎ𝑛𝑖, (3)

where 𝐡𝑛 is an indicator function (Cormen et al., 2009) that consists
entirely of ones and zeros, which represent selected dominant terms
and negligible terms, respectively. The indices of elements in 𝐞𝑛 that
are selected as dominant terms by the hypothesis 𝐡𝑛 form the selection
index set S𝑛, where

S𝑛 ⊆ F. (4)

The number of selected elements may vary for each observation 𝑛, and
if S𝑛 = F then 𝐡𝑛 = 𝟏 and no equation terms are neglected. It follows
that the remainder index set R𝑛 for the 𝑛th observation is defined by
set subtraction

R𝑛 = F − S𝑛, (5)

and, therefore, the remainder index set and selected index set are non-
overlapping,

R𝑛 ∩ S𝑛 = ∅. (6)

Thus the cardinality, or size, of the selected index set and remainder
index set are 2 ≤ card(S𝑛) ≤ 𝐷 and 0 ≤ card(R𝑛) ≤ 𝐷 − 2, respectively.
The lower bound of two selected terms is not necessary nor required;
we impose it because a dominant balance of just one term is not a useful
balance of terms (see Appendix A for further detail).

Let the arrays of selected and remainder equation terms from �̂�𝑛
be 𝐬𝑛 and 𝐫𝑛, respectively. �̂�𝑛 is the set of equation terms that are
normalized such that the smallest equation term magnitude is unity,

�̂�𝑛 =
⋃

𝑖∈F𝑛 |𝑒𝑛𝑖|

min
(
⋃

𝑖∈F |𝑒𝑛𝑖|
) ≥ 1, (7)

where min(
⋃

𝑖∈F |𝑒𝑛𝑖|) ≠ 0. If min(
⋃

𝑖∈F |𝑒𝑛𝑖|) = 0, then the minimum non-
ero absolute valued element of 𝐞𝑛 replaces the denominator in Eq. (7).
he selected terms 𝐬𝑛 (hypothesized as dominant) and remainder terms
𝑛 (hypothesized as negligible) are defined as

𝐬𝑛 =
⋃

𝑖∈S𝑛

𝑒𝑛𝑖, (8)

𝑛 =
⋃

𝑖∈R𝑛

𝑒𝑛𝑖, (9)

espectively. Let the magnitude gap between the normalized subsets,
𝑛, be defined as a scalar for each 𝑛th observation,

𝑛 =

{ log10(min(𝐬𝑛)−max(𝐫𝑛))
log10(min(𝐬𝑛)+max(𝐫𝑛))

if min(𝐬𝑛) > max(𝐫𝑛)

0 if min(𝐬𝑛) ≤ max(𝐫𝑛)
. (10)

he magnitude gap is normalized such that 𝛤𝑛 ∈ [0, 1] by imposing the
loor condition (if 𝛤𝑛 < 0 then 𝛤𝑛 = 0) to correct for spurious large
egative values of 𝛤𝑛 that arise as min(𝐬𝑛) → max(𝐫𝑛). The behavior of
𝑛, defined in Eq. (10), as a function of the ratio min(𝐬𝑛)∕max(𝐫𝑛) is
hown in Fig. 2, which shows that 𝛤𝑛 → 1 as the minimum magnitude
f the selected subset approaches two orders of magnitude greater than
he maximum of magnitude of the remainder subset.

Since the goal is to choose the selected subset, 𝐬𝑛, such that it
orresponds to the dominant terms, the feature magnitudes of the
elected subset should be approximately the same. Otherwise, the
mallest magnitude term(s) in the selected subset should be removed
rom that subset and added to the remainder subset. To penalize large
bsolute magnitude differences within the selected subset, we introduce
scalar penalty for the 𝑛th observation,

𝑛 = log10(max(𝐬𝑛)) − log10(min(𝐬𝑛)) ∈ [0,∞). (11)

base 10 logarithm is chosen for the penalty because it corresponds
ost directly to the notion of orders of magnitude. 𝛺𝑛 is defined such

hat as std(𝐬 ) → 0, so does the penalty, 𝛺 → 0.
𝑛 𝑛 𝐞

3

Fig. 2. The normalized magnitude gap between the selected and neglected
equation terms. The convergence of the normalized magnitude gap of the 𝑛th
observation, 𝛤𝑛, as a function of the number of orders of magnitude that separate the
minimum magnitude term of the selected equation terms and the maximum magnitude
remainder equation terms. 𝛤𝑛 ≈ 1 as at least two orders of magnitude separate the
selected and remainder equation terms. If the selected equation terms are all the same
magnitude then 𝛺𝑛 = 0 and 𝑛 = 𝛤𝑛. This figure indicates that we have formalized
the notion of a dominant balance as bias towards the preferential selection of sets of
terms that dominate neglected terms by at least two orders of magnitude.

Finally, the LMS for the 𝑛th sample, is given by

𝑛(𝐞𝑛,𝐡𝑛) =
𝛤𝑛

1 +𝛺𝑛
∈ [0, 1]. (12)

The score measures the consistency of truncations of the equation
with the average observed magnitudes of equation terms for the nth
observation. While Eq. (12) defines the optimization problem in terms
of a single variable, a two-variable optimization (i.e., the maximization
of 𝛤𝑛 and minimization of 𝛺𝑛) is a viable alternative methodology to
the uni-variate optimization presented here.

3.1. Local magnitude score example

To understand the LMS, consider a simple problem in which one
needs to decide which equation terms to keep and which to neglect.
Consider the one dimensional form of the heat equation with two
additional terms (i.e. advection and source),
𝜕𝑇
𝜕𝑡

− 𝜅 𝜕
2𝑇
𝜕𝑥2

− 𝑢 𝜕𝑇
𝜕𝑥

+ 𝜆(𝑇 − 𝑇0) = 0. (13)

Now assume that after scale analysis (Zohuri, 2017) for a given problem
of interest we find that the terms in Eq. (13) scale as


( 𝜕𝑇
𝜕𝑡

)

∼ 1, (14)


(

𝜅 𝜕
2𝑇
𝜕𝑥2

)

∼ 𝜖, (15)


(

𝑢 𝜕𝑇
𝜕𝑥

)

∼ 1, (16)


(

𝜆(𝑇 − 𝑇0)
)

∼ 𝜖, (17)

here we will consider both the case where 𝜖 is a small parameter and
he case where 𝜖 is a large parameter. We can rewrite Eq. (13) in terms
f the scale analysis

− 𝜖 − 1 + 𝜖 = 0. (18)

here are two dominant balances possible for Eq. (18), corresponding
o the small parameter case 𝜖 ≪ 1 and to the large parameter case
≫ 1. If there is only a single observation of the terms of Eq. (18),

hen 𝑁 = 1 and it can be expressed in equation data array as

= [1, 𝜖,−1,−𝜖], (19)
1
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Fig. 3. LMS example. The LMS for the hypotheses 𝐡1 = [1, 0, 1, 0] and 𝐡1 = [0, 1, 0, 1]
when applied to Eq. (19) as 𝜖 is varied from 𝜖 ≪ 1 to 𝜖 ≫ 1. A score of unity is
awarded if the dominant terms dominate by two orders of magnitude. In this example
there is only one sample, thus the average of a single data point is its original value
and therefore (𝐄,𝐇) = 1(𝐞1 ,𝐡1). This figure indicates that we have constructed the
LMS to preferentially select sets of terms that dominate neglected terms by at least two
orders of magnitude regardless of the signs of equation terms.

and therefore 𝐄 = 𝐞1 and 𝐇 = 𝐡1. If we chose a brute force search of
all possible dominant balance hypotheses, then there are 2𝐷 −𝐷 − 1 =
11 choices because each hypothesis is a permutation of two types. A
dominant balance of one term is not meaningful (see Appendix A).
A dominant balance of all governing equation terms is trivial and
conceptually equivalent a dominant balance of no governing equation
terms. The possible dominant balance hypotheses are

all possible hypotheses =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (20)

The score of all of these hypotheses are approximately zero for all
magnitudes of 𝜖 except for 𝐡1 = [1, 0, 1, 0] and 𝐡1 = [0, 1, 0, 1], which
represent the dominant terms when 𝜖 is relatively small and large,
respectively, shown in Fig. 3. Note that in this example 𝛺1 = 0 and
therefore 1 = 𝛤1. The score rapidly converges to unity if the scale
separation between dominant and neglected terms is larger than two
orders of magnitude.

4. A verification criterion

We propose the weighted average of 𝑛(𝐞𝑛,𝐡𝑛), when averaged
over 𝑁 samples, as a tenable verification criterion in Eq. (1),

(𝐄,𝐇) =
∑𝑁

𝑛=1 𝑤𝑛 ⋅𝑛(𝐞𝑛,𝐡𝑛)
∑𝑁

𝑛=1 𝑤𝑛
, (21)

where the array of weights 𝐰 = [𝑤1,… , 𝑤𝑁 ] are the discrete differ-
ntials of the observed domain, e.g. space and/or time differentials.
f 𝑁 = 1, then (𝐄,𝐇) = 𝑛(𝐞1,𝐡1). For example, if 𝑁 observations

of data set 𝐄 are equation terms distributed across a one-dimensional
space that evolve in time, then the verification criterion is the weighted
average of all scores where each 𝑛th weight is product of the time step
 a

4

and grid spacing for the 𝑛th observation, e.g. 𝑤𝑛 = (𝛥𝑡 ⋅ 𝛥𝑥)𝑛. The score
s designed such that the optimal is unity.

The verification criterion (𝐄,𝐇) is one possible objective function
hat defines optimal dominant balances in Eq. (1). While our choice
f verification criterion is ultimately subjective, we note that (a) our
hoice is consistent with domain knowledge as we state in the two
onditions above and show in Examples, and (b) it permits objective
omparison of dominant balances identified by different methods for
abeling equation data with 𝐇opt. Other definitions of the verification
riterion are possible and encouraged; the goal is to formally identify
ominant balances by solving Eq. (1).

. Unsupervised learning framework

We propose an unsupervised machine learning framework (Kohavi
nd John, 1997; Dy and Brodley, 2004) that automatically discovers
ominant balances by using the verification criterion (𝐄,𝐇) (Eq. (21))
o solve the problem defined by Eq. (1). The framework is depicted
n Fig. 4. The dominant balance identification problem is broken into
artitioning, hypothesis selection, and hypothesis testing tasks. The left
olumn outlines the conventional ad hoc method of dominant balance
dentification, and the right column depicts our framework. Our frame-
ork intentionally emulates the scientific method: the hypothesized
ominant balances 𝐇 are tested by evaluating their fit to the equation
ata 𝐄 by using the verification criterion.

The first task shown in Fig. 4, row A, is to partition 𝐄 into dif-
erent dominant balance regions. For humans, this task is often the
ere act of visually recognizing the difference in dynamics from one

ampled region to another. Sonnewald et al. (2019) first suggested
hat the heuristic act of recognizing different dominant balance regions
an be formulated as a partitioning problem that can be credibly
olved using clustering algorithms. They are a class of unsupervised
achine learning algorithms that yield a finite set of categories ac-

ording to similarities or relationships among its objects (MacQueen
t al., 1967; Hartigan, 1975). Clustering reveals underlying patterns of
parsity in the data. However, the resulting clusters are sensitive to the
hoice of algorithm parameters (Pedregosa et al., 2011). In addition,
o definition of a cluster that is universal to all clustering algorithms
xists (Estivill-Castro, 2002).

The second task, shown in the row B of Fig. 4, is to select hypotheses
for all samples. Humans typically perform this task by estimating

haracteristic scales from observations and choosing a threshold for
ach dominant balance by which some terms are deemed negligi-
le (Zohuri, 2017) for all samples within a region. Callaham et al.
2021) proposed sparse principal component analysis (Zou et al., 2006)
SPCA) for hypothesis selection. SPCA labels features with small vari-
nces as negligible. This is achieved through the application of least
bsolute shrinkage and selection operator (Tibshirani, 1996) (LASSO)
egression on the principal axes from principal component analysis.
his application of SPCA, or any other dimensionality reduction tech-
ique that pertains to convex data (Van Der Maaten et al., 2009), is ge-
metrically and statistically consistent with expectation–maximization
lustering algorithms (e.g. 𝐾−means, Gaussian Mixture Models). Both
lgorithms assume convex, uni-modal, zero-skew data.

We propose a simple hypothesis selection algorithm, that we will
efer to as the combinatorial hypothesis selection (CHS) algorithm,
or equations with less than eight terms 𝐷 ≤ 8, because of the
omputational complexity of brute force combinatorial guessing. The
dvantage of choosing CHS is that it contains no parameters that
equire tuning, such as the LASSO regression coefficient that must be
hosen for SPCA. Since the number of all possible hypotheses for an
quation is a permutation of two types (0 or 1) with repetition allowed,
he number of possible hypotheses is (2𝐷). If the number of equation
erms, 𝐷, is not large, then hypotheses can be feasibly generated by
alculating the magnitude score (Eq. (12)) for all possible hypotheses
nd then selecting the hypothesis that is awarded the highest score.
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Fig. 4. The dominant balance identification problem. Partitioning and empirical scaling analysis performed by a human (left column), and algorithms capable of performing
said tasks (right column). The loop over algorithm parameters illustrates the procedure for obtaining 𝐇opt in Eq. (1). Sonnewald et al. (2019) utilize 𝐾−means clustering to divide
oceanic vorticity into regions with distinct dominant balances. Callaham et al. (2021) demonstrated how clustering can be used to discover regions of dominant balances and
sparse principal component analysis can then be used to label each region with a dominant balance.
Table 1
Synopsis of automated dominant balance identification by Sonnewald et al. (2019) and by Callaham et al. (2021).

Study Dynamics Clustering Hypothesis selection Verification

Sonnewald et al. (2019) Global ocean vorticity 𝐾-means None (1) Robustness of identified ocean regions
(2) Information criteria convergence

Callaham et al. (2021)

(1) Turbulent boundary layer
(2) Optical pulse propagation
(3) Regional ocean vorticity
(4) Bursting neurons
(5) Rotating detonations

Gaussian Mixture Model SPCA None
𝐷
d

a
g
a
b

𝐞

w
a
𝛽
o

h
c

Eq. (12) can be applied to a single data sample or to a weighted average
of samples by using Eq. (21). The exponential time complexity limits
the feasibility of computing CHS to equations with relatively few terms,
as is shown in the Synthetic data example below.

The final task shown in Fig. 4, row C, is to measure the fit of
ypotheses 𝐇 to the data 𝐄. This task was conventionally performed
ndirectly through post hoc validation of models constructed using
elevant identified dominant balances. Crucially, the framework applies
o any choice of clustering and hypothesis selection algorithms. This
llows for objective evaluation and comparisons of different algorithms.
e have formalized direct verification of hypotheses by defining the

ominant balance identification problem in Eq. (1) and proposing
verification criterion (𝐄,𝐇). Table 1 shows the components of

the dominant balance identification problem that were performed in
previous studies.

The computational complexity of the framework depends on the al-
gorithms chosen for clustering and on the hypothesis selection because
the complexity of verification criterion is (𝑁). The computation time
of a single pass through the framework scales polynomially with sample
size 𝑁 for all combinations of a non-parametric and a parametric
clustering algorithm paired with SPCA hypothesis selection and CHS.
However, practical application of the framework requires that the user
search a subset of the potentially infinite range of possible algorithm
parameters. Thus, familiarity with the chosen algorithms and the sta-
tistical properties of the data set will reduce the overall computational
complexity and expedite dominant balance discovery.
 a

5

5.1. Synthetic data example

Consider a two-dimensional array of data with an even number of
equation terms, where half of the terms are two orders of magnitude
larger in one half of the domain and vice versa, with no variability
in the 𝑥 direction. Fig. 5a shows the synthetic data 𝑒𝑛𝑖 consisting of

= 8 equation terms, featuring two dominant balance regions in which
ominant terms have magnitudes of (10) and negligible terms have

magnitudes of (10−1). The dominant balance regions are separated by
discontinuity at 𝑦 = 0.5. Multiplicative sinusoidal noise is added to

ive the two regions variance that is proportional to 10% of the signal
mplitude in each region. The dominant balance regions are prescribed
y the Heaviside step function , such that:

𝑖(𝑥, 𝑦) = (−1)𝑖𝜂(𝑦)(𝜆(𝜙) + 𝛽), (22)

𝜂(𝑦) = 𝜂0 sin(𝜔𝑦), (23)

𝜙 =

{

𝑦 − 0.5 if 0 < 𝑖 < 𝐷∕2
0.5 − 𝑦 if 𝐷∕2 ≤ 𝑖 < ∞

, (24)

here 𝑥 and 𝑦 are spatial coordinates. The equation closes exactly for
ll 𝑁 samples, ∑𝐷

𝑖=1 𝑒𝑛𝑖 = 0, and the prescribed coefficients are 𝜆 = 101,
= 10−1, 𝜂0 = 10−1, and 𝜔 = 10𝜋, Once again, 𝑒𝑛𝑖 is the 𝑛th observation
f the 𝑖th feature.

Figs. 5b,c,d show the results using 𝐾−means clustering and SPCA
ypothesis selection. Fig. 5b shows the variation of the verification
riterion (𝐄,𝐇) with 𝛼, the LASSO regression coefficient for SPCA,
nd 𝐾, the prescribed number of clusters for 𝐾−means clustering. The
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Fig. 5. Synthetic data example. a The synthetic data equation term magnitudes for all 𝑦 at a fixed 𝑥. b The map of the verification criterion as the number of prescribed clusters
for 𝐾−means and the LASSO regression coefficient 𝛼 for hypothesis selection by SPCA are varied. The blue star corresponds to the optimal verification criteria. c The optimal
dominant balances. d The spatial distribution of the optimal dominant balances. e The variation in wall time as a function of sample size for different algorithms. f The variation
n wall time as a function of the number of equation terms for different algorithms.
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ptimal is marked with the blue star, (𝐄,𝐇) = 0.996, though much of
he white band in Fig. 5b corresponds to equivalently optimal results.
ig. 5c shows the optimal dominant balances, and Fig. 5d shows the
patial distribution of the optimal dominant balances. The algorithm
arameter ranges were specified as follows: for 𝐾−means clustering the
umber of prescribed clusters 𝐾 was specified as 𝐾 = {2,… , 10}. The
ther hyperparameters were the default choices as provided by SciKit
earn (Pedregosa et al., 2011). For HDBSCAN clustering the prescribed
inimum number of samples for a cluster was specified as 100 samples,

nd the minimum cluster size was varying from 2000 samples to
000 samples. For hypothesis selection by SPCA, the LASSO regres-
ion coefficient was varied between 10−2 and 102. Identical optimal
alances were identified by using 𝐾−means clustering with CHS, by
sing Hierarchical Density-Based Scan (HDBSCAN) clustering and SPCA
ypothesis selection, and HDBSCAN and CHS. The optimal balances
re robust because the magnitude separation between dominant and
egligible terms is at least two orders of magnitude and the spatial
oundary between the dominant balance regions is discontinuous.

While comprehensive complexity analyses are beyond the scope of
his Article, we can infer some general properties of the framework’s
ime complexity. Exhaustive searches over algorithm parameters may
ery well be NP-hard. The search over 𝐾, the prescribed number
f clusters for 𝐾−means, to minimize the sum of the square of the
uclidean distance of each data point to its nearest center is NP-hard
ven for just two equation terms (Mahajan et al., 2012), 𝐷 = 2. CHS
s prohibitively complex at large numbers of equation terms 𝐷 because
ts complexity scales with the number of possible dominant balances,
(2𝐷). However, SPCA hypothesis selection adds an additional param-
ter for optimization (the continuous LASSO regression coefficient, 𝛼);

therefore, we recommend CHS for equations with fewer terms than
8. For example, if the number of equation terms is less than 8 and
𝐾−means is the chosen clustering algorithm, then the user need only
optimize the verification criterion over the number of clusters 𝐾 instead

of performing a multi-variate optimization over both 𝐾 and the LASSO c

6

regression coefficient 𝛼 for SPCA, as shown in Fig. 5b. Since 𝛼 is a
continuous variable, there are an infinite number of discrete choices of
𝛼 within any given range. Therefore, one can minimize the total wall
time elapsed (e.g., the total time elapsed for all 𝛼 and 𝐾 in Fig. 5b) by
sing CHS instead and therefore only performing the optimization over
. However, since CHS is combinatorially complex in 𝐷 we recommend

SPCA for governing equations with many terms (say, 𝐷 > 8) and CHS
for governing equations with fewer terms (say, 𝐷 ≤ 8) because it is
parameter free.

The average wall times elapsed for the framework computations
are shown as a function of the number of samples, 𝑁 , in Fig. 5e and
as a function of the number of equation terms, 𝐷, in Fig. 5f. The

all times in Fig. 5e are normalized by the wall time to compute
he 𝑁 = 2500 case for each algorithm and the wall times in Fig. 5f
re similarly normalized by the wall time to compute the 𝐷 = 4
ases. Each result (each data point in Fig. 5e and 5f) was computed
n a single 2.6 GHz Intel Xeon E5-2660 v3 processor. Each point
epresents the average wall time for one pass through the framework
Fig. 4). Fig. 5e shows that the computation time scales polynomially
ith sample size 𝑁 for all algorithm choices. Fig. 5f shows that CHS
ecomes prohibitively complex with increasing number of equation
erms because its complexity scales with (2𝐷). The time complexity
ehavior shown in Figs. 5e and 5f informs our is less than 8.

.2. Global ocean barotropic vorticity example

Sonnewald et al. (2019) used 𝐾−means clustering, manual hypoth-
sis selection, and algorithm- and problem-specific verification criteria
o discover new and canonical oceanic dominant balances. We use
he vorticity data of Sonnewald et al. (2019), who computed a 20-
ear mean of the Estimating the Circulation and Climate of the Ocean
ECCO) ocean state estimate (Forget et al., 2015; Wunsch and Heim-
ach, 2013; Anon, 2017a,b), version 4 release 2, at 1◦ resolution to cal-

ulate terms of the vertically integrated barotropic vorticity equation.
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Fig. 6. Oceanic barotropic vorticity dominant balance examples. a The optimal dominant balances found by 𝐾−means and CHS. b The spatial distributions of the optimal
dominant balances found by 𝐾−means and CHS. c The optimal dominant balances found by HDBSCAN and CHS. d The spatial distributions of the optimal dominant balances
found by HDBSCAN and CHS. The optimal verification criterion for the 𝐾−means clustering approach is (𝐄,𝐇) = 0.90 while the optimal verification criterion for the HDBSCAN
clustering approach is (𝐕,𝐇) = 0.87. Comparison of the optimal verification criteria indicates that the 𝐾−means clustering algorithm fits the data better than the HDBSCAN
clustering algorithm for the oceanic barotropic vorticity data set.
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The time-mean vertically-integrated barotropic vorticity equation,

advection of
planetary vorticity
⏞⏞⏞⏞⏞
∇ ⋅ (𝑓𝐔) =

bottom
pressure torque
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇𝑝𝑏 × ∇𝐻

𝜌
+

wind & bottom
stress curl
⏞⏞⏞
∇ × 𝝉
𝜌

+

nonlinear
torque

⏞⏞⏞
∇ × 𝐀 +

diffusive
torque

⏞⏞⏞
∇ × 𝐁 , (25)

escribes the balance of processes that control the rate of solid body
otation of a column of seawater.

Figs. 6a and 6b show the optimal dominant balances and their
patial distributions, respectively, for 𝐾−means clustering and CHS,
hich are quantitatively similar and qualitatively consistent with the

esults of Sonnewald et al. (2019). The differences can be attributed to
he selection of the optimal number of clusters as 𝐾 = 49 as opposed to
= 50, algorithm stochasticity, and different standardization methods

see Appendix C). The optimal verification criterion, (𝐄,𝐇) = 0.90,
as evaluated at 𝐾 = 49. This result is consistent with the range
f prescribed clusters chosen by Sonnewald et al. (2019), using in-
ormation theoretic and a custom geographic convergence verification
riteria. Figs. 6c,d show the optimal results for HDBSCAN clustering
nd CHS, corresponding to a verification criterion of (𝐕,𝐇) = 0.87.
hile the 𝐾−means and HDBSCAN clustering results identify similar
id-latitude balances, the 𝐾−means results score higher and include
onlinear balances in expected locations such as the Gulf Stream on
he United States eastern seaboard.

.3. Nonlinear diffusion in tumor-induced angiogenesis example

Anderson and Chaplain (1998), Anderson et al. (2000) calculated
umerical solutions with different permutations of terms eliminated
o identify dominant processes in tumor angiogenesis (the process by
hich tumors develop blood flow). We demonstrate that our framework
irectly identifies which terms are dominant without the need for
ultiple simulations. The tumor-induced angiogenesis model of Ander-

on and Chaplain (1998) is composed of conservation laws of three
ontinuous variables, where the endothelial-cell density per unit area
cells that rearrange and migrate from preexisting vasculature to form
ew capillaries), 𝑛, is governed by

𝜕𝑛 =

random motility
⏞⏞⏞
𝑑∇2𝑛 −

chemotaxis
⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇ ⋅ (𝜒𝑛∇𝑐) −

haptotaxis
⏞⏞⏞⏞⏞⏞⏞⏞⏞
∇ ⋅ (𝜌𝑛∇𝑓 ), (26)
𝜕𝑡 f

7

= 𝑑∇2𝑛 − 𝜒𝑛∇2𝑐 − 𝜒∇𝑛 ⋅ ∇𝑐 − 𝑛∇𝜒 ⋅ ∇𝑐 − 𝜌𝑛∇2𝑓 − 𝜌∇𝑛 ⋅ ∇𝑓, (27)

here 𝜒(𝑐) = 𝜒0∕(1 + 𝛼0𝑐). Fig. 7a shows the absolute time rate of
hange of cells as endothelial cell growth propagates towards the
umor. Figs. 7b,c show the optimal dominant balances and their spatial
istributions identified by using 𝐾−means clustering and CHS. The
ptimal verification criterion (𝐄,𝐇) = 0.96 occurred at 𝐾 = 9. The
esults from only one simulation suggest that the fastest cell growth is
residual of a dominant chemotactic–haptotatic balance, 𝜒∇𝑛 ⋅ ∇𝑐 ∼
𝑛∇2𝑓 , (cluster 0, red) in the regions of tissue.

.4. Spatially-developing turbulent boundary layer example

Canonical turbulent boundary layer dominant balances (Tennekes
nd Lumley, 1972), previously identified by Callaham et al. (2021)
sing Gaussian Mixture Model (GMM) clustering with SPCA hypothesis
election and no quantitative verification criteria, can be identified
utomatically using the present method. Turbulent boundary layers
TBLs) develop as a high-speed flow blows over non-deformable sur-
aces. The equation that governs the velocity in the direction of the
ean flow, 𝑢, is

mean
momentum flux divergence

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

=

mean
pressure gradient

⏞⏞⏞

−1
𝜌
𝜕𝑝
𝜕𝑥

+

mean
momentum diffusion

⏞⏞⏞
𝜈∇2𝑢 −

turbulent
momentum flux divergence

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜕𝑢′𝑣′
𝜕𝑦

− 𝜕𝑢′2
𝜕𝑥

,

(28)

where the velocity and pressure fields (𝑢, 𝑣, 𝑝) have been decomposed
into mean and fluctuating components denoted by overbars and primes,
respectively. The 𝑥 direction points in the downwind direction, and the

direction points in the direction normal to the surface.
Fig. 8a shows the framework optimization over LASSO regression

oefficient 𝛼 and prescribed number of clusters 𝐾 with the optimal
erification criterion of (𝐄,𝐇) = 0.85 for 𝐾 = 8 and 𝛼 = 49.94.
he optimal dominant balances are shown in Fig. 8b,c. The dominant
alances are consistent with the results of Callaham et al. (2021) and
ith domain knowledge (Schetz and Bowersox, 2011), but notably our

ramework required no fluid dynamical knowledge.
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Fig. 7. Tumor-induced angiogenesis dominant balance example. a Endothelial cell growth rates. b Optimal dominant balances. c The spatial distributions of the optimal
dominant balances. Balances are identified by 𝐾−means clustering with CHS. The results suggest that the balances 0 and 4 dominate the propagation of endothelial cell growth
from left to right, and that the terms 𝜒∇2𝑐 and 𝜌∇𝑛 ⋅ ∇𝑓 are possibly negligible. The RHS 𝑦 axis of b quantifies the areal percentages of balances 2,3, and 5 as less than 1%.
Fig. 8. Turbulent boundary layer dominant balance example. a The map of the verification criterion as a function of algorithm parameters 𝐾 (number of clusters prescribed
for GMM clustering) and 𝛼 (LASSO regression coefficient for hypothesis selection by SPCA). The blue star indicates the optimal verification criterion. b The optimal dominant
balances. c The spatial distributions of the optimal dominant balances. The optimal balances and their spatial distributions agree with those identified by Callaham et al. (2021) as
well as domain knowledge, but here the algorithm parameters 𝐾 and 𝛼 are chosen by automatically selecting the parameters corresponding to the optimal verification criterion. .
6. Conclusions

Our proposed formal definition of the dominant balance identifica-
tion problem is defined by the global maximization of a verification
criterion over all equation term data (Eqs. (1) through (21)). Our
formalism is independent of the method by which the optimization
problem is solved, thus permitting objective comparison of different
methods of balance identification and transforming previously ad hoc
nd piecemeal analyses into an objective framework for dominant
alance identification.

We show that our framework yields results consistent with domain
nowledge and previous studies (Callaham et al., 2021; Sonnewald
t al., 2019). We emphasize that the framework is broadly relevant
o analyses of chaotic systems. We note that the verification criterion
Eq. (21)) could be used as a loss function for a supervised learning
pproach to the dominant balance identification problem as defined by
q. (1), where a neural network could simultaneously perform tasks
, B, and C in Fig. 4. We also note that two dimensional example
ata sets were chosen here for illustrative purposes only. The presented
ramework readily applies to arbitrary dimensional data and/or the
emporal dimension. We anticipate that this work could dramatically
xpedite the discovery of unknown dominant balances in new data
nd accelerate efforts in data-driven dynamical process modeling (Rudy
t al., 2017; Raissi, 2018; Rackauckas et al., 2020; Reichstein et al.,
019; Schneider et al., 2017).
8
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Appendix A. The ambiguity of a single-term dominant balance

Consider the equation

𝑎 −
𝑁𝑖
∑

𝑖=1
𝑏𝑖 = 0, (A.1)

where 𝑎 ≫ 1, 𝑏𝑖 ≪ 1, and 𝑁𝑖 is a sufficiently large number such that
the equation is satisfied. If we seek to identify the dominant balances
of this equation, there is just a single term, thus the dominant balance
is

𝑎 ≈ 0, (A.2)

because term 𝑎 is not balanced by any other term but rather the
summation of a large set of small terms. Therefore, a single term
dominant balance is not useful in dominant balance identification. For
this reason, we maintain that length(𝐬𝑛)≥ 2. If this condition is imposed
the resulting LMS score forEq. (A.1) will be low,  ≈ 0.

Appendix B. Score relationship to Buckingham 𝜫 theorem

The LMS is (a) invariant to the magnitude of the equation vector
𝑛 and (b) invariant to the sign of the elements of the equation vector,
hus

𝑛(𝐞𝑛,𝐡𝑛) = 𝑛(±𝑐𝐞𝑛,𝐡𝑛), (B.1)

where 𝑐 is a positive scalar constant and the subscript denotes the 𝑛th
example. Therefore, the score is invariant to the choice of dimensional
or non-dimensional equations, and, equivalently, it can be applied to
Buckingham 𝛱 theorem to select dominant 𝛱 groups. Buckingham 𝛱
theorem is a formal method for the identification of the minimum num-
ber of non-dimensional parameters that describe a dynamical system.
If the governing equation(s) for the system is(are) known, then it can
be shown that the 𝛱 groups are consistent with the non-dimensional
equation coefficients (Zohuri, 2017).

Appendix C. Standardization for clustering

All equation data were standardized prior to clustering using Ro-
bustScaler.fit() from Scikit Learn library (Pedregosa et al., 2011).

Appendix D. Global ocean barotropic vorticity

In Eq. (25) 𝑓 is the Coriolis parameter, 𝐔 is the vertically integrated
horizontal velocity, 𝑝𝑏 is the bottom pressure, 𝐻 is the depth, 𝜌 is
a reference density, 𝝉 represents surface stress, ∇ is applied only to
the horizontal coordinates, 𝐀 contains nonlinear horizontal momentum
luxes, and 𝐁 contains linear horizontal diffusive fluxes.
9

Appendix E. Tumor-induced angiogenesis simulation

We use the non-dimensional, tumor-induced angiogenesis governing
equations of Anderson and Chaplain (1998). The tumor angiogenic
factor concentration, 𝑐 (chemicals secreted by the tumor that promote
angiogenesis), and the fibronectin concentration, 𝑓 (macromolecules
that are secreted by 𝑛 and stimulate the directional migration of 𝑛),
re governed by
𝜕𝑓
𝜕𝑡

= 𝛽𝑛 − 𝛾𝑛𝑓 , (E.1)
𝜕𝑐
𝜕𝑡

= −𝜂𝑐𝑛, (E.2)

Endothelial cell migration up the fibronectin concentration gradient is
termed haptotaxis (Carter, 1965, 1967), while endothelial cell migra-
tion up the gradient of tumor angiogenic factor concentration is termed
chemotaxis (Sholley et al., 1984).

In Fig. 7a, the tumor is located at 𝑥, 𝑦 = 1, 0.5, and the endothelial
cell growth is propagating in the positive 𝑥 direction towards the
tumor. Fig. 7b and Fig. 7c show the dominant balances and their
spatial distributions, respectively, for the optimal results for 𝐾−means
clustering and CHS hypothesis selection.

We numerically solve the same problem as Anderson and Chaplain
(1998), with the exception that 1% amplitude red noise was added
to the initial 𝑐 and 𝑓 fields to provide additional variability for illus-
trative purposes. A second-order accurate finite difference code was
used to calculate each term in the expanded form of the endothelial
cell density equation, such that 𝐄 is composed of observations of the
terms in Eq. (27). We employ the same boundary conditions, initial
conditions, and constant coefficients (𝑑, 𝛼0, 𝜒0, 𝜌, 𝛽, 𝛾, and 𝜂) as An-
derson and Chaplain (1998) at double the resolution. Second-order
finite differences were employed for spatial derivatives and 4th-order
adaptive Runge–Kutta was employed for the temporal evolution. No
flux boundary conditions were applied to all four boundaries of the
square domain:

𝐧 ⋅ (𝑑∇𝑛 − 𝜒(𝑐)𝑛∇𝑐 − 𝜌𝑛∇𝑓 ) = 0, (E.3)

here 𝐧 is the unit normal vector to the boundaries. The initial condi-
ions, for a circular tumor (TAF distribution) some distance from three
lusters of endothelial cells, are:

(𝑥, 𝑦, 0) =

⎧

⎪

⎨

⎪

⎩

1, 0 ≤ 𝑟 ≤ 0.1
(𝜈−𝑟)2
𝜈−𝑟0

, 0.1 < 𝑟 ≤ 1,
(E.4)

where 𝑟 =
√

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2.

(𝑥, 𝑦, 0) = 𝑘e
− 𝑥2

𝜖1 , (E.5)

𝑛(𝑥, 𝑦, 0) = e
− 𝑥2

𝜖2 sin2(6𝜋𝑦), (E.6)

where 𝜈 = (
√

5 − 0.1)∕(
√

5 − 1), 𝑟0 = 0.1, 𝑥0 = 1, 𝑦0 = 1∕2, 𝑘 = 0.75,
𝜖1 = 0.45, 𝜖2 = 0.001. The constant coefficients were specified as
𝑑 = 0.00035, 𝛼0 = 0.6, 𝜒0 = 0.38, 𝜌 = 0.34, 𝛽 = 0.05, 𝛾 = 0.1, and
𝜂 = 0.1.

Appendix F. Spatially developing turbulent boundary layer

We use the same data set as Callaham et al. (2021), namely the
turbulent boundary layer direct numerical simulation data available in
the Johns Hopkins University turbulence database (Zaki, 2013). 𝜌 and
𝜈 are constants that represent the fluid density and kinematic viscosity,
respectively. The overbar averaging operator represents averaging over
the spanwise direction as well as averaging over time, and the diffusion
operator is defined as ∇2 = 𝜕2∕𝜕𝑥2 + 𝜕2∕𝜕𝑦2.
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