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A B S T R A C T

Background: Computational cardiovascular flow modeling plays a crucial role in understanding blood flow
dynamics. While 3D models provide acute details, they are computationally expensive, especially with fluid–
structure interaction (FSI) simulations. 1D models offer a computationally efficient alternative, by simplifying
the 3D Navier–Stokes equations through axisymmetric flow assumption and cross-sectional averaging. How-
ever, traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D
averaged solutions.
Methods: This study introduces a novel physics-constrained machine learning technique that enhances the
accuracy of 1D cardiovascular flow models while maintaining computational efficiency. Our approach,
utilizing a physics-constrained coupled neural differential equation (PCNDE) framework, demonstrates superior
performance compared to conventional FEM-based 1D models across a wide range of inlet boundary condition
waveforms and stenosis blockage ratios. A key innovation lies in the spatial formulation of the momentum
conservation equation, departing from the traditional temporal approach and capitalizing on the inherent
temporal periodicity of blood flow.
Results: This spatial neural differential equation formulation switches space and time and overcomes issues
related to coupling stability and smoothness, while simplifying boundary condition implementation. The model
accurately captures flow rate, area, and pressure variations for unseen waveforms and geometries, having 3–5
times smaller error than 1D FEM, and less than 1.2% relative error compared to 3D averaged training data. We
evaluate the model’s robustness to input noise and explore the loss landscapes associated with the inclusion
of different physics terms.
Conclusion: This advanced 1D modeling technique offers promising potential for rapid cardiovascular sim-
ulations, achieving computational efficiency and accuracy. By combining the strengths of physics-based and
data-driven modeling, this approach enables fast and accurate cardiovascular simulations.
1. Introduction

Cardiovascular diseases are a major cause of mortality worldwide,
emphasizing the need to improve our understanding of circulatory
physiology and related disorders. Cardiovascular flow modeling has
emerged as a powerful tool in this endeavor, offering insights into
complex hemodynamics, aiding in the development of medical devices,
and assisting with clinical decision-making [1]. These models range
from simplified lumped parameter representations to highly detailed
three-dimensional fluid–structure interaction (FSI) simulations. While
the latter provide intricate detail, they often require substantial com-
putational resources, limiting their practical applicability in clinical

∗ Correspondence to: Scientific Computing and Imaging Institute, 72 S Central Campus Drive, Salt Lake City, UT, 84112, USA.
E-mail address: amir.arzani@sci.utah.edu (A. Arzani).

scenarios. This challenge has spurred the development of reduced
order models (ROMs), which aim to capture the essential dynamics of
the cardiovascular system while significantly reducing computational
complexity. In the field of cardiovascular fluid mechanics, two main
categories of ROMs have emerged: physics-based and data-driven ap-
proaches [2–4]. Physics-based ROMs leverage fundamental principles
of fluid dynamics and vascular mechanics to create simplified yet physi-
cally meaningful and interpretable representations. These models often
rely on assumptions such as axisymmetric flow or linearized equations
to achieve computational efficiency. On the other hand, data-driven
ROMs utilize advanced statistical and machine learning techniques to
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data mining, AI training, and similar technologies. 
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extract low-dimensional representations from high-fidelity simulation
ata or experimental measurements. Physics-based ROMs using spatial
imensionality reduction have been popular in the cardiovascular re-
earch community. As an example, 0D Windkessel models have been
idely used and are recognized by the clinical community [5]. Both 1D
nd 0D models have been shown to produce fast estimates of blood flow
ariables [6,7]. 1D models use a cross-sectionally averaged formulation

of the Navier–Stokes equations, where the single velocity component
points along the centerline direction. 0D models solve a system of
ordinary differential equations (ODEs), building on electrical circuit
analogy, defining circuit elements based on the geometric and material
properties of the vessel segments.

While 1D models have demonstrated generally satisfactory perfor-
ance, they still face challenges in accurately representing specific

scenarios. These limitations become particularly evident in modeling
flow patterns in complex geometries such as aneurysms or stenoses,
nd precisely characterizing pressure and flow variations across bifur-

cations [6–11]. Without special treatment, the 1D models are known
o underestimate the pressure drop along stenosed arteries. Correc-
ion formulas based on empirical relations have been proposed [12,

13] and used together with the 1D models [6,9,14]. These empirical
ormulas relate pressure drop to various factors such as flow rate, cross-

sectional areas, stenosis length, and material properties, providing a
more accurate representation of fluid dynamics in complex regions.

Traditional modeling approaches have made significant strides in
ddressing the complexities of cardiovascular flows, but some chal-

lenges persist, and there is room for further improvement in existing so-
lutions. In recent years, machine learning techniques have emerged as
complementary tools, offering new perspectives on both longstanding
and novel challenges in cardiovascular flow problems [2,4,15]. These
include data assimilation [16], denoising [17], super-resolution [18],
reduced order modeling [19], segmentation [20], phase error correc-
tion [21], treatment planning [22], among others. Some commonly
used techniques include proper orthogonal decomposition (POD) [23,
24], dynamic mode decomposition (DMD) [16], physics-informed neu-
al networks (PINNs) [25], graph neural networks (GNNs) [19], convo-

lutional autoencoders (CAEs) [26] and generative adversarial networks
GANs) [20].

While machine learning is being widely applied to 3D cardiovascu-
ar flow models, 0D and 1D-based blood flow models have received
omparatively less attention. This is primarily because these lower-
imensional models are already computationally efficient compared
o their 3D counterparts. However, machine learning has the poten-

tial to improve their accuracy, which is lost due to their geometric
dimensionality reduction. Recent research has begun to explore how
machine learning can enhance 0D and 1D models, particularly in
addressing limitations such as missing boundary conditions or un-
accounted physics. Sen et al. [27] used a graph-based PINN model
to account for missing boundary conditions in the 1D framework by
sing experimental data. Grigorian et al. [28] used a neural ODE-based

framework for capturing ventricular interactions in a hybrid 0D model
ith synthetic data. Li et al. [29] applied the sparse identification of
onlinear dynamics (SINDy) method to discover unknown terms in the
D equations of vocal fold vibrations, sharing many similarities with
D blood flow equations. These studies demonstrate the potential of
achine learning to further improve the accuracy and applicability of
hysics-based reduced-order cardiovascular models.

Neural Differential Equations (NDEs) [30,31] represent a powerful
intersection of machine learning and scientific computing, connect-
ing neural networks (NNs) and differential equations. This approach
leverages the insight that residual connections in neural networks can
be interpreted as Euler discretizations of ODEs. By extending this
concept, NDEs allow for the incorporation of neural networks directly
into differential equation systems, enabling the capture of complex,
nknown physics or the learning of dynamics from data. There is

rowing interest in extending these approaches to partial differential

2 
equations (PDEs). They can be used to augment existing PDE models
with learned components, addressing scenarios where the underlying
hysics is partially known but certain terms or parameters remain
lusive [32]. For instance, NDEs can help model subgrid-scale effects

in turbulence simulations [33,34] or capture complex constitutive re-
lationships in solid mechanics [35]. These methods, also known as
differentiable programming or differentiable simulators [36,37], inte-
grate gradient-based optimization with traditional scientific computing,
enabling end-to-end training of hybrid models. A key challenge is
the need for differentiable differential equation solvers that allow
backpropagation of gradients through the computational graph, which
is essential for effective training using gradient-based optimization
techniques.

Neural PDE approaches have been widely applied to various phys-
cal systems, often focusing on PDEs with periodic spatial boundary
onditions. Examples include homogeneous isotropic turbulence [38],

Kuramoto–Sivashinsky equation [39], Burgers’ equation [40], and
Fisher–KPP equation [31]. In these approaches, space is typically
discretized and a neural ODE problem is formulated for the time
evolution of the system. However, applying these techniques to car-
diovascular flows presents unique challenges. Blood flow dynamics
are characterized by temporal periodicity due to the rhythmic nature
of the heartbeat. Moreover, the inlet boundary condition is usually
a time-dependent pulsatile flow rate or pressure waveform. These
characteristics make it difficult to directly apply traditional neural PDE
methods to cardiovascular systems.

To address these challenges, we propose a novel approach of switch-
ing the roles of space and time in our neural PDE framework. The
idea is to discretize time and formulate the differential equations in
space. This innovative technique capitalizes on the inherent temporal
periodicity of blood flows. Unlike most fluid dynamics applications of
machine learning, cardiovascular flows do not require solutions for
arbitrary future times. Instead, it is sufficient to obtain solutions at a
finite number of time instances over a cardiac cycle due to the temporal
periodicity. This unique scenario creates an opportunity where switch-
ing space and time could be particularly beneficial, potentially leading
to improved stability and accuracy. The concept of exploiting temporal
periodicity in cardiovascular flow modeling has been recently utilized
by Esmaily and Jia [41]. They developed a time-spectral formulation
using Fourier transforms in time, rather than the traditional space
approach in spectral methods [42], and applied it to 3D finite element
method (FEM) based models of cardiovascular flows. Their approach
focuses on 3D FEM modeling in the frequency domain and it was shown
o speed up blood flow simulations by orders of magnitude compared

to the traditional formulation.
The main goal here is to bridge the gap between 1D and 3D

odels by creating a physics-based data-driven model that is still 1D in
essence but achieves greater accuracy than conventional 1D approaches
since it is trained with 3D averaged data. A novel physics-constrained
coupled differential equation (PCNDE) framework is introduced that
leverages 3D averaged data for training, but also includes some of the
physics from previous models, like the continuity equation and the
pressure drop formula, with correction terms to account for missing
physics or deficient assumptions. Two key novel ideas are introduced.
First, switching space and time in the NDE framework simplifies the
treatment of boundary conditions and helps the PDE coupling stability
and smoothness. Second, a Fourier series is exploited for hard con-
straining temporal periodicity of the cross-sectional area deformation
model. The new method is demonstrated on different idealized stenosis
geometries and a wide range of inlet boundary condition flow rate
waveforms, and compared with the state-of-the-art 1D FEM solver.
Our approach strikes a balance between traditional physics-based 1D
models and ROMs trained on 3D data by leveraging 3D-derived data
for enhanced accuracy while maintaining the computational efficiency
and robustness of a 1D framework. This hybrid method ensures faster
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inference while addressing the challenges associated with purely data-
driven ROMs and the lack of accuracy of traditional 1D models. Modal
decomposition-based surrogate models [16,24] are a significant related
rea of research, enabling full 3D reconstructions. These models can
e either physics-based, such as those using Galerkin projection or
ntirely data-driven. While traditionally constrained by linearity, re-
ent advancements have focused on incorporating nonlinearity through
eural networks [24]. In contrast, our PCNDE framework provides a
D focused alternative with built-in physics constraints, offering robust
erformance and efficiency. This positions PCNDE as a complementary
pproach, suited for different modeling scenarios where computational
implicity, noise resilience, and adaptability are priorities. The present
tudy has the following novel contributions:

• Switching space and time in the NDE framework is proposed,
leading to improved smoothness and stability. The temporal peri-
odicity of blood flow is the main motivation behind this shift of
perspective.

• Handling coupled PDEs with time-dependent boundary condi-
tions is demonstrated in the NDE framework. Training stability
is discussed in relation to different physics terms.

• The temporal periodicity of area predictions is embedded as an
inductive bias in the model through the use of Fourier series.

• While the machine learning model is essentially 1D in formula-
tion, it achieves higher accuracy than traditional 1D blood flow
equations by incorporating 3D averaged data for training.

• Two-way coupled FSI simulations are used for training the model
taking into account the arterial wall movement.

The rest of the paper is structured in the following way. In Section 2,
the 1D and 3D models are described for generating data and the PCNDE
framework is introduced. In Section 3, the PCNDE results are presented,
nalyzed, and compared to the 1D FEM solution. In Section 4, the

results are discussed and strengths and limitations are described. In
Section 5, the final conclusions are drawn.

2. Methods

Below, the 1D and 3D blood flow approaches are explained. The 1D
EM solution will serve as a benchmark, while the 3D FSI model will be
sed to generate training data. Next, the PCNDE approach is introduced

and the data generation process and model setup are presented.

2.1. 1D blood flow equations

By cross-sectional averaging the 3D Navier–Stokes equations along a
vessel centerline, the 1D equations of blood flow can be formulated [43,
44]. For Newtonian incompressible flow with deformable walls, the
continuity and momentum equations are the following:
𝜕 𝑆
𝜕 𝑡 = − 𝜕 𝑄

𝜕 𝑧 , (1)

𝜕 𝑄
𝜕 𝑡 = −(1 + 𝛿) 𝜕

𝜕 𝑧
(

𝑄2

𝑆

)

− 𝑆
𝜌
𝜕 𝑝
𝜕 𝑧 +𝑁𝑄

𝑆
+ 𝜈 𝜕

2𝑄
𝜕 𝑧2 , (2)

where 𝑄 is flow rate, 𝑆 is cross-sectional area, 𝑝 is pressure, 𝑡 is time, 𝑧
is the axial coordinate along the centerline, 𝜌 is blood density, and 𝜈 is
kinematic viscosity. 𝛿 and 𝑁 are two parameters related to the velocity
profile assumption. In the case of a parabolic profile, the following
relations hold [43]:

𝛿 = 1
3
, (3)

𝑁 = −8𝜋 𝜈 . (4)

Usually, a pulsatile flow rate waveform is specified as the inlet
boundary condition:
𝑄(𝑧 = 0, 𝑡) = 𝑄𝑖𝑛(𝑡) . (5)

3 
𝑄𝑖𝑛(𝑡) could be either a patient-specific waveform obtained from ex-
erimental measurements or a population-averaged waveform for the
iven artery. The outlet boundary conditions are usually 0D Windkessel
odels. The initial condition is 𝑄(𝑧, 𝑡 = 0) = 0, and since the inlet

oundary condition is periodic in time, the system will converge to the
eriodic solution.

An additional closure equation is needed to close the system of
equations. A constitutive equation is used that relates the pressure to
the cross-sectional area and the wall’s material properties. The most
commonly used models are the linear and Olufsen models [6,45]:

𝑝(𝑧, 𝑡) = 𝑝𝑟𝑒𝑓 + 4
3
𝐸 ℎ
𝑟0

(
√

𝑆(𝑧, 𝑡)
𝑆𝑢(𝑧)

− 1
)

, (6)

(𝑧, 𝑡) = 𝑝𝑟𝑒𝑓 + 4
3
(

𝑘1𝑒
𝑘2𝑟0(𝑧) + 𝑘3

)

⎛

⎜

⎜

⎝

1 −
√

𝑆𝑢(𝑧)
𝑆(𝑧, 𝑡)

⎞

⎟

⎟

⎠

, (7)

where 𝑘1, 𝑘2, 𝑘3 are empirically fitted coefficients, 𝑝𝑟𝑒𝑓 is a reference
pressure, 𝑆𝑢(𝑧) is the undeformed area, 𝐸 is the Young modulus of the

all, ℎ is the wall thickness, and 𝑟0 is a reference radius. In the present
tudy, the linear model will be used for the 1D FEM simulations.

2.2. 3D blood flow model

The 3D incompressible Navier–Stokes equations are used to describe
he flow of blood in the cardiovascular system. The SimVascular soft-
are package [46], an open-source finite-element computational fluid
ynamics (CFD) solver, was used for the 3D simulations. A Newtonian

blood viscosity model was used with the density of 𝜌 = 1060 kg/m3

and dynamic viscosity of 𝜇 = 0.004 kg/ms. The coupled momentum
method [47] was used for the wall movement, which is a two-way
coupled fluid–structure interaction (FSI) technique. The vessel wall
movement is described using a linear membrane model. The wall
eformations affect the fluid through a nonzero normal wall velocity,
hile the solid–fluid interface mesh is the same as the fluid mesh at the
all. Therefore, the computational time is considerably lower than that
f more detailed FSI techniques. For further details, readers are referred
o [47]. The other details of the 3D simulations will be described along
he data generation workflow in Section 2.5.

2.3. Temporal neural PDEs

The general neural differential equation approach is to parameterize
parts of the right-hand side of Eq. (2) with neural networks
𝜕 𝑄
𝜕 𝑡 = 𝑓𝜃(𝑄) + ℎ(𝑄, 𝑆 , 𝑧, 𝑡) , (8)

where 𝑓𝜃 is a neural network with 𝜃 representing the optimizable
weights and biases, while ℎ is a function that could represent physics
terms kept from Eq. (2). In this formulation, space is discretized into
𝑛𝑧 spatial coordinates and one ODE is solved for each spatial point
throughout time. A self-implemented differentiable RK4 ODE solver
was used for this case, with the inlet boundary condition being en-
forced after each timestep. Importantly, we ensured that the boundary
condition enforcement procedure itself is differentiable, a non-trivial
task that required specific implementation techniques. An illustratory
example of the temporal neural ODE formulation was done, using a
model where all the right-hand side of the momentum equation is
parameterized with a NN, i.e., ℎ(𝑄, 𝑆 , 𝑧, 𝑡) = 0. A second example will
be discussed, where time is also input to the neural network, thus the
right-hand side has the form of 𝑓𝜃(𝑄, 𝑡). The models were trained with
a mean squared error (MSE) loss between the solution of the differential
equations and the ground-truth FSI data. After obtaining the flow rate
𝑄, the 1D continuity equation (Eq. (1)) was solved for the area.

The temporal formulation exhibits challenges in maintaining spatial
smoothness of the solution, resulting in inaccurate spatial derivatives
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and, consequently, erroneous area predictions as shown later in Sec-
tion 3.1. This motivated the development of the spatial neural PDE ap-
proach presented in the next section. We presented the proof-of-concept
results for the space–time switching previously in [48], utilizing 1D
training data only. It was shown that the model can generalize well
for a wide range of unseen inlet boundary conditions.

2.4. Physics-constrained Coupled Neural Differential Equations (PCNDE)

We introduce a novel approach by reformulating the momentum
quation as a neural PDE in space rather than time. This spatial formu-
ation effectively addresses the smoothness and coupling issues inherent

in the temporal formulations. The full PCNDE framework involves a
multi-step fitting process. First, a neural PDE problem is formulated for
the momentum equation and solved in space to obtain the flow rate.
Next, a two-stage model is used for predicting the cross sectional area.
The first stage is built upon the 1D continuity equation with additional
learnable correction terms. The second stage involves a Fourier series
fit that snaps the area predictions to be explicitly periodic in time. The
momentum and continuity equations are two-way coupled in an itera-
tive manner. After the flow rate and area models are trained, another
two stage fitting process is used for modeling the pressure variations.
The first stage utilizes a small neural network to capture the temporal
variations. Finally, the second pressure stage uses an analytical function
to model the spatial variations of pressure. This algorithm is tested on
idealized stenosis geometries, where vessel narrowing due to blockage
creates flow separation and recirculation zones, presenting challenges
for traditional 1D models. Detailed descriptions of the PCNDE process,
test cases, and data generation are provided in the following sections.

2.4.1. Flow rate and area
To overcome the previously mentioned limitations of the temporal

ormulation, the neural differential equations for the momentum equa-
ion have been rewritten in space, and the continuity equation has been
ormulated as:
𝜕 𝑄
𝜕 𝑧 = 𝑓𝜃(𝑄, 𝑆) , (9)

𝜕𝑆̂
𝜕 𝑡 = −𝑎̂(𝑧) 𝜕 𝑄

𝜕 𝑧 + 𝑏̂(𝑧) , (10)

where 𝑎̂(𝑧) and 𝑏̂(𝑧) are two vectors with optimizable parameters.
The initial condition for the spatial momentum equation is the inlet
oundary condition 𝑄(𝑧 = 0, 𝑡) = 𝑄𝑖𝑛(𝑡), and the differential equations
re solved in space on the domain 𝑧 ∈ [0, 𝐿]. That is, in the spatial

neural PDE formulation, the original inlet boundary condition becomes
an initial condition, facilitating the implementation. The cardiac cycle
is discretized into 𝑛𝑡 = 100 time instances, and the solution is evolved in
space for all time instances. 𝑓𝜃 is a fully connected NN with 6 layers of
size 2𝑛𝑡, 8, 8, 8, 8, 𝑛𝑡, and t anh activation functions in between. The inputs
to the NN 𝑓𝜃 are flow rate 𝑄 and area 𝑆 values concatenated at 𝑛𝑡 time
points. Therefore, the input layer is of size 2𝑛𝑡. The output of the NN
is of size 𝑛𝑡, matching the temporal size of 𝑄. An MSE loss was used
etween the predicted flow rate 𝑄 and the ground-truth values 𝑄𝐺 𝑇 to
rain the NN. The loss was evaluated at all 𝑛𝑧 spatial points where data

was available.
For the continuity equation, the area is initialized with the unde-

formed area 𝑆̂(𝑧, 𝑡 = 0) = 𝑆𝑢(𝑧). The continuity equation is solved
in time for three cardiac cycles 𝑡 ∈ [0, 3𝑇 ] to get rid of the initial
ransients due to the initialization with the undeformed area. Space
s discretized into 𝑛𝑧 = 101 points along the centerline. The original
D continuity equation, Eq. (1), is used as a starting point, enhanced

with two correction parameters 𝑎̂ and 𝑏̂, which are trainable. These
orrections are needed since the ground-truth data comes from 3D
veraged simulations and does not satisfy the 1D equations. These
orrection parameters 𝑎̂ and 𝑏̂ are trained with an MSE loss between
he predicted area 𝑆̂ and ground-truth area 𝑆𝐺 𝑇 from the 3D averaged
ata. 𝑎̂(𝑧) and 𝑏̂(𝑧) vary in space, therefore are of size 𝑛 . The spatial
𝑧

4 
derivative 𝜕∕𝜕 𝑧 in the continuity equation is taken using a second-order
central difference scheme.

The total number of optimizable parameters in 𝑓𝜃 is 2724. The
coupled system of PDEs is solved sequentially. First, Eq. (9) is solved,
and the neural network 𝑓𝜃 is trained with the undeformed area 𝑆 = 𝑆𝑢
being the second input. Then, the obtained flow rate 𝑄 is used in
Eq. (10) to solve for an intermediary 𝑆̂ and train 𝑎̂ and 𝑏̂.

The temporal periodicity of the area predictions is enforced using
an additional step involving fitting a Fourier series in time on the area
redictions. The cross-sectional area 𝑆 and flow rate 𝑄 can be expressed

as following using Fourier-series

𝑆(𝑧, 𝑡) =
∑

𝑛
𝑆𝑛(𝑧)𝑒𝑖𝜔𝑛𝑡 , (11)

(𝑧, 𝑡) =
∑

𝑛
𝑄𝑛(𝑧)𝑒𝑖𝜔𝑛𝑡 , (12)

where 𝜔𝑛 = 2𝜋
𝑇

𝑛, with 𝑇 being the cardiac cycle length. The number
f terms was set to 𝑛 = 10. Eq. (10) can be rewritten using the
ourier-series fit as:

∑

𝑛
𝑖𝜔𝑛𝑆𝑛(𝑧)𝑒𝑖𝜔𝑛𝑡 =

∑

𝑛
−𝑎(𝑧)

𝜕 𝑄𝑛(𝑧)
𝜕 𝑧 𝑒𝑖𝜔𝑛𝑡 . (13)

Knowing the flow rate values from Eq. (9), the Fourier coefficients
for the area can be expressed as

𝑆𝑛 = −𝑎(𝑧)
𝑖𝜔𝑛

𝜕 𝑄𝑛
𝜕 𝑧 f or 𝑛 ≠ 0 . (14)

The final step is to calculate the coefficient 𝑆0, using the initial
ondition from the first prediction:

𝑆0 = 𝑆̂(𝑧, 𝑡 = 0) −
∑

𝑛≠0
𝑆𝑛 + 𝑏(𝑧) , (15)

where 𝑆̂(𝑧, 𝑡) is the intermediate prediction from Eq. (10). In the Fourier
series formulation, 𝑎(𝑧) and 𝑏(𝑧) are a new set of optimizable parame-
ters, similar to 𝑎̂(𝑧) and 𝑏̂(𝑧) in the previous stage. These parameters are
again fit using an MSE loss for 𝑆. The resulting area 𝑆 is fed back to
the neural network 𝑓𝜃(𝑄, 𝑆) and the process is iterated. The algorithm
is summarized in Fig. 1.

2.4.2. Pressure
Due to inherent limitations of the 1D equations, the traditional 1D

FEM models cannot capture the pressure drop along a stenosis (blocked
artery). To overcome this, most studies, e.g., [6,9,14], use an empirical
ormula for the pressure drop along the stenosis. The most commonly
sed formula is based on the work of Seeley and Young [12] where the

pressure drop is written as:

𝛥𝑝 = 𝜌 𝑄
2

𝑆2
𝐷

𝐾𝑣
Re

+𝐾𝑡𝜌
𝑄2

2𝑆2
𝐷

(

𝑆𝐷
𝑆𝑠

− 1
)2

, (16)

𝐾𝑣 = 32 𝐿𝑠
𝐷0

𝑆2
𝐷

𝑆2
𝑠

, (17)

where 𝑆𝑠 is the minimal cross-sectional area of the stenosed segment,
𝐿𝑠 is the length of the stenosis, 𝑆𝐷 is the healthy cross-sectional area
pstream of the stenosis, Re is the Reynolds number, 𝐷0 is the diameter
f the healthy cross-section, and 𝐾𝑣 and 𝐾𝑡 are empirically defined

parameters [12] (𝐾𝑡 = 1.52). This formulation will be used as the base
of the pressure model here.

A two-stage pressure model was fit to predict the spatio-temporal
ariations of pressure. First, a small neural network was used to capture
he temporal variations of the normalized pressure 𝑝∗ = 𝑝∕𝑝𝑟𝑒𝑓 :

𝑝̂∗(𝑧, 𝑡) = 1 + 1
𝑝𝑟𝑒𝑓

𝐸 ℎ
𝑟0

𝑔𝜃
(

𝑆 , 𝑆 − 𝑆𝑢, 𝛥𝑝, 𝑄
)

, (18)

where 𝛥𝑝 is calculated using Eq. (16), 𝑟0 = 𝐷0∕2, 𝑆 and 𝑄 are the
outputs of the previous neural PDE model, and 𝑔𝜃 is a neural network
with 4 layers of size 4𝑛 , 2, 2, 𝑛 and tanh activation functions. The
𝑧 𝑧
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Fig. 1. An overview of the Physics-constrained Coupled Neural Differential Equations (PCNDE) algorithm is presented. A spatial neural PDE-based momentum equation is used
for predicting the flow rate values, then an initial area approximation is formulated based on the 1D continuity equation with two correction terms. A Fourier series is fit for the
final area prediction, enforcing explicit temporal periodicity. The area prediction is coupled back to the momentum equation, and the process is iterated until convergence.
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form of Eq. (18) is inspired by the 1D constitutive models. The inputs
o NN are the predicted area 𝑆, the change in area compared to the
ndeformed area 𝑆 − 𝑆𝑢, the estimated pressure drop 𝛥𝑝 based on
q. (16), and the predicted flow rate 𝑄. Each input is of size 𝑛𝑧,

therefore the input layer of the NN is of size 4𝑛𝑧 = 404. The NN output
is an unscaled pressure approximation of size 𝑛𝑧 = 101, the same as the
spatial size of 𝑝∗. The pressure model is fit for all time instances at once
where time instances are organized in a batch dimension using a full
batch. Instead of trying to fit the absolute pressure 𝑝, the normalized
pressure 𝑝∗ = 𝑝∕𝑝𝑟𝑒𝑓 is used, which makes the NN training easier. The
total number of parameters in 𝑔𝜃 is 1119. The neural network is trained
with an MSE loss between the predicted normalized pressure 𝑝̂∗ and the
normalized ground-truth 𝑝∗𝐺 𝑇 = 𝑝𝐺 𝑇 ∕𝑝𝑟𝑒𝑓 from 3D averaged data.

A second-stage model is fit to capture the pressure drop along the
stenosis and model the spatial variations:

𝑝∗(𝑧, 𝑡) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝̂∗(𝑧, 𝑡) + 𝑎1 if 𝑧 ≤ 1
3
𝐿 ,

𝑝∗
(

𝑧 = 1
3
𝐿, 𝑡

)

−

(

𝛥𝑝
𝑝𝑟𝑒𝑓

+ 𝑏1(𝑡)

)

t anh (10𝑏2(𝑡) (𝑧 − 2)) if 1
3
𝐿 < 𝑧 ≤ 2

3
𝐿 ,

𝑝∗
(

𝑧 = 2
3
𝐿, 𝑡

)

if 𝑧 > 2
3
𝐿 ,

(19)

where 𝛥𝑝 is the same as 𝛥𝑝, except 𝐾𝑡 = 1.52 + 𝑎2, 𝑝̂∗ is the first-
stage prediction from Eq. (18) and () denotes spatial average. 𝐿 is
the length of the model and the stenosis is located at 𝑧 = 2 cm. In
the above equations, 𝑎1 and 𝑎2 are trainable scalar parameters, while
𝑏1(𝑡) and 𝑏2(𝑡) are trainable vectors of size 𝑛𝑡. This corresponds to a
simple constant-tanh-constant model for the spatial distribution of the
pressure. It overcomes any smoothness issues arising from then neural
network fit due to the different spatio-temporal scales. The empirical
formula by Seeley and Young [12] gives a reasonable estimate for the
ressure drop, therefore it is used as starting point with additional
earnable correction terms. The model is centered around the stenosis,
uch that the stenosis is at the middle of the spatial domain. The
 (

5 
pressure drop approximation can be fit locally, with the terms inside the
t anh function controlling the slope of the drop. In the current cases, the
stenosis is always at 𝑧 = 2 cm, therefore this information is hardcoded
inside the t anh function. This limitation could be addressed in the future
with a larger training set where the stenosis location is also learned.
The parameters in the second stage are also fit with an MSE loss.

2.5. Training data

To train the PCNDE model, 100 different 3D FSI simulations were
un using SimVascular. There were 10 geometries with different steno-

sis blockage ratio 𝛽 and 10 different inlet flow rate boundary condition
waveforms. The reference boundary condition was taken from [49].
Further waveforms were generated using a Fourier series fit

𝑄𝑖𝑛(𝑡) = 𝐴0 +
𝑛
∑

1

(

𝑐 𝐴𝑛 cos
( 2𝜋 𝑛𝑡

𝑇

)

+ 𝐵𝑛 sin
(2𝜋 𝑛𝑡

𝑇

))

, (20)

where 𝑐 ∈ {−2,−1,−0.5, 1, 1.5, 1.75, 2, 2.5} is a fitting coefficient for gen-
erating more waveforms, while 𝐴𝑛 and 𝐵𝑛 are the Fourier coefficients.

he number of terms was set to 𝑛 = 60. The stenosis blockage ratio
was varied between 40% and 85%, with increments of 5%. This led

o the generation of a total of 100 CFD simulations with 10 different
nlet boundary conditions and 10 different stenosis blockage ratios.
hese are shown in Fig. 2, in a data matrix, where each cell is one
imulation case. The grey cells correspond to the training set, while
he red cells to the test set. Each row of the data matrix corresponds
o stenosis blockage ratios, while columns to inlet boundary condition
aveforms. As seen, the test set is chosen to be outside the training

egime, corresponding to extrapolation. The test geometry has the
ighest blockage ratio and the highest peak Re number for the inlet
aveform. The training set consisted of 81 cases, while the test set had
9 cases.

The geometry size is on the order of a left anterior descending
LAD) artery, a location notably prone to stenosis formation. The inlet
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Fig. 2. An overview of the training and test (extrapolation) datasets. The generated inlet waveforms are shown at the top, while the generated stenosis geometries are shown on
the left. The 10 by 10 matrix represents the dataset, where grey cells are training data and red cells are test (extrapolation) data points.
diameter of the vessel was set to 𝐷𝑖𝑛 = 4 mm, while the total vessel
length was 𝐿 = 40 mm, with the domain being centered around the
stenosis. The idealized stenosis shape was generated according to the
analytical formula from Sherwin and Blackburn [50].

The coupled momentum method [47] was used for modeling the
elastic wall behavior in 3D, while a linear pressure-area constitutive
relationship was used in 1D. The wall thickness was set to ℎ𝑤 = 0.5 mm,
Young’s modulus of the wall material to 𝐸 = 1.5 MPa, the blood density
to 𝜌 = 1060 kg/m3, and the dynamic viscosity to 𝜇 = 0.004 kg/ms, for
both 1D and 3D models. For the 3D model, the Poisson’s ratio of the
vessel wall was set to 𝜈𝑤 = 0.5, the wall density to 𝜌𝑤 = 1075 kg/m3,
and the shear constant to 𝑘𝑤 = 0.83. The outlet boundary condition
was a resistance-type Windkessel element with a reference pressure
of 𝑝𝑟𝑒𝑓 = 100 mmHg for both 1D and 3D in all cases. The 3D cases
all had an unstructured mesh of around 426k–433k elements, using a
boundary layer mesh near the vessel wall. The cardiac cycle length was
1 s and the simulation timestep was set to be 𝛥𝑡 = 10−3 s. The cases
were run for 3 cardiac cycles, and results were saved from the last
one at 𝑛𝑡 = 100 equispaced time instances. After the 3D simulations
were done, results were cross-sectionally averaged at 𝑛𝑧 = 101 spatial
locations, at increments of 0.04 cm from the inlet to the outlet. The
3D FSI simulations took, on average, 3–4 h on 24 processors at the
University of Utah CHPC cluster.

Tsit5 [51] was used as the ODE solver from the DifferentialEqua-
tions.jl [52] Julia library to solve the neural PDE problem with an
adaptive timestep. Tsit5 is a 5th order Runge–Kutta method, with
an embedded 4th order method for estimating the error. The error
estimate is used for the adaptive time stepping [52]. Mean squared
error (MSE) loss functions were used between the predictions and the
ground-truth 3D averaged data. All models were trained with the BFGS
optimizer. The batch size was set to 12 for the flow rate and area
models, and to a full batch for the pressure model. The neural network
in the momentum equation was trained for 100 epochs with 5 iterations
inside each batch, for a total of 500 iterations. The area coupling was
done every 25 epochs. This approach enhances stability by allowing
the momentum equation’s neural network to train for several epochs
before coupling. Additionally, since the continuity equation converges
6 
more rapidly, more frequent coupling is unnecessary. The parameters
in the continuity equation were optimized for 5 iterations for each
batch. The neural network 𝑔𝜃 in the pressure equations was trained for
250 iterations, while the second stage scalar (𝑎1, 𝑎2) and vector (𝑏1, 𝑏2)
parameters for 75 iterations. In inference mode, the model is run for
3 iterations, the area predictions are coupled back to the momentum
equation after each one. The total cumulative number of optimizable
parameters in the PCNDE model was 4449, which was trained and run
on a single Intel Xeon W-1370P CPU.

SimVascular’s svOneDSolver was used to solve the 1D blood flow
equations using 1D finite elements. This was only done for the 19 cases
in the test set. This serves as a benchmark for our PCNDE predictions.
Inlet and outlet boundary conditions and material parameters were set
up to be the same as the 3D model. The 1D mesh had 400 elements
along the centerline, with a timestep size of 𝛥𝑡 = 10−4 s, and the
simulation was run for three cardiac cycles. The results were saved at
𝑛𝑡 = 100 time instances from the third cycle. The convergence tolerance
was set to 10−8.

It is important to note that since the data comes from 3D averaged
simulations, it does not exactly satisfy the 1D governing equations
(Eqs. (1) and (2)). This suggests that adding further physics terms on
the right-hand side of Eq. (9) is not strictly beneficial. This is further
investigated in Section 3.6.

3. Results

3.1. Temporal model

Example results from the temporal formulation are shown in Fig. 3.
Two models are investigated, one where the NN only takes the flow
rate as input, i.e., 𝑓𝜃(𝑄). Results from this model are shown in the
middle row. Results from a second model are shown in the last row,
where the NN takes as input time too, i.e., 𝑓𝜃(𝑄, 𝑡). The left panel
shows the true and predicted flow rates as a function of space and
time. It can be seen that the flow rate predictions are quite accurate.
Nevertheless, the spatial derivative of the flow rate 𝜕 𝑄∕𝜕 𝑧 shows a non-
smooth behavior, seen in the middle panel. This non-smoothness is then
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Fig. 3. Temporal neural PDE results. The left panel shows the true and predicted flow rate. The middle panel shows the true and predicted spatial derivatives of the flow rate.
The right panel shows the true and predicted area values. The top row shows the ground-truth 3D averaged data, the middle rows shows the model results where only the flow
rate is input to the NN (𝑓𝜃 (𝑄)), the bottom row shows the model results where both flow rate and time are inputs to the NN (𝑓𝜃 (𝑄, 𝑡)).
transferred to the area predictions, seen in the right panel. Therefore,
the temporal formulation poses challenges with coupling the results of
the neural PDE output for flow rate, with the continuity equation. The
non-smoothness issue is carried over to the area predictions because the
spatial derivatives of the flow rate directly show up in the continuity
equation. In more extreme cases, this non-smoothness can also cause
the ODE solver to diverge. It can also be observed that introducing
time as an additional input to the NN does not change the results
significantly.

3.2. PCNDE results

The flow rate, cross-sectional area, and pressure results for the
PCNDE model are shown in Fig. 4. Fig. 4a shows the flow rate as a
function of time and space for 10 waveforms from the test dataset
with the new geometry (bottom row of the data table in Fig. 2).
The PCNDE predictions (blue) are compared to the 1D FEM solution
(green) and the 3D averaged ground truth data (red). For all panels,
the temporal plots (left column) are shown at 𝑧 = 0.9𝐿 = 3.6 cm, an
arbitrary location downstream of the stenosis, close to the end of the
domain, while the spatial plots (right column) are shown at 𝑡 = 0.25 s,
corresponding to the peak flow rate. The 1D FEM captures the overall
temporal evolution well, but it deviates from the 3D averaged solution
around peak flow rate. However, the PCNDE prediction captures the
dynamics better in both time and space. It is noteworthy that since
the simulations include moving walls, the flow rate along the vessel
is not constant. Fig. 4b shows the area variations as a function of
time and space for the new geometry and new waveform (bottom
right cell of the data table in Fig. 2). The 1D FEM underestimates the
area deformations, and the PCNDE model captures the area variations
well around the largest deformations but overestimates them at the
beginning and the end of the cardiac cycle. Note that the PCNDE
predictions are explicitly periodic due to the Fourier series fit. This
will be further discussed in Section 3.4. Fig. 4c shows the pressure
as a function of space and time for the same part of the test dataset
as for the flow rate. Overall, the trends are similar, and the PCNDE
model captures the pressure variations in time better than the 1D FEM,
especially around the highest pressures. There are minor oscillations
in the temporal pressure predictions, particularly around the peak of
the unseen waveform. While these oscillations are relatively small,
they warrant caution when extrapolating beyond the training set. It
can also be seen that the simple spatial model captures the pressure
variations well, even though the slope of the pressure drop is usually
underestimated. It is clear that the 1D FEM model cannot capture the
pressure drop well. The normalized pressure drop 𝛥𝑝∕𝑝𝑟𝑒𝑓 obtained
from the PCNDE model is compared to the empirical formula of Seeley
and Young [12] in Fig. 5. Panel (a) shows the comparison for the new
geometry (bottom row of the data table in Fig. 2), while panel (b)
7 
shows the new waveform (right column of the data table in Fig. 2) as a
function of time. For both cases, the PCNDE prediction is closer to the
3D averaged ground truth. The empirical formula captures the shape
of the pressure drop evolution but overestimates the pressure drop in
most cases. The neural network in the pressure model, 𝑔𝜃 , has been
tested with multiple activation functions, including GeLU, ReLU, tanh,
sigmoid, and swish. The network was robust with respect to the choice
of activation function, with GeLU, tanh, sigmoid, and swish producing
results that differed in their relative train and test errors less than
0.001. The only exception was ReLU, which failed and only learned
the temporal mean.

3.3. Error analysis

Results are plotted as a function of space and time in Fig. 6 for the
extrapolation case with the new waveform and new stenosis blockage
ratio. The top row shows the 3D averaged ground-truth values, the
middle row shows the PCNDE predictions, and the bottom row shows
the point-wise absolute errors. For area, the absolute errors are divided
by 𝑆(𝑡 = 0) for normalization as the area changes are relatively small.
The overall patterns match well for all three variables of interest. The
absolute error plot for flow rate shows a staggered pattern, but on aver-
age, the errors are higher in the second part of the domain, behind the
stenosis. For area, the highest errors clearly arise around the stenosis
region in space and in the first half of the cardiac cycle. The normalized
errors outside the stenosis are very small. For pressure, a staggered
error pattern emerges in time, with mostly uniform distribution in
space.

The relative errors for the training and test sets are reported in
Table 1 for all three variables, along with the 1D FEM relative errors
for the test set. To account for the boundary effects in the 1D and 3D
FEM models, the area errors do not take into account the first and last 5
elements. The PCNDE model has around 3–5 times smaller errors than
the 1D FEM solution. We emphasize that all the test cases are outside
the training parameter regime, therefore, considered extrapolations.
For both the PCNDE and the 1D FEM models, the flow rate has the
lowest errors among the three variables of interest. For a more detailed
analysis of the error distribution among different cases, Fig. 4d shows
the PCNDE relative error for all three variables of interest of all 100
cases. The training set is distinguished with a black square and cases
outside the black square are the test set. For all variables, it is evident
that the new waveform shape has a higher error than the new stenosis
blockage ratio, i.e., the last column has the highest errors. The bottom
row has similar errors to the training set for all cases. For area, the
smallest errors are in the middle of the training parameter regime. For
flow rate and pressure, the smallest errors are around waveforms 2–4,
corresponding to waveforms with the lowest temporal variability. For
area, the second highest error is for the first column, corresponding
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Fig. 4. PCNDE results compared with the 1D FEM results. Panel (a) shows the flow rate 𝑄 results as a function of time and space. Panel (b) shows the cross-sectional area 𝑆
results as a function of time and space. For better visibility, only one case is shown for the area. The errors are only calculated between the two black vertical lines to exclude
boundary effects. Panel (c) shows the normalized pressure 𝑝∕𝑝𝑟𝑒𝑓 results as a function of time and space. The plots as a function of time are shown at 𝑧 = 3.6 cm, while the plots
as a function of space are shown at 𝑡 = 0.25 s. Panel (d) shows the PCNDE relative errors for all three variables of interest for the 100 different cases.
to the first waveform. This waveform has a minimum where all others
have their peak, therefore it is a more challenging waveform for the
algorithm. Overall, the worst-case error for the flow rate is around 1%,
1.4% for area, and 1.7% for pressure.

Box plots of point-wise relative errors are shown in Fig. 7a for all
points from the test set for both the 1D FEM and PCNDE results. The red
lines represent the median. In addition to having a lower median error,
8 
the PCNDE results also have a smaller spread with smaller outliers. For
flow rate and pressure, all PCNDE errors are less than 10%, while for
the area the largest outlier is around 19%. On the other hand, in the 1D
FEM, the largest outliers are above 20% for all variables. For 1D FEM,
area has the highest median error, however, the pressure has the largest
outliers. For PCNDE, pressure and area have similar median error, but
the area has the largest outliers.
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Fig. 5. Pressure drop predictions are shown. (a) Pressure drop for the new geometry in the test dataset with all waveforms (bottom row of the data table in Fig. 2). (b) Pressure
drop for the new waveform in the test dataset with all geometries (right column of the data table in Fig. 2).
Fig. 6. Flow rate, area, and normalized pressure comparisons for the new waveform and new blockage ratio from the test dataset. The top row shows the 3D averaged ground-truth
values, the middle row shows the PCNDE predictions, and the last row shows the absolute point-wise errors. For area, the absolute errors are normalized by the area at 𝑡 = 0 to
highlight the differences, since the area variations are relatively small.
Fig. 7. (a) Box plots for the relative point-wise errors for flow rate, area, and pressure. Both 1D and PCNDE results are shown. The red line represents the median, the edges of
the box indicate the lower and upper quartiles, whiskers extend to the non-outlier minimum and maximum values, and any outliers are represented as individual points beyond
the whiskers. (b) The effect of the Fourier series fitting for the area for the first waveform from the training dataset is shown as an example.
3.4. Enforcing temporal periodicity with fourier series

To observe the effect of the additional Fourier series fit for the
cross-sectional area predictions, Fig. 7b shows an example of the first
prediction 𝑆̂(𝑡) from Eq. (10) (cyan) and the final prediction 𝑆(𝑡) after
9 
the Fourier series fit (blue) for the first waveform from the training
set. The first step prediction provides a reasonable estimate for the
area, however, it clearly violates temporal periodicity. The subsequent
Fourier series fit, leading to the final prediction, is periodic by design.
In terms of error, in some regions, the final prediction produces higher
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Table 1
PCNDE and 1D FEM relative errors for flow rate, area, and pressure. For 1D FEM, only
he cases in the test set are reported.
Relative errors:

(

‖𝑌 − 𝑌𝐺 𝑇 ‖) ∕ ‖𝑌𝐺 𝑇 ‖
Variable Training - PCNDE Test - PCNDE Test - 1D FEM

Flow rate 𝑄 0.0040 0.0075 0.0204
Area 𝑆 0.0077 0.0114 0.0498
Pressure 𝑝 0.0080 0.0109 0.0365

error than the first step prediction, for example, around the end of the
ardiac cycle in this case. However, in most of the domain, the periodic
rediction is closer to the ground truth, thus has a smaller error. The
wo-stage fitting process serves a dual purpose. Initially, it allows the

prediction to transition smoothly from the undeformed area to a close
pproximation of the ground truth, albeit without adhering to temporal
eriodicity. Subsequently, the second stage refines this approximation
y applying a Fourier series fit, effectively enforcing periodicity in the
inal prediction.

3.5. Sensitivity to noise in inputs

The two main inputs to the PCNDE model are the inlet boundary
ondition flow rate waveform 𝑄𝑖𝑛(𝑡) and the undeformed cross-sectional
rea 𝑆𝑢(𝑧). To investigate the PCNDE model’s sensitivity, noise was
dded to the inlet flow rate waveform:

𝑄∗
𝑖𝑛(𝑡) = 𝑄𝑖𝑛(𝑡) + 𝜀𝜎 , (21)

where 𝜀 ∼  (0, 1) is the standard normal distribution, 𝜎 = 0.05
ax(𝑄𝑖𝑛(𝑡)) is the noise level scaled by the maximum of the waveform.
0 samples were taken from the random distribution and the model
as run in inference mode for the extrapolation test case of a new
aveform and new geometry. The results are shown in Fig. 8 for flow

rate, area, and normalized pressure as a function of time and space.
The temporal plots are at 𝑧 = 3.6 cm, and the spatial plots at 𝑡 =
0.25 s. The dashed blue lines represent the means of the predictions,
while the shaded regions correspond to the standard deviation of the
predictions. The mean standard deviation relative to the maximum flow
rate was 0.052, which is similar to the amount of noise added to the
inlet boundary condition waveform. The mean prediction fits well the
3D averaged ground-truth data, both in space and time. Note that the
ranges for the vertical axes are different for the temporal and spatial
plots. The mean standard deviation of the area predictions relative to
the maximum cross-sectional area was 0.014, indicating that the errors
are not exaggerated during the area prediction. A higher uncertainty is
observed in the region after the stenosis for area. Smaller uncertainty
is observed in time before the peak flow rate, around 0.1–0.25 s for all
variables. Apart from that, the level of uncertainty remains relatively
constant over time for all variables. The mean standard deviation of the
normalized pressure relative to the maximum was 0.058 , which is sim-
ilar to what was observed for the flow rate. A further sensitivity study
is included in the Appendix, regarding the undeformed cross-sectional
rea.

3.6. Including additional physics terms and visualizing loss landscapes

In this section, we explore including more physics terms on the
right-hand side of Eq. (9). It is observed that the additional physics
terms can make the problem more challenging from the optimization
point of view. After expanding and reordering Eq. (2) to have 𝜕 𝑄∕𝜕 𝑧
on the left-hand side, the following form can be achieved:
𝜕 𝑄
𝜕 𝑧 = 1

2
𝑄
𝑆

𝜕 𝑆
𝜕 𝑧 + 𝑁

2(1 + 𝛿)
− 1

2(1 + 𝛿)
𝑆
𝑄

𝜕 𝑄
𝜕 𝑡 + 𝑓𝜃(𝑄, 𝑆). (22)

To analyze the effect of the inclusion of different physics-based terms
n the right-hand side of Eq. (22), the loss landscapes were investigated
10 
for four cases. The spatial and temporal derivatives on the right-hand
side were taken using a second-order central difference scheme. The
visualization of loss landscapes was based on [53,54]. Assume that
∈ R𝑝 are the trainable parameters in 𝑓𝜃 , with 𝑝 = 2724 in this case.

To visualize a 2D surface of the loss function, two random direction
vectors 𝑣1, 𝑣2 ∈ R𝑝 in parameter space are selected. Then, the network
parameters are perturbed by adding 𝑣1 and 𝑣2

𝜃𝑝 = 𝜃 + 𝛼1𝑣1 + 𝛼2𝑣2 , (23)

where 𝜃𝑝 are the perturbed parameters, and 𝛼1, 𝛼2 are the amplitudes for
the random perturbations. The loss can be computed for all amplitudes
in the predefined range of 𝛼1, 𝛼2 ∈ [−0.1, 0.1]. The loss landscape is
plotted as a surface, being a function of 𝛼1 and 𝛼2. The loss landscapes
for four different models are shown in Fig. 9 with different terms on the
ight-hand side. The top row shows the loss landscape after five BFGS
terations, while the bottom row shows the loss landscape after the
irst coupling of the predicted 𝑆 to 𝑓𝜃(𝑄, 𝑆) after solving the continuity
quation. The different equations are shown at the top of each column.
he first column shows the case where the right-hand side only has

a neural network. Both loss landscapes are smooth and have a clear
inimum. The second column, where a constant term is added, shows

imilar loss landscapes; however, the loss values are higher than those
n the pure NN case. The third column presents a case where the
 𝑆∕𝜕 𝑧 term is added. In this scenario, the initial loss landscape looks

similar to the pure NN case. However, the obtained area solution is non-
mooth and not accurate, which causes the loss landscape to change

after the area is coupled back to the momentum equation. This case
eventually diverges. The last column is with the 𝜕 𝑄∕𝜕 𝑡 term, which has
n extremely difficult loss landscape with multiple local minima, and
he loss is high as well. This case diverges even before getting to the
irst iteration of the continuity equation solver.

These results justify the choice of using a pure neural network
on the right-hand side of the momentum equation. Adding further
physics terms can make the optimization problem much harder. Unlike
lassical machine learning, in this case, differential equations need
o be solved, which have to be stable throughout all the training.

Therefore, a certain level of model robustness is needed to make sure
the integration will not diverge. This is a well-known problem with
training neural networks inside physics solvers [33,55]. Also, note that
he equations are not exact since the ground-truth data comes from 3D
veraged simulations and not the 1D blood flow equations. Therefore,
hese terms likely do not represent the correct physics in their current
orm. Instead, using a standalone neural network allows us to exploit

its flexibility and expressivity to learn the underlying physics, especially
when there is uncertainty about the structure of the true physical terms.

4. Discussion

The computational efficiency of 1D blood flow models makes them
articularly attractive for clinical applications where timely results
re essential. However, there is still a discrepancy between 1D model
redictions and cross-sectionally averaged results from more detailed
D FSI simulations, particularly in disturbed blood flow environments.
he proposed PCNDE framework addresses this gap by maintaining
he computational speed of the 1D approaches, while reducing errors
elative to the 3D averaged solutions. This novel approach strikes a
alance between data-driven methods and physics-informed model-
ng. It incorporates prior knowledge through the continuity equation
nd a pressure model, while introducing learned correction terms to
apture details that the 1D models may overlook. This approach is
esigned to enhance the accuracy of 1D models without sacrificing
heir computational efficiency, potentially bridging the divide between
apid clinical applicability and high-fidelity flow representation. The
roposed PCNDE framework achieved less than 1.2% relative error for

both train and test cases for all variables of interest compared to the
ground-truth 3D averaged FSI data. It also achieved 3–5 times smaller
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Fig. 8. Uncertainty visualization given a noisy inlet boundary condition 𝑄𝑖𝑛(𝑡) is shown for flow rate, area, and normalized pressure results. The left column shows the temporal
plots at 𝑧 = 3.6 cm and the right column shows the spatial plots at 𝑡 = 0.25 s. The dashed blue lines represent the mean of the predictions and the shaded regions correspond to
the standard deviation of the predictions.
Fig. 9. Loss landscapes of the momentum equation for different physics terms included. The model equations are shown at the top of each column. (a) The top row shows the
initial loss landscape during the first phase of training. (b) The bottom row shows the loss landscape after the first coupling with the continuity equation.
error than traditional 1D FEM for the test set, while having similar
computational cost in inference mode.

A significant challenge encountered during model development was
the handling of coupling between the momentum and continuity equa-
tions. This requires careful handling to ensure stability and smoothness
throughout all intermediate solution steps, even during the early stages
of neural network training. The necessity for such stability and smooth-
ness is essential, as it enables both the solution of the differential
equation system and the backpropagation through the solver. These
issues were particularly evident in our initial experiments with the
11 
temporal formulation, as detailed in Section 2.3, but also while trying
to include further physics terms in Section 3.6. Analysis of the loss
landscapes revealed significant variations in optimization dynamics
across different terms, highlighting the critical role each component
plays in shaping the model’s performance. The quest for stability in
differentiable simulators remains an active and challenging area of
research [33]. To address these challenges, an innovative approach was
adopted. Namely, reformulating the differential equations in the spatial
domain rather than the temporal one, while leveraging the inherent
temporal periodicity of blood flow problems. This strategic shift not
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only simplified the learning problem but also facilitated a smoother and
ore stable coupling between the equations.

While reformulating the equations in the spatial domain offered
significant advantages, it should be acknowledged that this approach
introduces its own set of challenges. The interchange of space and time
variables fundamentally alters the nature of the differential equations,
potentially affecting the representation of critical physical phenomena
such as wave propagation. The physics terms in the momentum equa-
tion, when rewritten for the spatial formulation, become less intuitive
and lose their clear physical meaning. However, this approach aligns
well with the inherent temporal periodicity of blood flow problems,
eliminating the need to solve for arbitrary future times, which is a
stark contrast to most unsteady reduced-order modeling problems in
fluid dynamics that aim for long-term temporal predictions beyond the
training regime.

A key consequence of our spatial reformulation is the necessary
reevaluation of boundary and initial conditions. The space–time switch-
ing transforms the original inlet boundary condition into an initial
condition, simplifying implementation within the Julia language frame-
work. This transformation is beneficial because initial conditions are
generally easier to handle than boundary conditions in this computa-
tional environment. The original flow rate initial condition was trivial
and is omitted from the model, which is acceptable given the periodic
nature of the temporal dynamics. While the current implementation
does not explicitly address outlet boundary conditions, this aspect will
become critical when extending the model to geometries with multiple
outlets. It is important to note that while the momentum equation is
solved in the spatial domain, the continuity equation remains in the
temporal domain. This dual-domain approach introduces an interesting
dynamic to the model. The continuity equation, being time-dependent,
requires an initial condition, which we set as the undeformed area of
the vessel. This split between spatial and temporal domains creates
a unique coupling challenge where the momentum and continuity
equations cannot be coupled after each step of their respective solvers,
as one progresses through space while the other advances in time.
Instead, the coupling can only occur after a complete solution of
each equation. This approach to solving and coupling the equations
represents a significant departure from traditional methods. It allows
us to leverage the advantages of spatial formulation for the momentum
equation while maintaining the temporal nature of the continuity equa-
tion. However, it also introduces complexities in ensuring consistency
between the two domains. This method ensures that each equation can
be solved efficiently in its most suitable domain, but it also means that
the physical interactions between flow momentum and area changes
are captured in a more discrete and iterative manner.

Another family of techniques that leverage the temporal periodicity
of blood flow are frequency domain formulations of the 1D equa-
ions [56,57]. These formulations transform the governing equations

from the space–time domain to the space-frequency domain using
ourier transform. By doing so, they enable both analytical and numer-
cal solutions, particularly in idealized geometries such as straight ves-
els, simple bifurcations, or idealized stenoses. While these frequency
omain models show promise, they have not yet been extensively vali-

dated on large, diverse datasets, leaving room for further investigation
nto their robustness and generalizability in real-world scenarios.

A fundamental modeling difference between the 3D and 1D models
is that the inlet and outlet surfaces are fixed in 3D model. This leads
to zero wall deformations in the 3D model, which is not the case in
he 1D model. This is common practice and its effects are known to
e negligible [8], except for the smaller displacements of the wall

locally near the inlet and outlet. To mitigate this effect the area error
alculations did not include the first and last 5 spatial points.

An inherent challenge in cardiovascular flow modeling, which per-
sists regardless of the chosen formulation, is the multiscale nature of the
spatiotemporal variation in variables. Usually, the spatial and temporal
12 
scales of the problem differ by at least an order of magnitude. In the
case of flow rate and pressure, temporal variations are much larger
than spatial axial variations. On the other hand, for cross-sectional area,
patial variations are larger due to the presence of stenosis. Usually,
itting multi-scale phenomena with machine learning approaches is
articularly challenging, and requires some additional model develop-
ent [58]. In the case of area and pressure, a two-stage fitting process

s exploited to help with the multiscale phenomena, while for flow rate,
the spatial variations are approximately linear and therefore easier to
model. The second stage pressure model assumes that the location of
the stenosis is known beforehand, based on the geometric informa-
tion. Furthermore, we assume there is only one stenosis in the given
artery. These limitations could be overcome by utilizing a larger and
more diverse training data, containing arteries with various number of
stenoses and different locations. The other promising option is to use
 complementary tool for automated stenosis detection, e.g., similar to
he one used by Pfaller et al. [6].

The neural networks used in neural ODE/PDE approaches are
typically small and relatively shallow [38,39,59–61], which contrasts
sharply with traditional deep learning methods that often utilize much
arger architectures. This design choice brings multiple benefits. First, it
elps mitigate overfitting, which is crucial in these applications, given
hat the datasets are usually relatively small. Additionally, the reduced
omputational training costs are significant. Our model was trained on
 single CPU in just a couple of hours. The small number of parameters
lso means that fewer iterations are needed to find the optimal solution

during training, further enhancing efficiency. Lastly, in the context
of ODEs and PDEs, smaller networks tend to produce more stable
solutions, which is critical for accurately modeling coupled physical
systems where numerical instabilities can easily lead to unrealistic
results or divergence. Overall, this balance between model complexity
and predictive accuracy demonstrates the effectiveness of integrating
domain knowledge and physical constraints into the neural network-
based models. Several specialized techniques have been proposed to
further enhance the robustness and stability of training neural ODE
type approaches, e.g., stabilized neural ODE [62], random noise injec-
tion [63], Lyapunov loss formulation [64], and multistep penalty neural

DE [65].

Extending the current framework to accommodate patient-specific
geometries with curvature represents an important next step for future
esearch, as it would significantly enhance the clinical applicability of
he model. The proposed PCNDE method has already demonstrated its

ability to improve the 1D FEM results for idealized geometries. It is
reasonable to expect that for more complex, patient-specific geome-
tries, where 1D FEM’s accuracy is further reduced [6,10], the PCNDE
approach could yield even more substantial improvements. Certainly
for such cases the model needs to be retrained with a sufficiently large
nd diverse training dataset, probably encompassing both idealized and
atient specific geometries. It is likely that the number of training
eometries should be at least on the order of a few hundred in order

to achieve good generalizability for patient specific geometries. The
inlet boundary condition also needs to be varied, further increasing the
umber of 3D CFD/FSI cases at least 10-fold. Therefore, such dataset

sizes should be at least on the order of 1000. This poses significant chal-
lenges for building such models. First, it requires high computational
costs as each patient specific 3D FSI simulation can take tens of hours
on multiple CPU cores. Second, current software lack the capability
to automatically generate, mesh, and set up models in a fully robust
manner without user supervision. Graph-based approaches have shown
promising results for some scenarios [19,27], suggesting a potential
avenue for integrating these methods within the PCNDE framework to
handle branching network of arteries more effectively. These advance-
ments could pave the way for more accurate and personalized rapid
cardiovascular modeling.
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Fig. 10. Uncertainty visualization given a noisy undeformed area 𝑆𝑢(𝑧) is shown for flow rate, area, and normalized pressure results. The left column shows the temporal plots at
= 3.6 cm, while the right column the spatial plots at 𝑡 = 0.25 s. The dashed blue lines represent the mean of the predictions, while the shaded regions correspond to the standard
eviation of the predictions.
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Another promising future direction is to develop more sophisti-
ated methods for mapping between 3D and 1D data representations

in cardiovascular flows. While cross-sectional averaging has been the
traditional approach to reduce 3D data to 1D profiles, it inherently loses
critical information about complex flow patterns and spatial variations,
which are particularly important in cardiovascular diseases, such as
recirculation, vortex formation, and subsequent circumferential vari-
ability in wall shear stress. Machine learning-based alternatives, such
as autoencoders or neural implicit representations [66], could poten-
ially capture and preserve this intricate information more effectively,
ffering a more detailed hemodynamics model. Future studies should
lso focus more on uncertainty quantification. An introductory analysis

was done for the effect of noise in the input variables in Section 3.5,
but this becomes even more relevant for patient-specific geometries. In
these cases, the geometry itself carries underlying uncertainty due to
limitations in imaging and segmentation processes. Cardiovascular ge-
ometries exhibit significant variability due to factors like genetics, gen-
der, age, and disease progression. Incorporating probabilistic modeling
frameworks could significantly enhance uncertainty quantification by
characterizing variability in input parameters, such as imaging-derived
vessel geometries or boundary conditions. Rather than providing a
single deterministic output, probabilistic models can generate a range
of possible outcomes with associated confidence intervals, offering
more nuanced and reliable predictions. This capability is particularly
valuable in clinical decision-making, where understanding the degree
of certainty in predictions can inform treatment strategies. Moreover,
stochastic methods could also help generate diverse synthetic datasets,
addressing challenges in training data availability. The flexibility of
our PCNDE framework opens up exciting possibilities for integrating
experimental data, such as 4D Flow Magnetic Resonance Imaging (4D
Flow MRI), through additional terms in the loss function. This in-
tegration of diverse data sources could lead to more comprehensive
and accurate models. Finally, differentiable programming techniques
t

13 
could revolutionize various other aspects of cardiovascular medicine
beyond simple hemodynamics modeling. For example, these methods
offer the potential to improve medical device design or create more
ccurate control systems for circulatory support devices. By enabling
nd-to-end gradient-based optimization, differentiable programming
ould facilitate more precise parameter estimation, optimization, and
ontrol in complex physiological systems, leading to more effective and
ersonalized treatment strategies for cardiovascular diseases.

5. Conclusions

In this study, we introduced a novel physics-constrained machine
earning technique to create improved one-dimensional models for
ardiovascular flows. Our approach, the physics-constrained coupled
eural differential equation framework, demonstrated superior accu-
acy in predicting flow dynamics compared to traditional FEM-based
D models across a range of inlet boundary conditions and stenosis
lockage ratios. A key innovation of our method lies in the spatial
ormulation of the governing equation for momentum conservation,
eparting from the conventional temporal approach. This reformula-
ion capitalizes on the inherent temporal periodicity of blood flows,
ffering a fresh perspective on cardiovascular flow modeling. These
esults demonstrate the potential of physics-informed machine learning
echniques in advancing cardiovascular flow modeling. The improved
ccuracy and computational efficiency of our approach open up new
ossibilities for rapid, patient-specific simulations that could be invalu-
ble in clinical settings. These promising outcomes not only advance
emodynamics modeling but also encourage further research in related
ields. Notably, our approach to learning stable systems of coupled
DEs with time-varying boundary conditions has broad applicability
eyond cardiovascular modeling. Its generic nature and low computa-
ional cost of training suggest potential use across a wider spectrum of
ime-periodic transport problems in various scientific and engineering
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Appendix. Sensitivity to undeformed area

To investigate the effect of noise in the undeformed cross-sectional
area, a further sensitivity study was performed. Similar to the inlet
flow rate waveform, random noise from a standard normal distribution
was added to the undeformed area, scaled by 𝜎 = 0.05 max(𝑆𝑢(𝑧)). The
orresponding results are shown in Fig. 10. The area results show larger
ncertainty than in the case of noise in the inlet flow rate, but the flow
ate and pressure panels show lower uncertainty. The average standard

deviation of the area predictions relative to the maximum area was
0.05, which corresponds to the added noise. For flow rate, the uncer-
tainty is very low, suggesting that the model 𝑓𝜃(𝑄, 𝑆) mostly relies on
the flow rate and only weakly on the area values. The average standard
deviation of the flow rate prediction normalized by the maximum flow
rate is 0.00014. The uncertainties in the pressure model are larger than
the flow rate, but still relatively small. The mean standard deviation of
the pressure predictions normalized by the maximum pressure is 0.033 .
However, the mean pressure prediction overestimates the pressure drop
at the stenosis. This suggest that the area information is more important
to capture the correct pressure drop, while the flow rate information
plays a larger role in capturing the temporal evolution of pressure.

Data availability

The Julia source codes used to generate the results in the manuscript
are available on GitHub: https://github.com/amir-cardiolab/PCNDE.
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