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Abstract
This study investigates the evolution of a single-stream shear layer (SSSL) originating from a wall boundary layer past a 
backward-facing step. Utilizing a time-resolved 3D-Particle Tracking Velocimetry (4D-PTV) technique, we track the tra-
jectories of fluorescent particles to gain insight into the flow characteristics of the SSSL. A compact water tunnel facility 
( Re

�
= 1 240 ) is fabricated to obtain an SSSL with a perpendicular slow entrainment stream past the separation edge. A 

hybrid interpolation approach that combines ensemble binning and Gaussian weighting is implemented to derive minimally 
filtered mean and instantaneous lower- and higher-order flow field parameters. Spanwise-dominant coherent motion accom-
panied by finer flow scales is observed to grow due to flow entrainment through “nibbling” actions of small-scale vortices, 
“engulfing” by large-scale vortices, and vortex pairing events. Furthermore, the non-zero-speed stream edge grows relatively 
faster than the zero-speed stream edge, showing a strong asymmetry in mixing composition across a mixing layer. The SSSL 
reaches self-similarity at a streamwise distance of ≈ 55 �

0
 , where �

0
 is the initial momentum thickness from the separation 

edge, i.e., considerably shorter than reported in previous studies. A literature comparison of growth rate parameters raises 
intriguing questions regarding a potential inclusive growth scaling unifying the free shear layers. A turbulent kinetic energy 
(TKE) budget analysis reveals a negative production region immediately downstream of the separation edge attributed to a 
large positive streamwise gradient of streamwise velocity. In the self-similar region, the phase-averaged flow mapping dem-
onstrates a larger concentration of turbulence production rate around the outer edges of spanwise vortices, specifically at the 
intersection of braids and vortices. Furthermore, a spatial separation exists in the regions of peak production and dissipation 
rates within the vortex core region favoring dissipation. The braids exhibit a larger concentration of turbulence diffusion 
rates, indicating their function as a conduit for exchanging turbulence between neighboring coherent motions.

1  Introduction

Two-stream shear layers (TSSL), formed by an unbounded 
mixing interaction between two streams, is a canonical tur-
bulent flow configuration. In comparison, a single-stream 
shear layer (SSSL) is formed when one of the streams has 

zero initial streamwise velocity. The ubiquity of the shear 
mixing layers in diverse areas of natural flows and engi-
neering industries makes them widely studied, with various 
configurations related to specific practical applications. Geo-
logical flows include rivers and estuaries (Harang et al 2014) 
and hot plumes within the Earth’s mantle layer (Campbell 
and Turner 1985), to mention a couple. Practical engineer-
ing applications include inertial confinement fusion (Weber 
et al 2014), combustion mixing in aircraft jet engines (Talbot 
et al 2013), or internal combustion engines, among others.

SSSL and TSSL have received significant attention in the 
past 70 years. The scientific community has been dramati-
cally influenced by the visuals of the flow coherent motions 
within a planar TSSL, reported in the seminal work of 
Brown and Roshko (1974). Since then, a plethora of research 
work concerning the flow structure organization and physi-
cal characteristics of the mixing layers at different velocity 
and density ratios are reported (Hussain and Zaman 1985; 
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Lasheras et al 1986; Dimotakis 1991; D’Ovidio and Coats 
2013). Keller et al (1988) studied the unsteady behavior 
and organization within the SSSL under forced vibrations, 
and Kailas and Narasimha (1999) implemented wavelet 
transform to isolate the levels of organization in the layer. 
Numerical and computational studies (DNS and LES) (Rog-
ers and Moser 1994; Balaras et al 2001; McMullan et al 
2015; McMullan and Garrett 2016; Suryanarayanan and 
Narasimha 2017; Sharan et al 2019; Baltzer and Livescu 
2020) have gathered considerable success in resolving the 
flow coherent motions of a mixing layer at increasingly 
higher spatial and temporal resolution.

The quantitative studies have revealed the complex nature 
of a mixing layer (Wygnanski and Fiedler 1970; Patel 1973; 
Mehta and Westphal 1986; Bell and Mehta 1990). While 
the studies agree on a universal self-similar behavior of 
mixing layers, the normalized distance necessary to attain 
those conditions shows wide disagreement (Bell and Mehta 
1990; Morris and Foss 2003). Additionally, simple physical 
parameters, such as the growth rates of the mixing layer 
width or momentum thickness, do not show consistent val-
ues throughout different studies (Brown and Roshko 1974; 
Browand and Latigo 1979; Browand and Troutt 1985; Mehta 
and Westphal 1986). This led to the consensus that the initial 
flow condition of a mixing layer might be one of the control-
ling parameters for its transition toward universal behavior 
(Dimotakis 1991).

Despite the similar qualitative behavior of SSSL and 
TSSL, the two do not agree on flow characteristics such as 
the growth rates of shear layer width. For example, scaling 
considered appropriate for momentum and vorticity thick-
ness (Brown and Roshko 1974; Browand and Troutt 1985) 
is only reasonably “universal” for TSSL but falls short for 
SSSL. Seeking universal growth rate patterns, Suryanaray-
anan and Narasimha (2017) conducted numerical investiga-
tions and comparisons with past studies. They maintain that 
apart from initial conditions, downstream conditions notably 
influence the growth rate of a single-stream shear layer.

On the other hand, SSSL studies available in the literature 
lack high spatial resolution measurements; and to the best 
of our knowledge, three-dimensional time-resolved high-
resolution measurements for an SSSL do not exist either. 
Thus, it is possible to further our understanding of SSSLs 
using the current advancements in laser-based diagnostics 
capabilities.

In the present study, we use a time-resolved 3D Particle 
Tracking Velocimetry (4D-PTV) to investigate the transi-
tion of the wall boundary layer into an SSSL and its further 
development into a self-similar SSSL. The flow apparatus 
adopted in the present study is similar to Hussain and Zaman 
(1985); Morris and Foss (2003) with a backward-facing sep-
aration step with a slow perpendicular entrainment stream. 
The results discussed in the current article encompass the 

3D visualization of coherent and organizational flow features 
and their statistical attributes within distinct regions of the 
mixing layer.

The rest of the discussion is organized as follows: The 
design and working principles of the water tunnel facility 
and flow diagnostics used for the current experiments are 
initially discussed, followed by an outline of the method 
used to interpolate unstructured data onto a structured grid. 
Next, we discuss the characteristics of the wall boundary 
layer captured upstream of the backward-facing step, fol-
lowed by a detailed discussion of three distinct regions of 
the SSSL: viscous-dominated, transitional, and self-similar 
region. In addition, we outline the mixing layer’s low- and 
higher-order statistical properties, including a turbulent 
kinetic energy budget analysis for the above-mentioned 
flow regions of the SSSL. We conclude our discussion with 
phase-averaged flow maps of relevant turbulent quantities 
and their organization within the flow coherent motions.

2 � Experimental setup

2.1 � Water tunnel facility

Figure 1 shows a schematic of the closed-loop, compact, 
high Reynolds number water tunnel facility fabricated for 
this study. The facility has five major sections: the plenum, 
contraction duct, test section, triangular header, and recir-
culation tank. The test section is fabricated with acrylic for 
optical access.

The test section is a downscale (1:10) model of the 
wind tunnel test section used by Morris and Foss (2003). 
The primary inlet delivers a water flow with a free-stream 
velocity of U

∞
≈ 1.37 m/s as it develops over the 600 mm 

long developing section of spanwise width 150 mm and 
half-height hc = 50 mm. The bottom wall boundary layer 
separates at the 90◦ separation edge. The developing sec-
tion is long enough to ensure that the bottom-wall bound-
ary layer becomes turbulent. This developing section is also 
short enough to prevent the top- and bottom-wall boundary 
layers from interacting with each other prior to the back-
step separation point. The secondary inlet of the test section 
accepts a relatively low-velocity stream over a streamwise 
length of 975 mm with a nominal speed of ∼ 0.035U

∞
 in the 

vertical direction, perpendicular to the primary flow. The 
peculiar velocity value for the slower stream comes from the 
estimated entrainment velocity for the slower stream (Brown 
and Roshko 1974; Morris and Foss 2003), thus replenishing 
the entrained fluid (or mass flux) in the vertical direction.

Before entering the test section, the high-speed primary 
flow passes through a contraction duct (Fig. 1). The duct 
attenuates the wall-normal and spanwise fluctuations, and 
the boundary layer thickness, without flow separation. A 
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fifth-order polynomial curve and contraction ratio of 6:1 
is adopted to design the duct’s walls (Wetzel and Arndt 
1994). A more aggressive contracting profile at the bot-
tom compared with the lateral sides ensures a larger sup-
pression factor for the bottom wall boundary layer, while 
the top panel of the duct is kept flat as the current study 
focuses on the bottom-wall boundary layer first develop-
ing and then separating at the edge of the backward-facing 
step. A contraction duct is unnecessary for the upward-
moving stream (secondary inlet in the test section) on 
account of flow being laminar; nonetheless, a honeycomb 
and flow-conditioning meshes are employed to ensure flow 
uniformity.

Both plenum and triangular header are installed with a 
perforated plate (hole diameter 12.5 mm) and a honeycomb 
(hole diameter 3 mm, thickness 30 mm). The perforated 
plate, honeycomb, and screen break down larger eddies, 
homogenize the velocity distribution, and reduce flow fluc-
tuations in cross-stream and spanwise directions. A settling 
zone follows the screen to allow grid turbulence (if pro-
duced) to decay. In addition, to maintain a flatter flow profile 
across the secondary flow cross-section, an inclined trian-
gular header, inspired by the study of London et al (1968), 
is designed and fabricated.

The flow rate of the high-speed stream is controlled with 
a variable frequency drive (VFD) (Mitsubishi E700 series) 
that modifies the angular speed of the motor (WEG Indus-
tries) that drives the centrifugal pump (SHURflo, LLC). The 
flow rate of the low-speed stream is controlled using a gate 

valve. The working fluid for these experiments is tap water 
at 20◦ C and local atmospheric pressure (101.7 kPa average).

2.2 � Flow imaging system

The velocity field is captured in this study with time-
resolved laser-based diagnostics. The flow is illuminated 
with a high-speed dual-head Nd:YLF laser (DM30-527DH, 
Photonics Inc., USA) with wavelength 527 nm, maximum 
repetition 10 kHz (each head), and maximum energy per 
pulse 70 mJ. The laser beam is reshaped into a 6-mm-thick 
slab of width ≈ 49 mm at the test section with a set of laser-
grade cylindrical and spherical lenses. The height of the 
region of interest (ROI) is ≈ 35 mm and is defined by the 
aspect ratio of the CMOS sensor ( width∕height = 8∕5 ). 
Three high-speed cameras, arranged as shown in Fig. 1, cap-
tured images of fluorescent particles suspended in the flow. 
The cameras (Phantom v2512) use CMOS arrays of size 
1280 px × 800 px and can capture at frame rates of 25 700 
frames per second at full resolution. The camera lenses are 
set with an f-stop of f/11 to ensure an appropriate depth of 
field across the illuminated volume. The lenses are mounted 
to the cameras with Scheimpflug mounts to correct for angu-
lar distortions. Time-resolved measurements are obtained 
each time at repetition rates of 4 kHz. The imaging system is 
calibrated with a two-level double-sided 3D calibration plate 
(058-5, LaVision, Germany). This plate is composed by a 
dotted grid with grid spacing 5 mm, dot diameter 1.2 mm, 
and level separation 1 mm. The plate is set parallel to the 

Fig. 1   Schematic of the water tunnel facility. Inset shows the 
arrangement of cameras pointing over the region of interest demar-
cated by Zone0 ( −23 ≲ x∕𝜃0 ≲ −7 ), Zone1 ( 0 ≲ x∕𝜃0 ≲ 22 ), Zone2 

(22≲ x∕𝜃0 ≲43) to Zone3 (42≲ x∕𝜃0 ≲73), �0 is initial momentum 

thickness estimated at upstream location, x∕�0 ≈ −7.35 from the sep-
aration edge. Note the two distinct flow circuits with dedicated cen-
trifugal pumps
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streamwise–cross-stream plane ( x − y plane in Fig. 1). This 
initial spatial calibration is refined with volume self-calibra-
tion (Wieneke 2008) (implemented with LaVision—DaVis), 
in which 3D disparity maps of particles imaged simultane-
ously with the three cameras are generated in local sub-vol-
umes and used to correct the calibration function obtained 
with the physical target. After self-calibration, the triangula-
tion error for particle location is reduced to sub-pixel values 
( ≈0.018 px) (Schanz et al 2016).

The flow is captured over four zones, Zone0–Zone3, 
as indicated in Fig. 1. Zone0 is situated within the tunnel, 
upstream of the backward-facing step, while Zone1–Zone3 
capture the development of the SSSL. Based on the volume 
calibration, average spatial resolution in the current experi-
ments is estimated to be ≈ 24 px/mm for Zone0–Zone2 and 
≈ 17 px/mm for Zone3. The flow is seeded with fluorescent 
particles fabricated in-house following Pedocchi et al (2008), 
with average density ≈ 1.2 g/cm3 and size distribution with 
average diameter 21.5� m and standard deviation 6.5� m. 
The average particle image density within the captured zones 
ranges between 0.05 and 0.07 particles per pixel. A com-
paratively sparser particle number density is noticed in the 
high-strain region of the mixing layer (Zone1–Zone3) and 
the near-wall region of the boundary layer (Zone0). As the 
SSSL grows, the cameras need to zoom out to capture the 
whole extent of the shear layer, slightly decreasing the spa-
tial resolution for Zone3. The average inter-particle distance, 
d
p−p

 obtained over the 3D-PTV fields within Zone0–Zone2 
and Zone3, is estimated to be ≈0.9 mm and ≈ 1.08 mm, 
respectively.

2.3 � 4D‑PTV Technique: shake‑the‑box

This study uses the Shake-The-Box (STB) algorithm (Wie-
neke 2012; Schanz et al 2016) implemented in LaVision—
DaVis, to reduce time-resolved three-dimensional veloc-
ity fields. This algorithm can provide accurate velocity 
measurements at high particle density images. An essential 
advantage of STB over 2D- and 3D-PIV algorithms is that 
flow information is obtained in the Lagrangian frame of ref-
erence by tracking individual particles, eliminating spatial 
filtering introduced by the interrogation windows or voxels 
typically used in 2D- and 3D-PIV. In addition, STB imple-
ments a spurious-particle detection scheme that uses spatial 
and temporal information around a particle to remove tracks 
that do not fit the surrounding particle trajectories, resulting 
in virtually no ghost particles ( < 0.04% ) (Schanz et al 2016).

As particle motion detection advances in STB, a second-
order polynomial is fitted through the particle trajectories 
over every five time steps until the particle is “lost” by the 
algorithm or it exits the ROI (Wiener 1949). The fitted poly-
nomials are used to predict the position of particles in the 
next time step. Subsequently, final 3D position of particles 

is obtained by iterative process of adjusting or “shaking” 
the position of reconstructed particles with the aim to mini-
mize the local residual intensity between the back-projected 
particle image intensity fields and the originally captured 
image fields from all cameras. Thereafter, velocity and mate-
rial derivative at each particle position are obtained. Con-
sequently, these flow details are obtained in the Lagrangian 
frame of reference in an evolving unstructured grid formed 
by connecting measurement points (particles) varying with 
every instantaneous reconstructed particle field. For a more 
complete flow description, the Lagrangian information is 
then interpolated onto a structured grid to develop an Eule-
rian flow description.

Among several interpolation methods, Gesemann (2015) 
fit B-splines through particle tracks followed by an optimiza-
tion process that employs governing flow equations to mini-
mize the error between measured and interpolated data. Casa 
and Krueger (2013) employed radial basis functions (RBFs) 
to regularize scattered data onto a structured grid which 
they found to be computationally more demanding than the 
Gaussian weighting (GW) interpolation technique (Agüí and 
Jimenez 1987. In addition, the gain in accuracy achieved 
with RBFs was relatively smaller, making the GW interpo-
lation technique a more efficient choice. A more advanced 
form of the data interpolation or assimilation technique is 
Vortex-In-Cell plus (VIC+) (Schneiders and Scarano 2016) 
and its fine-scale reconstruction version VIC# (Jeon et al 
2022). These methods employ governing flow equations and 
divergence constraints to interpolate and minimize errors. In 
the present study, adaptive ensemble binning (Raiola et al 
2020) is implemented to get the mean velocity field. On the 
other hand, instantaneous velocity and higher-order param-
eters (such as Reynolds stress tensor and TKE budget terms) 
fields are derived by adopting a computationally inexpensive 
approach that combines the technique suggested by Tirelli 
et al (2023) and adaptive Gaussian weighting (AGW) (Agüí 
and Jimenez 1987) to interpolate the PTV data onto a struc-
tured grid. These methods are discussed in detail in the next 
section.

3 � Data analysis

3.1 � Adaptive ensemble binning

3D-PTV captures relatively sparser particle distributions 
resulting in larger inter-particle distances and lower instan-
taneous spatial resolution. As discussed in the previous 
section, to achieve a high-resolution instantaneous velocity 
field over a structured grid, advanced data assimilation and 
reconstruction techniques are more effective. However, to 
derive high-resolution mean fields, ensemble binning (EB) 
of instantaneous PTV particle data into structured bins 
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is favored (Raiola et al 2020), provided enough particles 
within each bin are collected to ensure statistical conver-
gence. Given the total number of available instantaneous 
PTV fields ( Nsnap ), reconstructed particle number density 
( Nppp , in particle per pixel) ranging between 0.015 and 0.02 
across captured zones, and the average number of particles 
( Np ) per bin for a spherical averaging bin of diameter, b (in 
voxels) are related by

where Lz is the spanwise depth of captured 3D-region in 
voxels (Agüera et al 2016). This formula guides the selec-
tion of the bin size based on other available parameters. In 
this study, Zone0–Zone2 and Zone3 adopt a grid spacing 
(bin size) of 0.3 mm and 0.45 mm, respectively, equating to 
approximately 8 voxels in size. For the adaptive ensemble 
binning discussed in this section, a 50% overlap between 
adjacent spherical bins is utilized, resulting in a spherical bin 
diameter of b = 12 voxels, ensuring statistical convergence 
and smoother mean fields at the grid point centered at the 
bin. Table 1 lists the average number of particles per bin, 
Np , obtained for each respective zone over the total number 
of realizations. Notably, Np across all zones nearly equals or 
exceeds the average minimum number of particles per bin, 
Nmin
p

 , necessary for convergence according to equation 1.
Simple particle data binning assumes a top-hat func-

tion weighting for an ensemble of particles within the bin, 
resulting in increased spatial filtering, particularly in areas 
with significant spatial gradients. Thus, a locally adaptive 
Gaussian weighting function, represented as an ellipsoid 
with aspect ratios determined through local singular value 
decomposition, is employed to derive the mean veloc-
ity fields, mirroring the approach outlined by Novara et al 
(2012). As an aside, refer Raiola et al (2020) for a more 
detailed account of determining the aspect ratio for the ani-
sotropic Gaussian weighting function using Hessian for each 
velocity component. Higher-order statistics, i.e., stress ten-
sor components are derived using the mean velocity field, 

(1)Nmin
p

=
4

3
�

(
b

2

)3 Nppp Nsnap

Lz

obtained via adaptive ensemble binning, employing equal 
weight for particles within the bin (top-hat filter). This is 
primarily for comparison with the mean stress fields derived 
from an inexpensive interpolation method, detailed in the 
subsequent section. On a separate note, the polynomial 
fitting method proposed by Agüera et al (2016) to obtain 
mean velocity and stress tensor fields is also assessed which 
showed negligible variance compared to the adaptive ensem-
ble binning approach.

On the other hand, instantaneous f low fields are 
obtained by adapting a simple yet ingenious technique 
outlined by Tirelli et  al (2023). In this technique, the 
mean velocity components obtained using the adaptive 
ensemble binning method are interpolated using a spline 
function at PTV particle locations within each instanta-
neous 3D-PTV field. The interpolated mean velocity is 
then subtracted from the measured value, facilitating the 
determination of instantaneous velocity fluctuations at the 
individual particle locations. Subsequently, the PTV fluc-
tuation field is mapped onto a structured Eulerian grid that 
results in an instantaneous velocity fluctuation map with 
reduced systematic errors compared to the mapping using 
the original PTV velocity data prior to mean subtraction 
(Tirelli et al 2023). We discussed the flow field interpola-
tion technique, i.e., adaptive Gaussian weighting (AGW) 
used for mapping on Eulerian grids is discussed in the 
following section.

Furthermore, alongside velocity fluctuation compo-
nents, double and triple correlation terms at each parti-
cle position are also obtained, consequently, deriving 
instantaneous maps for Reynolds stress components and 
terms in the turbulent kinetic energy (TKE) budget. This 
approach offers a significant advantage over solely deriv-
ing these terms from instantaneous velocity fluctuation 
maps, thereby circumventing spatial filtering effects—an 
important finding of the present work further discussed 
in the next section. The instantaneous maps of dissipa-
tion rate, however, are obtained using the instantaneous 
velocity fluctuation maps as the local computation at PTV 
points of dissipation rate is not viable. It can be computed 
over an instantaneous unstructured grid, but this aspect 
lies beyond the scope of the present work.

3.2 � Adaptive Gaussian weighting

Gaussian weighting is a mesh-less data interpolation 
method introduced by Agüí and Jimenez (1987). The 
method uses a Gaussian function to assign weight, wi to 
the Lagrangian data points given by:

Table 1   Minimum number of particles per bin, Nmin
p  necessary for 

convergence as per equation 1 for a given total instantaneous reali-
zations N

snap
 and spherical bin size b = 12 voxels. N

p
 is the approxi-

mate average number of particles per bin obtained across different 
zones

N
snap N

min

p
N
p

Zone0 8000 950 1200
Zone1 4000 400 500
Zone2 16,000 1,650 1600
Zone3 48,000 7,200 9500
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where xh and xi are the locations of Eulerian grid points and 
scattered Lagrangian points around the grid point location, 
respectively. The numerator within the parenthesis is the 
L2 norm or the Euclidean distance between xh and xi , and 
the denominator quantity, H, is the Gaussian function’s rms 
width. The flow quantity, �h at a grid point such as velocity 
fluctuations and double- or triple-order correlation terms, is 
interpolated using:

where �i is the locally derived flow quantity at Lagrangian 
points. The Gaussian function rms width, H, determines the 
degree of overlap between functions employed at adjacent 
grid nodes, consequently determining the smoothness of the 
interpolated field. A higher overlap will over-smooth the 
field, while a smaller overlap can lead to holes and unnatural 
fluctuations within the flow field. Agüí and Jimenez (1987) 
found H = 0.877h to be an appropriate value, where h is grid 
spacing. In a similar interpolation approach (Schneiders and 
Scarano 2016), based on the tracked particle density and 
flow resolving capability of the data assimilation algorithm 
(VIC+), the width of the Gaussian radial basis function is 
chosen to be 1.1h. The appropriate value for width depends 
on data density and reasonable validity of the interpolated 
data.

Despite an effort to ensure a homogeneous suspension 
of tracer particles, anisotropic stress in the flow results in 
regions of sparse particle number densities. Thus, a mini-
mum np number of scattered Lagrangian points nearest to 
a grid point are chosen to implement adaptive Gaussian 
weighting (AGW), rendering it adaptive to sparser regions 
of the flow. Notably, different levels of overlap or varied 
Gaussian function rms widths, H, along with varying par-
ticle counts, np around each grid point for interpolation, 
are investigated to assess their effect on higher-order flow 
quantities. The influence of interpolation parameters on the 
instantaneous flow field is anticipated, and while an effect 
is observed, it is not particularly pronounced. The optimal 
compromise is achieved by selecting a Gaussian rms width 
of H = 1.24h and considering np = 10 number of nearest 
particles around each grid point that resulted in smoother 
flow profiles. On the other hand, the mean fields derived 
out of all instantaneous fields for respective lower- and 
higher-order parameters obtained using AGW indicate that 
changing the width or the nearest number of particles has 
minimal impact on the mean higher-order quantities. Refer 

(2)wi = exp

[
−

||xh − xi||2

2H2

]

(3)�h =

∑np

i
wi�i

∑np

i
wi

Appendix A.1 and A.2 for more details on effect of inter-
polation parameters and tests regarding data convergence, 
respectively.

On a separate note, a mean field obtained using instanta-
neous velocity fluctuation maps should ideally result in zero 
mean. However, in practice, the mean field obtained here 
reveals the discrepancy inherent in the mean velocity field 
estimated via adaptive ensemble binning. As necessary, this 
error is reported along with velocity profiles presented later. 
Furthermore, the uncertainty errors associated with other 
flow quantities reported in the present work are obtained 
according to the estimation procedure outlined in Appendix 
B.1.

AGW method is unaware of the flow physics involved, 
and despite that issue, it provides results with comparable 
accuracy to VIC#. Figure 2 illustrates a comparison of Reyn-
olds stress component profiles within Zone3 obtained using 
different methods. The adaptive Gaussian weighting (AGW) 
method exhibits remarkable agreement with the results 
acquired through ensemble binning (EB). Upon detailed 
examination, data obtained through AGW appear slightly 
higher than that of EB attributing to top-hat filtering effect 
experienced in EB method (as discussed in the previous sec-
tion). Figure 2 also features mean profiles obtained using 
VIC#, currently considered as a state-of-the-art regulariza-
tion technique, at the same grid location showing excellent 
agreement with the computationally inexpensive AGW tech-
nique. However, a clear rationale explaining the discrep-
ancy for spanwise stress profiles between AGW and VIC# 
remains elusive. It could be attributed to VIC# enforcing 

Fig. 2   Comparison of mean stress profiles, 
⟨u′i u

′
j ⟩

 within Zone3 
obtained through ensemble binning (EB), adaptive Gaussian weight-
ing (AGW), adaptive Gaussian weighting-filtered (AGWF), and Vor-
tex-In-Cell (VIC#)
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physical constraints, thereby eliminating measurement errors 
associated with PTV points, i.e., manifested in the EB and 
AGW profiles. Alternatively, this difference might point to a 
limitation of VIC# (DaVis—LaVision) in obtaining accurate 
spanwise fields.

Besides, the data represented by AGWF (adaptive Gauss-
ian weighting-filtered) are the mean stress profiles obtained 
using all realizations of instantaneous velocity fluctuation 
maps, acquired through AGW, revealing substantial filtering 
effects. This significant difference arises because AGW has 
a greater filtering effect when using neighboring fluctuating 
velocity PTV points to interpolate stress components than 
on the preferable alternative to use local stress derived at the 
PTV points for grid interpolation. Thus, the spanwise com-
ponent, ⟨w′w′⟩ , is particularly affected due to the larger local 
variation in the spanwise velocity fluctuation, w′ , compared 
to other components.

AGW being considerably competent in wall-free region, 
its accuracy near the wall region of boundary layer, where 
flow regions have significant velocity gradients and sparser 
particle number density, is expected to be lower. To vali-
date and substantiate the near-wall data, we performed 
time-resolved adaptive-PIV (DaVis 10.2, LaVision Inc.) 
over the images captured by the camera directly facing the 
flow volume (Cam 1, refer to Fig. 1). We acknowledge that 
implementing 2D-PIV over a relatively thick flow region 
( ∼ 6 mm) is not standard practice as in-plane measurements 
are subjected to larger perspective error (Lee et al 2022); 
hence, the PIV results only serve as an alternative method 

to compare the results obtained using the hybrid method 
combining EB and AGW.

3.3 � Vortex identification 1 criterion

A vortex identification criterion based on Δ = (
1

2
R)2 + (

1

3
Q)3, 

where Q and R are the second and third invariants of the 
velocity gradient tensor, is utilized to identify vortical 
regions in the flow (Chong et al 1990). According to critical 
point theory, Δ > 0 corresponds to vortical regions where 
the velocity gradient tensor has complex eigenvalues. Two 
positive values for Δ , very close to each other, are used to 
obtain the iso-surfaces shown in Figs. 4 and 6. This choice 
is made to enhance the morphological details of coherent 
motion. Moreover, a local 3D-Gaussian filter is implemented 

Fig. 3   a Streamwise velocity profile in wall units. (  EB, � 
PIV): experimental measurements upstream of backwards-fac-
ing-step at x∕�0 = −7.35 . (−−): logarithmic law of the wall, 
u+ = (1∕�) ln y+ + B , with � = 0.37 and B = 6.31 . b Mean stress, 

⟨u�
i
u�
j
⟩+ profiles at x∕�0 = −7.35 ( x = −13.8mm) obtained using PIV, 

EB, and AGW. Streamwise stress, 
⟨u′i u

′
j⟩

+ profile from Morris and 
Foss (2003) (−: solid blue line) is shown for comparison

Table 2   Flow parameters calculated at x∕�
0
= −7.35

Flow parameter Value

Free-stream velocity, U
∞

 (m/s) 1.37
Friction velocity, u

�
 (m/s) 0.0532

BL thickness, �
99%

 (mm) 23.4
Momentum thickness, �

0
 (mm) 1.88

Displacement thickness, �∗ (mm) 2.43
Shape factor 1.29
Re

h
= U

∞
h
c
∕� 68 260

Re
�
= u

�
�
99%

∕� 1 240

Re
�
= U

∞
�
0
∕� 2 566
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to clear out noise that cannot be unambiguously considered 
part of coherent motion.

4 � Results and discussion

4.1 � Initial boundary layer

The bulk-flow Reynolds number before the backward-
facing step is Reh = U

∞
hc∕� ≈ 6.83 × 104 , where hc 

is the half-tunnel height. At an upstream position of 
x∕�0 = −7.35 ( x = −13.8 mm) from the separation edge, 
where �0 =1.88 mm, is the initial momentum thickness 
at the bottom wall of the tunnel. The relevant bound-
ary layer flow parameters are compiled in Table 2. Since 
Re

𝜏
= u

𝜏
𝛿99%∕𝜈 ≈ 1 240 > 700 , this is a high Reynolds num-

ber boundary layer (Jiménez et al 2010).
The primary purpose of the wall boundary flow charac-

terization is to establish the initial flow condition for the 
mixing layer. The average streamwise velocity profile in the 
boundary layer at x∕�0 = −7.35 , upstream of the backward-
facing step, is shown in Fig. 3a. A first approximation to 
the origin of wall-normal coordinates is determined directly 
from laser reflections at the bottom surface of the tunnel. 

The modified Clauser chart method (Mejia-Alvarez 2010; 
Dixit and Ramesh 2009; Schultz and Flack 2007; Perry and 
Li 1990; Clauser 1954, 1956) is used to determine the fric-
tion velocity u

�
 , and to correct the origin of the wall-normal 

coordinate for small uncertainties. Subsequently, the loga-
rithmic law of the wall is least-square fitted to the data to 
determine its constants as follows: von Kármán constant, 
� = 0.37 , and the intercept, B = 6.31 . These values serve as 
a sanity check for the mean velocity profile of the approach-
ing boundary layer because they are consistent with accepted 
values for smooth-wall turbulent boundary layers (Schlicht-
ing and Gersten 2000). The free-stream turbulence intensity, 
u�∕U

∞
 , is estimated to be ≈ 4%.

Figure 3a also shows velocity profiles obtained using both 
EB and 2D-PIV. As mentioned before, adaptive 2D-PIV data 
only serve as an alternative method to compare with AGW. 
The velocity profiles exhibit excellent agreement except for 
the grid point located closest to the wall. The turbulence 
stress profiles shown in Fig. 3b also include AGW data along 
with EB and 2D-PIV. The EB and AGW methods demon-
strate substantial agreement, except in the vicinity of high-
velocity gradients, i.e., near the wall where the EB method 
tends to underestimate the values due to more pronounced 
top-hat filtering effects. On the other hand, 2D-PIV exhibits 

Fig. 4   2D projection (top row) and 3D (bottom row) rendering of 
instantaneous iso-surfaces for Δ = (2 ± 0.5) × 1012 in a, d Zone1 

and b, e Zone2, and (2 ± 0.5) × 1011 in c, f Zone3. Slightly larger and 
smaller values for Δ are assigned to two different colors to enhance 

the visibility of the flow morphology. 3D iso-surfaces accompany 
instantaneous Galilean-transformed 3D velocity (spanwise-averaged) 
vector plots colored by velocity magnitude to highlight the circulation 
region corresponding to the coherent motions
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lower values for all stress profiles as the method is sensitive 
to the flow direction and spatial filtering effects, specially in 
wall-normal direction. In comparison with the streamwise 
stress profile of Morris and Foss (2003) (blue solid line), 
the profiles show a distinct hump accredited to relatively 
high free-stream turbulence intensity, ≈ 4% . On a different 
note, VIC# calculations (DaVis—LaVision) at the same grid 
location (not shown herein) displayed significant deviations 
near the wall region from the profiles in Fig. 3a,b, raising 
concerns about the reliability of the VIC# package included 
with DaVis 10.2 (LaVision Inc.) in regions of extreme veloc-
ity gradients.

4.2 � Transition from boundary layer to shear layer

For x∕𝜃0 ≲ 5 , we observe relatively smoother coherent 
motion with an initial Kelvin–Helmholtz (KH) instability 
roll-up of the order of the initial momentum thickness, �0 
(Fig. 4a,d). This high-strain region of the flow, as previously 
reported by Morris and Foss (2003), is viscous-dominated 
and can be attributed to the sudden shutdown of the stress-
inducing (or turbulence production) source in the flow (i.e., 
the wall), resulting in rapid energy dissipation immediately 
downstream of the edge. Nevertheless, the instability of the 
inflectional velocity profile across the interface of the two 
streams, compounded with the inherent shear instabilities, 
transitions the flow to a turbulent regime, overcoming the 
viscous-dominated region. We discuss this further from the 
viewpoint of the turbulent kinetic energy budget in Sect. 4.5. 
Further downstream, coherent motions begin to deform 
increasingly to attain a higher degree of three-dimension-
ality in addition to the gradual increase in the population of 
small-scale coherent motions.

The characteristics of the viscous-dominated region are 
consistent with the rapid increase in the peak of mean stress 
shown in Fig. 5. Beyond the separation point, streamwise 
Reynolds normal stress, ⟨u′u′⟩ , shows the largest value, a 
contribution of both streamwise stresses translating from 
the BL region onto the immediate downstream of the edge 
and the “flapping” motion of the shear layer. The cross-
stream stress component, ⟨v′v′⟩ , and the Reynolds shear 
stress, ⟨−u�v�⟩, displayed comparable values within the BL; 
however, upon separation the rapid stream adjusts to a new 
“boundary-free” condition as Reynolds stresses distribute in 
the other two directions, evident from the gradual increase 
in normal and shear stress components’ peak stress. The 
peak streamwise and cross-stream stress appears to reach a 
local minimum around x∕�0 ≈ 12 , suggesting a transition 
from a viscous-dominated region to a more active turbulence 
production region from this location onward. Comparable 
trends in local minimum of velocity RMS fluctuation mag-
nitude are noted by Morris and Foss (2003) (refer to their 
Fig. 15), reinforcing our shared conclusion regarding the 
presence of a viscous-dominated region immediate down-
stream to separation. Furthermore, the transition from this 
region to an active production zone finds support through a 
turbulent kinetic budget analysis in the region, detailed in 
Sect. 4.5. 

Transitioning to a turbulent regime creates clear mor-
phological changes within the mixing layer. Figure 4 shows 
that distinguishable larger vortical coherent motions appear 
downstream of x∕𝜃0 ≳ 5 . Consistent with KH roll-ups 
induced by the primary instability in the upstream flow, as 
the shear layer develops, the coherent motions exhibit organ-
ized behavior and grow larger as they entrain the surround-
ing fluid from high- and zero-speed streams. Furthermore, 
these organized coherent motions are often accompanied by 
low momentum zones devoid of eddies between the vortical 
coherent motions. The shear layer width primarily grows by 
the “nibbling” action of small-scale vortices near the edges 
and “engulfing” action by large-scale vortices (Brown and 
Roshko 1974; Taveira et al 2013), though occasionally, the 
organized vortices exhibit mutual interaction. This interac-
tion process leads to vortex pairing and the growth of mixing 
layer width. Figure 6 captures and shows one such vortex 
pairing event.

Figure 6 shows iso-surfaces obtained using Δ-criterion 
to illustrate the evolution of the pairing process between 
vortices of unequal strengths. The 3D iso-surfaces are 
accompanied by Galilean-transformed 3D vector plots (span-
wise-averaged) colored by local velocity magnitude (color 
transitioning from blue to red corresponding to lowest and 
highest velocity, respectively) to highlight the circulation 
region corresponding to the vortical structures, and saddle 
region correlated to braids. In the first step (see Fig. 6a), two 
large-scale vortices (light blue ellipses) connected by a braid 

Fig. 5   Peak mean stress variation along streamwise locations, x/�0 
covering Zone1 and Zone2
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(black ellipse) begin to show circumferential interaction. In 
the second step, a comparatively larger strain is observed at 
the interface of the two vortices resulting in mutual vortex 
stretching (Fig. 6b,c), followed by an amalgamation of both 
of the vortices into one larger vortex (Fig. 6d).

Besides, the streamwise separation between the roll-ups 
increases downstream except in the event of the vortex pair-
ing process. While the KH roll-ups are spanwise-dominant, 
an increase in the three-dimensionality of the flow is noticed 
in the vortices’ deformed and stretched elliptical shape. A 
larger population of small-scale eddies is observed in Zone3; 
however, these smaller eddies are confined within larger vor-
tices connected by braids. The large vortices and the braids 
appear to be two-dimensional; however, given the relatively 
smaller spanwise extent of the flow region, we refrain from 
providing a factual inference. Nonetheless, a consider-
able two-dimensional behavior of the braids at a relatively 
lower Reynolds number is observed by Browand and Troutt 
(1985); Lasheras et al (1986); McMullan and Garrett (2016) 
over a comparatively sizeable spanwise extent.

Past studies (Brown and Roshko 1974; Hussain and 
Zaman 1985) have observed self-similar regions to be 
devoid of classical pairing. However, recent work of Bal-
tzer and Livescu (2020) has confirmed the occurrence of 
pairing events even in self-similar regions, supporting the 
indications made by Rogers and Moser (1994). No such pair-
ing events, if any, are observed in Zone3 due to the limited 
streamwise dimensions of Zone3 relative to the growing size 

of spanwise roll-ups (Fig. 4c,f). Thus, a statistical evalu-
ation is performed to more faithfully test the presence of 
self-similarity.

4.3 � Shear layer growth

As discussed, the vortical coherent motions within the 
shear layer “engulf” and “nibble” on the surrounding 
fluid. As the entrainment increases, the layer spreads 
in the cross-stream direction downstream. Following 
Pope (2000), the width of the shear layer, � , at a stream-
wise location is defined as the distance between the 
cross-stream locations, y0.9 and y0.1 , where the stream-
wise velocity reaches U(y0.9) = (Ul + 0.9Us) ± 0.01Us 
and U(y0.1) = (Ul + 0.1Us) ± 0.01Us , respectively. Here, 
Us = Uh − Ul , and Uh = U

∞
 and Ul = 0 are high- and low-

speed stream velocities, respectively. The uncertainty 
value of ±0.01Us is adopted to account for the data bin-
ning process over the structured grids of finite size. The 
locus of ym , the mixing layer mid-plane, is obtained as 
ym = 0.5(y0.9 + y0.1) and y0.5 corresponds to the cross-
stream location where streamwise velocity attains convec-
tion velocity, U(y0.5) = Uc = (Ul + 0.5Us) ± 0.01Us , or 
U(y0.5) =

Uh+Ul

2
= 0.5U

∞
.

Linear growth of a shear layer is widely regarded as a 
necessary condition for self-similarity. The variation of the 

Fig. 6   3D rendering of 
instantaneous iso-surfaces for 
Δ = (2 ± 0.5) × 1012 depicting 
vortex pairing within Zone2 
for time stamp, t = 0 (a), 10 ms 
(b), 31.25 ms (c), 42.75 ms (d) 
accompanied by instantane-
ous Galilean-transformed 3D 
velocity (spanwise-averaged) 
vector plots. Notice the two KH 
roll-ups of unequal strengths 
(light blue ellipses) with braids 
(black ellipses) pair as they 
develop. Access the supplemen-
tary multimedia file online for 
the animation
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shear layer width, � , along the streamwise direction is shown 
in Fig. 7a for the present study. A least-square linear fit is 
performed only over the self-similar region (discussed in the 
next section). The SSSL width, � , grows linearly at a rate of 
d�∕dx ≈ 0.174 for x

𝜃0

≳ 20 . A normalized quantity defined 

as spreading rate, S =
Uc

Us

d�

dx
 (Pope 2000), is estimated to be 

S ≈ 0.087 in the present study, comparable to previously 
reported values of S = 0.085 (Liepmann and Laufer 1947) 
and S = 0.104 (Champagne et al 1976) for planar SSSL, 
0.079 ≤ S ≤ 0.085 (initial laminar condition) and 
0.093 ≤ S ≤ 0.101 (turbulent initial condition) (Hussain and 
Zedan 1978b) for axisymmetric SSSL. However, the growth 
rate is comparatively higher than TSSL reported in the lit-
erature, i.e., 0.06 ≤ S ≤ 0.11 (Dimotakis 1991), S = 0.069 
(Bell and Mehta 1990; Balamurugan et al 2020; Baltzer and 
Livescu 2020), and S = 0.062 (Rogers and Moser 1994), but 
it is consistent with the variation of the growth rate with the 
normalized velocity difference, � = (Uh − Ul)∕(Uh + Ul) , 
found in previous studies (Wei et al 2022).

In the same plot, we show the variation of y0.1 , ym , y0.9 , 
and y0.5 . The loci of y0.5 and ym do not overlap for x∕𝜃0 ≲ 20 , 
attributing to the developing phase of the shear layer. For 
x∕𝜃0 ≳ 30 , the locus of convection velocity, Uc (or y0.5 ), lies 
on the high-speed side of the mixing layer centerline, thus 
disagreeing with the locus of ym . This provides evidence to 
difference in growth behavior of upper and lower edge of 
the shear layer, discussed further in subsequent paragraph. 
Besides, a least-square fit (not shown in Fig. 7a) yields a 
slope of ≈ −0.029 for y0.5 in the self-similar region that is 
similar to the reported values of −0.031 (Liepmann and 
Laufer 1947) and −0.035 (Champagne et al 1976) for an 
SSSL. We use y0.5 to obtain the similarity parameter, � , as 
opposed to the parameter ym used in Pope (2000). We believe 

y0.5 to be a more appropriate scaling parameter here as it cor-
responds to the convection velocity, Uc . This is also consist-
ent with the more general self-similarity analysis outlined 
in Wei et al (2022). It is worth pointing out that the locus 
of maximum Reynolds shear stress (not shown herein) does 
not overlap with y0.5 and is found to be biased toward the 
high-speed side of the centerline.

Fig. 7   a Variation of shear layer width � and cross-stream locations 
of y0.1, ym, y0.9 and y0.5 (as defined in 4.3) of the shear layer along the 
streamwise direction. b Growth of upper and lower edges relative to 

the shear layer centerline, y0.5 . c Momentum thickness, �, and vorti-
city thickness, �

�
 variation along streamwise direction

Fig. 8   Normalized cross-stream velocity profiles with error bars 
( ve∕Vref ) within the self-similar region ( 55 ≲ x∕𝜃0 ≲ 73 ), progres-
sively transitioning from darker to brighter shades of green along the 
displayed arrow, spaced by x = 1.91�0 . Profiles obtained by Liep-
mann and Laufer (1947) ( , LL 1947) and Wygnanski and Fiedler 
(1970) (×, WF 1970), and entrainment velocity profile obtained 

using equation 4 as suggested by Wei et al (2022) (−) are shown for 
comparison. Inset shows the identical cross-stream velocity profiles 
without the error bars
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The shear layer centerline, y0.5 , inclines toward the zero-
speed stream, indicating the mixing asymmetry, consistent 
with past studies (e.g., Koochesfahani et al (1983); Grinstein 
et al (1986); Liepmann and Laufer (1947); Champagne et al 
(1976); Wei et al (2022)). The downward penetration of the 
high-speed stream is evident from the larger width of the 
lower edge ( �l ) relative to the centerline as compared to the 
upper edge �h , shown in Fig. 7b. The widths, �u and �l , corre-
spond to the absolute y-distance between the SSSL’s center-
line, y0.5 , and upper and lower edges, respectively. It is only 
shown for Zone3 as it encompasses the self-similar region 
(further details on self-similarity in Sect. 4.4). In addition to 
the obvious asymmetry, the upper edge of the shear layer, �u, 
grows at a rate of d�u∕dx = 0.096 , i.e., faster than the lower 
edge, �l growing at a rate of d�l∕dx = 0.078 , contrasting with 
the observations of Balamurugan et al (2020); Champagne 
et al (1976).

On the other hand, the cross-stream velocity profile (refer 
to Fig. 8) indicates a larger velocity (pointing toward the 
SSSL centerline) on the zero-speed-stream side than the 
high-speed-stream side (velocity vector pointing away from 
the centerline), indicating higher entrainment from the zero-
speed stream. While large-scale coherent motions dictate 
statistics concerning entrainment rates presented in Fig. 7, 
fluid entrainment in shear layers occurs primarily ( ≈ 99% 
Taveira et al (2013)) through the “nibbling” action of small 
flow scales rather than the “engulfing” action of large-scale 
coherent motions (Mathew and Basu 2002; Taveira et al 
2013). A strong correlation of enstrophy change with enstro-
phy viscous diffusion is observed by Taveira et al (2013), 
concluding the dominant role of small flow scales in the 
entrainment mechanism. Hence, a higher growth rate of the 
upper edge of SSSL can be attributed to the comparatively 
higher free-stream turbulence intensity ( ≈ 4% ) in the pri-
mary stream, evidence for which is also provided by Hus-
sain and Zedan (1978a). The elevated turbulence levels lead 
to higher enstrophy exchange at the upper edge of SSSL 
which could be the reason behind relatively larger positive 
cross-stream velocity magnitude near this location. At the 
same time, the enstrophy produced within the shear layer is 
responsible for mixing the engulfed fluid from the irrota-
tional zero-speed-stream side. We provide further discussion 
in Fig. 8 in the next section.

Streamwise growth of momentum thickness ( � ) and 
vorticity thickness ( �

�
 ) are statistical quantities of interest 

for a mixing layer characterization. Both quantities show 
linear growth behavior in Zone2 and Zone3; see Fig. 7c. 
The momentum thickness grows with a consistent slope 
of d�∕dx ≈ 0.033 for x∕𝜃0 ≳ 25 , though the least-square 
fit is performed over the identified self-similar region 
( 55 ≲ x∕𝜃0 ≲ 73 , more discussion in next section). The 
observed growth rate of momentum thickness is consistent 
with previously reported values for SSSL d�∕dx = 0.035 

(Morris and Foss 2003), d�∕dx = 0.032 (Hussain and 
Zaman 1985), d�∕dx = 0.033 (Rajagopalan and Ko 1996). 
The vorticity thickness as well displays linear growth at a 
rate of d�

�
∕dx ≈ 0.168 comparable to the reported values 

of d�
�
∕dx = 0.145 (Patel 1973), d�

�
∕dx = 0.17 (Wygnan-

ski and Fiedler 1970), d�
�
∕dx = 0.202 (Mills 1968), and 

d�
�
∕dx = 0.218 (Liepmann and Laufer 1947), though a rela-

tively large dispersion exists among the data.
Brown and Roshko (1974) performed various fitting pro-

cedures on data from the literature (cf. Fig. 10) to obtain a 
“universal” scaling for vorticity thickness, �

�
 growth. Their 

fitting techniques resulted in scaling that varied in the range 
0.162–0.181� , for � = (Uh − Ul)∕(Uh + Ul) ranging from 0.1 
to 1. These scalings show reasonable agreement with the 
TSSL scaling found by Browand and Latigo (1979); Brow-
and and Troutt (1985); D’Ovidio and Coats (2013), which 
fall in the range 0.15–0.17� . The present results, 0.168� , fall 
into the suggested range as well. However, unlike Brown and 
Roshko (1974), the studies of Browand and Latigo (1979); 
Browand and Troutt (1985); D’Ovidio and Coats (2013) do 
not include growth data corresponding to SSSL (i.e., � = 1 ) 
to obtain the “universal” scaling. Besides, the fitting per-
formed by Brown and Roshko (1974) showed a large root 
mean square deviation among the growth rates for SSSL 
found in the literature at that time. To this date, an inclusive 
scaling for the growth of SSSL and TSSL does not exist. 
This raises a few questions: Is it plausible that a fundamental 
difference exists in the spatial development of SSSL from 
TSSL, despite the former being the limiting case of the lat-
ter, i.e., � = 1 ? Does there exist a growth rate scaling that 
unifies both flows beyond a reasonable doubt? Thus, there 
is an impending need to obtain a universal growth scaling 
incorporating SSSL and TSSL.

Fig. 9   Scaled velocity profiles, f (�) at different x∕�0 superimposed 
with SSSL profiles obtained by Morris and Foss (2003) (– – –) and 
Champagne et al (1976) (− ·−). (−): error function f (�) = 1

2
erf

[
�

�

]
 

where � = 0.5522 , fitted over the scaled velocity profiles across the 
self-similar region 55 ≲ x∕𝜃0 ≲ 73
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We present the mean velocity characteristics and higher-
order turbulence quantities in the following section to further 
evaluate self-similarity in the flow region.

4.4 � Self‑similar region

The statistical descriptors of turbulence for a mixing layer 
attain self-similarity in the scaled flow coordinates (Pope 
2000), i.e., the statistical descriptors become independent of 
the streamwise location. The scaled streamwise velocity at 
several locations within Zone1 to Zone3 is shown in Fig. 9. 
The profiles collapse reasonably well for x∕𝜃0 > 50.16, i.e., 
throughout Zone3 (green symbols in Fig. 9). However, the 
collapse of the mean velocity profiles is a necessary but not 
sufficient condition to identify the onset of self-similarity, 
as higher-order statistics take a longer distance to exhibit 
collapsing (Mehta and Westphal 1986). The scaled veloc-
ity profile obtained by Champagne et al (1976) and Morris 
and Foss (2003) for an SSSL is also shown for comparison, 
which is in good agreement with the present results. The 
scaled velocity profiles in the self-similar region are often 
represented by an error function. Here, an error function, 
shown with solid line, is fitted through the velocity profiles 
for 55 ≲ x∕𝜃0 ≲ 73, i.e., the region identified as self-similar.

Figure 8 shows cross-stream velocity profiles normal-
ized with Vref = U

∞
d�∕dx (Wei et al 2022) for streamwise 

locations within the self-similar region ( 55 ≲ x∕𝜃0 ≲ 73 ). 
The profiles show reasonable convergence within meas-
urement uncertainty and compare well with the hot-wire 
measurements of Liepmann and Laufer (1947) and Wyg-
nanski and Fiedler (1970). Additionally, Wei et al (2022), 
for plane mixing layers, suggested an entrainment velocity 
function (refer to Eq. 4) based on the error function fit 
for streamwise velocity profile in the self-similar region. 
Here, B =

dy0.5

dx
∕
d�

dx
 , and � is obtained by fitting an error 

function to the streamwise velocity profile (refer to Fig. 9 
caption). The cross-stream velocity profile obtained using 
Eq. 4 (solid black line) shows excellent agreement on the 
low-speed side of SSSL, while it noticeably diverges from 
the measured velocity profiles on the high-speed side. As 
discussed in preceding section, this discrepancy can be 
attributed to the heightened enstrophy exchange near the 
upper edge of the SSSL, causing increased cross-stream 
velocity. It is worth noting that Eq. 4 is purely analyti-
cal, based on mean statistical parameters, and does not 
account for non-ideal conditions such as current free-
stream boundary conditions and confinement effects that 
influence the entrainment rate.

(4)
ve

Vref

=
B

2
erf

�
�

�

�
−

�
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�
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�

2
√
�
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Higher-order statistical descriptors of turbulence, such 
as Reynolds stress components, are better indicators of self-
similarity than the mean velocity profile because of their 

Fig. 10   Cross-stream profiles of four components of the Reynolds 
stress tensor a at a location within Zone3 obtained by EB (solid lines) 
and AGW (symbols) shown for comparison; and b in the region 
55 ≲ x∕𝜃0 ≲ 73 obtained using AGW sampled at streamwise intervals 
of size x∕�0 = 0.239 without streamwise averaging

Fig. 11   Variation of total turbulent kinetic energy ( K = ∫
∞

−∞
ki dy ) 

and its individual components ( ki = 1
2 ⟨u

′
i u

′
i⟩

 ) along the streamwise 
direction in Zone3. (Every second data marker is shown for clarity.) 
(−) : linear least-squares fit for x∕𝜃0 ≳ 55 (self-similar region)
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higher sensitivity to changes in flow conditions (Rogers 
and Moser 1994; Attili and Bisetti 2012). Figure 10a shows 
cross-stream profiles of four components of the Reynolds 
stress tensor gained by AGW (symbols) and EB (solid 
lines) at a single grid point within the self-similar region 
that again highlights the minimal discrepancy between the 
two methods. Figure 10b illustrates the collapse of profiles 
sampled along the streamwise coordinate at intervals of 
size x∕�0 = 0.239 in the region 55 ≲ x∕𝜃0 ≲ 73 . There is no 
streamwise averaging in these profiles to show their stream-
wise variability. These Reynolds stress profiles show excel-
lent collapse over the observed flow region, suggesting that 
the flow has attained self-similarity. The peaks of Reynolds 
stresses occur on the high-speed stream side of the mixing 
layer, consistent with the claim of peak stress not coincid-
ing with the cross-stream location of the centerline ( y0.5 ). A 
number of turbulent flow parameters calculated in the self-
similar region are tabulated in Table 3.

To further validate the assessment of self-similarity, we 
show the streamwise evolution of individual components of 
turbulent kinetic energy (TKE) and the total TKE integrated 
across the cross-stream direction in Fig. 11. The total kinetic 
energy and its individual components growth exhibit linear 
behavior for x∕𝜃0 ≳ 55 , further validating our assessment 
that the flow has attained self-similar behavior (Attili and 
Bisetti 2012).

4.5 � Turbulent kinetic energy budget

The turbulent kinetic energy (TKE) budget is obtained 
across critical regions of the shear layer. The individual 
terms of the TKE budget equation are obtained using the 
general form of the equation as follows (Liu and Thomas 
2004):

where � is kinematic viscosity, k = 1

2
u�
i
u�
i
 is mean TKE, 

and k� = 1

2
u�
i
u�
i
 is fluctuating TKE. u′

i
 and Ui are fluctuating 

and mean velocities, respectively. The temporal term on the 
left-hand side of the equation is zero under statistically sta-
tionary flow conditions. The pressure diffusion term is not 
obtained in the present study; nonetheless, its absence does 
not alter the physical inferences discussed in the subsequent 
text.

The production term in equation 5 consists of nine indi-
vidual components. The magnitude and sign of the dictating 
terms collectively decide the sign for the production term. 
As discussed in Sect. 4.2, the region immediately down-
stream of the separation point exhibits a relatively large 
magnitude of streamwise stress, ⟨u′u′⟩ upon emanating from 
the near-wall region of the BL (see Fig. 5). Additionally, the 
flow attached to the boundary layer suddenly loses the no-
slip condition, resulting in a large streamwise gradient of 
streamwise velocity, �U

�x
 . The sudden flow expansion at the 

separation edge indicates longitudinal stretching of the 
streamwise velocity, consistent with the large streamwise 
Reynolds normal stress, ⟨u′u′⟩ near the separation edge. The 
joint contribution of the above two terms primarily results 
in considerable negative production immediate downstream 
to the separation edge, refer to Fig. 12a. The rest of the com-
ponents of the production term are two orders of magnitude 
smaller than −⟨u�u�⟩ �U

�x
 . It is worth pointing out that the 

cross-stream gradient, �U
�y
, is positive and higher in magni-

tude. However, Reynolds shear stress, ⟨−u�v�⟩, is compara-
tively smaller in the region, and the combined contribution 
of the term is negligible as a result. The negative production 
rate can be seen for 0 ≤ x∕�0 ≤ 0.80 in Fig. 12a. Negative 
production rate implies that turbulence energy is being rap-
idly dissipated at a rate greater than it is generated in the 
region. This depicts the presence of laminar sublayer imme-
diate to the separation edge. Additionally, the cross-stream 
profiles show decreasingly lower negative production rate 
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Table 3   Relevant turbulence flow parameters calculated over the 
self-similar region, i.e., 55 ≲ x∕𝜃

0
≲ 73 of the SSSL. The uncertainty 

bounds show the extent of variability of each quantity across the self-
similar region
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depicting the overcoming of the laminar behavior by the 
turbulence produced nearby.

A DNS study by Cimarelli et al (2019) found the produc-
tion term to be negative near leading and trailing separation 
edges, and flow reattachment zones, similar to the present 
observation. As an aside, the production term is always kept 
positive in turbulence models (e.g., eddy viscosity models). 
Such models can be improved by exercising the presence of 
negative production in the flow, particularly in separating 
flows.

Figure 12b presents the streamwise variation of the peak 
minimum values in cross-stream profiles of dissipation rate 
( � ) and the viscous diffusion rate, to illustrate the viscous-
dominated region immediate downstream to the separation 
edge. The plot demonstrates a significant variation in both 
quantities for x∕𝜃0 ≲ 12 , followed by minimal variation 
beyond this point. The variation is rather rapid for viscous 
diffusion rate than dissipation rate indicating its larger role in 
the redistribution of turbulent kinetic energy produced, thus 
establishing its dominating role in the laminar-like region 
immediate to the separation edge. Furthermore, dissipation 
rate magnitude also increases after separation reaching a 
maximum at x∕�0 ≈ 6 , which is consistent with the com-
paratively smoother flow morphology observed upstream 
of this location (see Fig. 4a, d).

The TKE budget in the self-similar region obtained over 
55 ≲ x∕𝜃0 ≲ 73 is plotted in Fig. 12c. The production profile 
shows a slight bias for the high-speed stream side, similar to 
the stress profiles. The turbulence diffusion profile is skewed 
toward the zero-speed stream, as a larger turbulence diffu-
sion from the high to zero-speed side prevails in the present 
SSSL. In the following section, a discussion on distribu-
tion of critical TKE budget terms within the coherent flow 
motions of the shear layer is provided.

4.6 � Phase‑averaged flow maps

The phase averaging method analyzes strong rotating coher-
ent motions within a shear layer and obtains a mean flow 
map of these coherent motions. The process is adapted from 
the one described in Loucks and Wallace (2012) to identify 
instances of vortical coherent motions in Zone3 as it encom-
passes the self-similar region. The oscillating streamwise 
velocity signal at a fixed point on the zero-speed side of the 
SSSL indicates the presence of these large-scale vortical 
coherent motions. The instantaneous flow maps correspond-
ing to specific streamwise velocity phases are identified to 
obtain the mean flow maps of velocity and other relevant 
turbulence flow quantities.

The time trace of the streamwise velocity displays alter-
nating crests and troughs corresponding to the vortex center 
and the “braid” region between neighboring vortices. A fixed 
point is carefully selected to effectively capture both the vor-
tex and braid region of the shear layer. Over the 12-second 
time trace, approximately 70 such local maxima or minima 
are identified. Given the limited number of detected events, 
additional instantaneous flow maps, 10 preceding and 10 
following each crest or trough, are included in the ensem-
ble (a total of 1 400 instantaneous flow maps) to produce a 
smoother flow map. The resulting average flow maps cor-
responding to the crest and trough phases are displayed in 
Fig. 13, with the left column representing the crest phase 
and the right column representing the trough phase. The 
dashed vertical black lines overlaid over the contour maps 
pass through the vortical core and saddle point within the 
braid region in the left and right columns, respectively.

Figure 13 shows the phase-averaged flow contour maps 
for different turbulence quantities. The frame of reference 
of the 2D velocity field is changed with a Galilean transfor-
mation based on the convection velocity, Uc . This velocity 
field is overlaid on the above-mentioned contour maps to 

Fig. 12   a Cross-stream profiles of production rate immediate to the 
separation edge ( 0 ≤ x∕�0 ≤ 0.80 ), b Streamwise variation of the 
peak minimum values in cross-stream profiles of dissipation rate ( � ) 
and viscous diffusion rate. c Ensemble-average TKE budget obtained 

over the self-similar region ( 55 ≲ x∕𝜃0 ≲ 73 ). D: Dissipation, CT: 
Convection Term, VD: Viscous Diffusion, TD: Turbulence Diffusion, 
and P: Production as labeled in equation 5
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Fig. 13   Phase-averaged maps (from top to bottom) of total turbulent 
kinetic energy (K), production rate (P), dissipation rate ( � ), and tur-
bulence diffusion rate (TD) for two phase-average instances overlaid 
with Galilean-transformed 2D-vector field to emphasize the spanwise 

vortical region (left column), and the braid (right column) region 
between the vortices. Dashed vertical black lines (– –) shown here 
pass through the vortical core and braid (saddle point) in the left and 
right columns, respectively
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emphasize the rotational coherent motions. The figure shows 
the spatial distribution of TKE (K), production rate (P), dis-
sipation rate ( � ), and turbulence diffusion rate (TD) in the 
vortical region (left column) and braid region (right col-
umn). The TKE contour reveals a relatively higher amount 
of energy concentrated at the outer edges of the coherent 
motions (upstream and downstream) than at the vortex core. 
Moreover, comparatively lower energy is concentrated in 
the braid region, aligning with the findings of Loucks and 
Wallace (2012) on TSSL.

The contour maps of the production rate reveal a disparity 
in turbulence production between the outer edges (down-
stream and upstream boundaries) of roll-ups, where rolls 
interact with braids and the vortex cores. These outer edges 
display significantly higher rates of turbulence production 
compared to the cores, consistent with the observations of 
Diorio et al (2007).

Though the dissipation rate field is not as localized as the 
production field, it exhibits a somehow contrasting behavior, 
with seemingly greater levels of dissipation rates within the 
vortex cores as opposed to the braid region. This implies that 
a substantial portion of the turbulence generated within the 
shear layer, specifically at the outer edges of the coherent 

vortices, is dissipated at higher rates within the core of the 
vortices—a region with larger density of dissipative flow 
scales. These observations indicate distinct spatial separa-
tion between locations of maximum production and dis-
sipation rates within the coherent motions, a pattern that 
becomes apparent in the two-point correlation map of pro-
duction and dissipation, �P,D shown in Fig. 14.

where P′ and D′ are fluctuating components of production 
and dissipation rates, respectively. The map shown here is 
spanwise-averaged on account of homogeneity in this direc-
tion. The map reveals alternating negative and positive cor-
relations between the two turbulence quantities, providing 
evidence for the presence of alternating coherent motions 
as well as the spatial distribution of production and dissipa-
tion sites in the flow. A streamwise slice along the dashed 
line (shown in Fig. 14a) of the 3D correlation field �P,D is 
presented in Fig. 14b. The plot shows the alternating correla-
tion behavior between the two quantities. Furthermore, the 
streamwise spatial separation between the positive correla-
tion peak and negative minima closely matches the stream-
wise separation between the vortical core and its outer edges, 
or half the separation between the vortex core and saddle 
point. This observation reinforces the claim that a distinct 
spatial separation exists between the peak production and 
dissipation sites within the mixing layer.

Refer to the contour maps corresponding to the turbu-
lence diffusion rate in Fig. 13, the vortical region shows 
larger concentration of negative values for turbulence dif-
fusion rates indicating higher degree of mixing, consistent 
with the larger dissipation rates concentration in the region. 
Furthermore, apart from braids exhibiting considerable dis-
sipation rates, they exhibit predominantly negative turbu-
lence diffusion rate that appears to form a channel connect-
ing the two adjacent coherent structures. They seem to serve 
as conduit for exchanging turbulence generated at the region 
of the braid and vortex intersection where larger scales are 
stretched to the vortex cores where it eventually gets dissi-
pated. These results suggest that the intersection of the braid 
and vortices is a key region for energy production, while the 
vortex region favors energy dissipation.

Besides, predominantly positive turbulence diffusion 
rates coincide with regions where u′ and v′ exhibit the same 
sign, particularly noticeable at the lower right and upper 
left region of the outer edge of the vortical region observed 
in Fig. 13 (left). The same behavior can also be observed 
in Fig. 13 (right). This behavior reiterates that the kinetic 
energy is generated at the vortex-braid intersection and is 
subsequently transported as the vortices rotate clockwise 

(6)�P,D =

P�
(x, y, z, t)D�

(x0, y0, z0, t)√
P�
(x, y, z, t)2

√
D�

(x0, y0, z0, t)
2

Fig. 14   a Two-point correlation map between production and dissipa-
tion rate, �P,D . The reference point, (x0, y0, z0) , shown with a yellow-
filled circle is located on the shear layer centerline. b Streamwise 
slice of �P,D at y0 along the horizontal dashed black line (– –) shown 
in (a)
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and develop downstream (see turbulence diffusion term 
in Eq. 5). This strengthens the proposition that turbulence 
is generated primarily outside the vortical region and then 
transported toward the cores where it is dissipated.

5 � Conclusion

Time-resolved 3D-PTV technique is used to study the evolu-
tion of a wall boundary layer into a self-similar single-stream 
shear layer (SSSL). The experiments are conducted using 
a custom-designed high Reynolds number ( Re

�
≈ 1 240 ) 

water tunnel facility. Particle trajectory data are utilized to 
obtain a three-dimensional velocity field within the bound-
ary layer, its subsequent separation, and development into 
a self-similar SSSL. The region of interest ranges from 
−23 ≲ x∕𝜃0 ≲ 73 , where �0 is the momentum thickness near 
the separation edge, allowing for comprehensive visualiza-
tion and analysis of the developing flow coherent motions 
within the mixing layer. A hybrid approach combining adap-
tive ensemble binning (EB) and adaptive Gaussian weight-
ing (AGW) is implemented to interpolate the unstructured 
velocity data onto a structured grid (i.e., from Lagrangian 
to Eulerian description) at a relatively lower computational 
cost than other advanced methods while maintaining com-
petent accuracy.

The analysis of the statistical parameters of the mixing 
layer reveals that self-similarity is attained at a streamwise 
distance of ≈ 55�0 from the separation edge, a distance sig-
nificantly shorter than previously reported in the literature. 
On comparison of growth rates parameters, such as shear 
layer width, momentum, and vorticity thickness with past 
studies poses interesting questions about a potential “univer-
sal” scaling that unifies both single- and two-stream shear 
layers. Besides, the faster growth rate of the mixing layer 
width on the high-speed side (relative to the mixing layer 
centerline) with larger free-stream turbulence intensity com-
pared to the zero-speed side provides further evidence for 
the “nibbling” mechanism to be the primary driving entrain-
ment mechanism in mixing layers.

The separation of BL or sudden flow expansion at the 
separation edge leads to a high streamwise velocity gradi-
ent downstream, �U

�x
 , resulting in a negative turbulence pro-

duction immediately downstream to the separation edge. 
With the production term acting as an energy sink, the vis-
cous diffusion term, which otherwise remains negligible, 
increases in magnitude, leading to a viscous-dominated 
region reflected in the region’s flow morphology which is 
later confirmed upon TKE budget analysis in the region.

Utilizing the instantaneous maps in self-similar 
region, phase-averaged maps are obtained to find that the 

intersection region between outer edges of vortices and 
braids display high production rates. On the other hand, vor-
tex cores favor turbulence dissipation. A two-point correla-
tion between production and dissipation rates confirms the 
presence of spatial separation between peak production and 
dissipation regions. Additionally, the phase-averaged turbu-
lence diffusion rate maps reveal a higher degree of homo-
geneous distribution or mixing within the vortex region, 
in contrast to the braid region. Notably, the braid region 
appears to act as a conduit, effectively facilitating the diffu-
sion of turbulence generated at the intersection of the braid 
and vortex between adjacent spanwise vortices.

Appendix I

Influence of interpolation parameters

The accuracy and spatial filtering of the data interpolated 
over structured grids using AGW depend on several factors, 
including the rms width of the Gaussian weighting func-
tion, grid spacing, and particle density over a chosen grid 
spacing. This section presents a test evaluating the impact 
of these parameters with the hybrid approach adopted in the 
present work that combines the technique detailed in Tirelli 
et al (2023) and AGW (Agüí and Jimenez 1987). Figure 15 
showcases mean Reynolds shear stress profiles within the 
self-similar region for various Gaussian rms width val-
ues ( H = 0.6h, 0.8h, 1.0h, and 1.24h) and the nearest PTV 

Fig. 15   Comparison of mean Reynolds shear stress profiles at a loca-
tion within Zone3 for different combination of Gaussian rms width, 
H (= 0.6h, 0.8h, 1.0h, and 1.24hwhere his grid spacing), and nearest 
number of particles to a grid position, np (= 5, 10) utilized for inter-

polation. Profile obtained using ensemble binning (−−) is included 
for comparison
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particles to the grid location ( n
p=5

, 10 ) employed for inter-
polation. Remarkably, the profiles exhibit minimal variation 
among the considered cases, highlighting the marginal filter-
ing effect of the interpolation method when using velocity 
fluctuation data for interpolation rather than instantaneous 
velocity data. Additionally, with the hybrid approach, AGW 
offers significant advantage over computationally taxing data 
regularization techniques by providing accurate and sig-
nificantly less filtered instantaneous maps for higher-order 
parameters such as Reynolds stresses.

Data convergence test

A convergence test is performed to determine if the number 
of instantaneous realizations captured in the present study is 
enough to estimate statistical descriptors accurately. To this 
end, 48,000 instantaneous realizations of three-4 s long data 
sets (for Zone3) are divided into 5 subsets with an increasing 
number of realizations (or capture time) equivalent to 8000 
realizations (or 2 s capture time).

Figure 16 shows the mean Reynolds shear stress profile 
at a location within Zone3 for the different subsets. The 
Reynolds shear stress profile is chosen to assess statistical 
convergence as it is sensitive to streamwise and cross-stream 
fluctuations. The profiles nearly collapse over each other for 
the data realization lengths ≥ 6 s, suggesting that the data set 
must be collected over at least 6 s to ensure convergence of 
statistical descriptors within Zone3. On the other hand, data 
realization lengths of 1 s and 2 s are deemed sufficient for 
the statistical descriptors in Zone1 and Zone2, respectively 
(not shown here).

Though the spanwise thickness of the ROI is relatively 
small (approximately 1/8 of the width and 1/5 of the height 
of the ROI), the data are also tested for spanwise variability 
to ensure the validity of spanwise averaging. For instance, 
the results for the Reynolds stress shown in Fig. 16 are 
observed to deviate no more than ±1% of their respective 
average values. This result gives confidence that flow hetero-
geneity in the spanwise direction is not significant enough to 
affect spanwise averaging.

Appendix II

Uncertainty analysis

The uncertainties associated with mean statistical quanti-
ties, as outlined in Sciacchitano and Wieneke (2016), are 
given by,

where N is the total number of realizations, �u,f  represents 
the standard deviation of true velocity fluctuations at a grid 
point, and Δ2

u
 is the average square of the uncertainty in 

instantaneous velocity, denoted by Δu . This uncertainty is 
linked to interpolation errors across the grids of the instan-
taneous velocity uh . Δu�

i
u�
i

 and Δ
u�v�

 are uncertainty for Reyn-
olds normal stresses and shear stresses, respectively; �uv is 
cross-correlation coefficient between u and v. Error bars for 
the higher-order turbulence parameters reported in the pre-
sent work are similarly estimated.
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