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Abstract In this work, we explore the possibility of learning from data collision operators for the Lattice
Boltzmann Method using a deep learning approach. We compare a hierarchy of designs of the neural
network (NN) collision operator and evaluate the performance of the resulting LBM method in reproducing
time dynamics of several canonical flows. In the current study, as a first attempt to address the learning
problem, the data were generated by a single relaxation time BGK operator. We demonstrate that vanilla
NN architecture has very limited accuracy. On the other hand, by embedding physical properties, such as
conservation laws and symmetries, it is possible to dramatically increase the accuracy by several orders of
magnitude and correctly reproduce the short and long time dynamics of standard fluid flows.

1 Introduction

The Lattice Boltzmann Method (LBM) is a computa-
tionally efficient method for the simulation of fluid flows
in a wide range of regimes. LBM allows solving a set
of macroscopic equations via the time evolution of a
(minimal) discrete version of the continuum Boltzmann
equation, following the stream and collide paradigm.

While its original formulation targets mostly isother-
mal weakly compressible fluid flows, over the years
several algorithmic developments have allowed extend-
ing the method to support the simulation of a wide
range of complex flows, such as multi-phase [1,2], turbu-
lence [3], thermo-hydrodynamics [4,5], non-Newtonian
flows [6,7], radiative transport [8], semi-classical flu-
ids [9], relativistic flows [10], and many others [11],
with an outlook toward exa-scale computing [12]. Most
of these algorithmic enhancements have targeted the
modeling of the collision process and, as a result, a large
variety of collision models have been proposed to extend
the applicability and overcome the shortcomings of the
standard LBM. Notable examples extending the single
relaxation time Bhatnagar–Gross–Krook (BGK) colli-
sion operator [13] are given by the two relaxation times
(TRT) [14], multi-relaxation time (MRT) [15,16], which
can be combined with regularization procedures [17–
19], and local viscous corrections, ensuring the valid-
ity of the H-theorem after the velocity discretiza-
tion [20,21]. More recent developments have taken into
consideration the ellipsoidal statistical BGK [22] and
the Shakov model [23], which allow to decouple the
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thermal relaxation from the viscous one. They also
made possible to compute equilibrium distributions
numerically, in principle, allowing to reproduce an arbi-
trary number of moments of the Maxwell-Boltzmann
distribution [24]. For a comprehensive review compar-
ing collision models for LBM the interested reader is
referred to [25].

In recent years, there has been an increased interest
in adoption of machine learning (ML) models, typically,
of artificial neural networks (NN), to approximate vari-
ous kernels/operators in the simulation of physical sys-
tems. Artificial neural networks form a class of nonlin-
ear parametric models satisfying universal approxima-
tion property [26]. This property coupled with efficient
computational tools for automatic differentiation and
sensitivity analysis of forward and backward propaga-
tion, in the last decade, has led to outstanding results in
such fields as computer vision [27] and natural language
processing [28].

However, until recently, the biggest achievements
of ML in scientific environment have been limited to
approaches that are data-driven but agnostic to tra-
ditional scientific modeling of the underlying physics.
Integrating the modern ML with physical modeling is
the major challenge of what we call today Physics-
Informed Machine Learning (PIML) [29,30]. In particu-
lar, in fluid dynamics, there has been significant PIML
activity in recent years. Examples include embedding
physical constraints, such as Galilean invariance and
rotational invariance, into the closure model [31,32] and
PIML models infusing physical constraints into the neu-
ral networks [33,34]. Other efforts on turbulence model-
ing are summarized in [35,36]. In addition to developing
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closure models, novel ML approaches have been used
to learn turbulence dynamics [37], where a Convolu-
tional Long Short Term Memory (ConvLSTM) Neural
Network was developed to learn spatial-temporal tur-
bulence dynamics; study super-resolution allowing to
reconstruct turbulence fields using under-resolved data
[38]; use Neural Ordinary Differential Equation (Neural
ODE) for turbulence forecasting [39]; or measure [40],
model and control flows [41].

Up to now, very few works have proposed appli-
cations of ML to LBM. Most of these have been
focusing on accelerating the calculation of steady-state
flows using convolutional neural networks [42–44], while
Bedrunka et al. [45] employed a fully connected feed-
forward neural network to tune the parameters of a
MRT collision operator.

Since LBM entails a mesoscopic representation, it
employs substantially more degrees of freedom (i.e., the
number of discrete particle distribution functions) than
the macroscopic observables of interest. These extra
degrees of freedom suggest a possibility of using ML
to encode more information in the model in order,
for example, to extend its applicability, accuracy, and
enhance the numerical stability. Indeed, deriving colli-
sion operators for LBM that can handle different type
of fluid flows is an open problem with a lot of ongoing
research, therefore there is a need for new and more gen-
eral approaches, and data-driven techniques may offer
an answer to this quest.

In this work, we take a first step in this direction
and consider the problem of learning a custom colli-
sion operator from reference data. The collision oper-
ator will be represented by a NN that takes as inputs
pre-collision and return post-collision populations. As
a proof-of-concept we evaluate different neural network
architectures to identify design choices that improve
performance of the learned collision operator. To make
performance evaluation more straightforward, we con-
sider a large synthetic dataset containing pre- and post-
collision populations pairs that itself was generated by
a collision operator, specifically the BGK collision oper-
ator. In theory, in the limit of infinite data and infinite
training resources it should be possible to recover the
underlying operator. On the other hand, in practice,
there will always be an error that (as we show later)
significantly depends on the architecture of the NN. We
show that constraining the NN to respect physics prop-
erties such as conservation laws and symmetries is key
for accuracy. We evaluate the accuracy of the learned
collision operator on both single-step (static) collision,
as well as multi-step (dynamic) collisions, interleaved
with advection steps, for the simulation of standard
benchmarks. The focus of this work is on exposing the
main ingredients needed to accurately learn a collision
operator from data, while, for the moment, no attention
is paid to computational efficiency.

This article is structured as follows: in Sect. 2, we
provide a brief description of the Lattice Boltzmann
Method. In Sect. 3, we define a PIML approach for
learning a collision operator from data, focusing in par-
ticular on the embedding of relevant physical proper-

Fig. 1 Example of a 3 × 3 LBM grid (with a single grid
point shown on the right hand side) making use of the D2Q9
model where the lattice populations can move along 9 pos-
sible directions

ties. In Sect. 4, we report simulations results for two
numerical benchmarks where we have replaced the col-
lision term in LBM simulations with a neural network.
Here, we also compare the accuracy achieved by differ-
ent neural network architectures. Concluding remarks
and future directions are summarized in Sect. 5.

2 Lattice Boltzmann method

In this section, we give a short introduction to the
Lattice Boltzmann Method; the interested reader is
referred to, e.g., Ref. [11,46] for a thorough introduc-
tion.

LBM simulates the evolution of macroscopic quanti-
ties (such as density and velocity) through a mesoscopic
approach based on the synthetic dynamics of a set of
discrete velocity distribution functions

fi(x, t), i = 0, . . . , q − 1,

to which we will refer as lattice populations.
At each grid node x, the lattice populations are

defined along the discrete components of the stencil
{ξi}, i = 1, . . . , q − 1. It is customary to distinguish
between different LBM schemes using the DdQq nomen-
clature, in which d refers to the number of spatial
dimensions and q to the number of discrete components.

In this work we adopt the D2Q9 model, based on
the stencil in Fig. 1, where populations can move along
9 possible directions, defined by the following discrete
velocity vectors:

ξi =

⎧
⎨

⎩

(0, 0) i = 0,

(1, 0), (0, 1), (−1, 0), (0,−1) i = 1, 2, 3, 4,

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8.

In general, the velocity sets, ξi, are chosen such that
any spatial vector ξiΔt points from one lattice site to a
neighboring lattice site. This guarantees that the pop-
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ulations fi always reach another lattice site during a
time step Δt.

The time evolution of each lattice population is ruled
by the lattice Boltzmann equation which, in the absence
of external forces, reads as:

fi(x + ξiΔt, t + Δt) − fi(x, t) = Ω (fi(x, t)) , (1)

where Ω is the collision operator. Among various pos-
sible choices, in this work we consider the BGK [13]
operator

Ω(fi(x, t)) = −Δt

τ
(fi(x, t) − f eq

i (x, t)) , (2)

which models collisions as a linear relaxation process of
the distribution function toward its equilibrium. Here,
τ is the relaxation time, Δt is the time step, and
f eq

i (x, t) is the discrete equilibrium distribution, for
which we employ a second-order Hermite-expansion of
the Maxwell-Boltzmann distribution:

f eq
i (ρ,u) = wiρ

(

1 +
u · ξi

c2s
+

(u · ξi)2 − (cs|u|)2
2c4s

)

,

(3)
with wi a lattice-dependent set of weighting factors. For
the D2Q9

w0 = 4/9, w1 = w2 = w3 = w4 = 1/9,

w5 = w6 = w7 = w8 = 1/36.

In lattice units, Δt = 1, while the speed of sound in
the lattice for the D2Q9 model is cs = 1/

√
3. Finally,

ρ and u indicate, respectively, the macroscopic density
and the velocity fields. These macroscopic observable
can be computed in terms of the moments of the veloc-
ity distribution functions as

ρ =
q−1∑

i=0

fi and ρu =
q−1∑

i=0

fiξi. (4)

Following an asymptotic analysis, like the Chapman-
Enskog expansion [47], it can be shown that Eq. 1 deliv-
ers a second-order approximation of the Navier-Stokes
equations. In particular, the following relation between
the relaxation time parameter τ and the kinematic vis-
cosity ν of the fluid holds:

ν =
(

τ − 1
2

)

c2s. (5)

We conclude this section by sketching the LBM algo-
rithm. Provided a suitable initialization of the particle
distribution functions, each time iteration of the algo-
rithm entails the following steps:

1. Perform the streaming step:

fpre
i (x, t) = fi(x − ξiΔt, t). (6)

2. Compute the macroscopic fields using Eq. 4
3. Calculate the equilibrium distribution function using

Eq. 3
4. Apply the collision operator

fpost
i = fi(x, t + Δt) = fpre

i (x, t)

− Δt

τ
(fpre

i (x, t) − f eq
i (ρ(x, t),u(x, t))) .

(7)

2.1 Collision invariants and equivariances

The operator Ω carries physical properties of the Boltz-
mann collision, which can be phrased in terms of
invariances and equivariances. Respecting these phys-
ical aspects will turn central in the performance of the
machine learning models discussed in the next sections.
In particular, Ω satisfies the following:

P1 Scale equivariance. Scale factors λ > 0, remodulat-
ing all the pre-collision populations, are preserved,
i.e.,

Ω(λfpre
i ) = λΩ(fpre

i ) . (8)

In other terms, the collision is degree-1 homoge-
neous.

P2 Rotation and reflection equivariance. Generic two-
dimensional collisions are equivariant with respect
to the 2-dimensional orthogonal group O(2). This
translates into the rotational and mirror indepen-
dence on the spectator viewpoint. As we restrict to
a D2Q9 lattice, this property reduces to preserv-
ing the 8th-order dihedral symmetry group of the
lattice D2n ⊂ O(2), n = 4. This group is gener-
ated by a 90 degree rotation and a mirroring with
respect to symmetry axes of the cell (e.g., the x
axis). Naming these two operations, respectively,
r and s, and identifying with I the identity oper-
ation, the 8 elements of D8 are

D8 = {I, r, r2, r3, s, rs, r2s, r3s}. (9)

Here, the n-th power indicates n subsequent appli-
cations of the same operator (i.e., r2 is a 180 degree
rotation).

In 3-dimensions the extension of the dihedral sym-
metry group contains 48 elements.

When applied to the populations, these operators
effectively yields permutations of the population indices
(cf. Figure 2). Finally, in formulas, rotation and mirror-
ing equivariance of collisions reads

Ω(σfpre
i ) = σΩ(fpre

i ), ∀σ ∈ D8. (10)

P3 Mass and momentum invariance. In the D2Q9
LBM model, mass and momentum are preserved
“exactly” by the collision. This holds thanks to
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the underlying Gaussian quadrature used in the
discretization of the velocity space [48,49]:

8∑

i=0

(
fpost

i − fpre
i

)
= 0,

8∑

i=0

(
fpost

i − fpre
i

)
ξi = 0. (11)

Finally, we shall require positivity (P4) for the post-
collision lattice populations (fpost

i > 0 for all i), since
they represent discrete velocity distribution functions.

3 Machine learning approach

In this section we describe a machine learning approach,
hinged on a neural network, to approximate the colli-
sion operator. Therefore, such a neural network will act
as a replacement of the right hand side of Eq. 1. Our
learning problem aims at finding a neural network ΩNN

such that ΩNN ≈ Ω, i.e., formally,

{
f̃post

i = ΩNN(fpre
i ), i = 0, . . . , 8,

f̃post
i ≈ fpost

i ,
(12)

where the input of the network, fpre
i , is given by the

pre-collision (post-streaming) lattice populations, and
the network output, f̃post

i , targeting the post-collision
populations fpost

i .
In the reminder of the section we will define:

– The loss function whose minimization drives the NN
training process. This will also formalize our desired
approximation f̃post

i ≈ fpost
i .

– The training and testing datasets.
– The network architecture, addressing the strategies

that we considered to embed symmetries and con-
servations.

Loss function and training procedure. We train the
neural network to minimize the Mean Squared Rela-
tive Error (MSRE) between ground-truth post-collision
populations, fpost

i , and the neural network approxima-
tions, f̃post

i , accumulated across the populations:

MSRE =
8∑

i=0

(
f̃post

i − fpost
i

fpost
i

)2

. (13)

Here, the use of a relative error metric is crucial in
order to achieve good accuracy, since in general the lat-
tice populations take values proportional to the corre-
sponding lattice weights wi, and, as a consequence, an
absolute error metric would lead to the NN learning
with higher accuracy the rest-population f0 (typically

Table 1 List of hyper-parameters used in the training of
the NNs presented in this work

Number of hidden layers 2
Neurons per hidden layer 50
Hidden layer activation ReLU
Loss function MSRE (Eq. 13)
Optimizer ADAM
Training dataset size 106

Batch size 32
Number of epochs 200
Initial learning rate 10−3

the one taking the largest value) at the expense of the
others.

From an implementation perspective, we consider a
mini-batch stochastic gradient descent approach driven
by standard adaptive moment estimation (ADAM)
optimizer [50].
Training and testing datasets In order to control the

distribution of the macroscopic parameters appearing
in the training set, we rely on synthetic data rather
than actual simulation data. The training set consists
of N pairs of 9-tuples

{(fpre
i,k , Ω(fpre

i,k )), k = 1, 2, . . . , N}, (14)

where the pre-collision distributions are generated as

fpre
i = f eq

i (ρ,u) + fneq
i . (15)

In the above, the equilibrium distribution f eq
i is cal-

culated using Eq. 3 from a set of randomly sampled
macroscopic variables ρ,u. The non equilibrium part
fneq

i is such that each population is randomly drawn
from a Gaussian distribution, after which corrections
are introduced to ensure no contributions to lower order
moments, i.e.,

8∑

i=0

fneq
i = 0,

8∑

i=0

fneq
i ξi = 0. (16)

See Appendix A for further details.

3.1 Neural network architectures

We consider variations of a fully connected feed-
forward Neural Network, henceforth referred to as NN
Naive, which is composed of two hidden layers of 50
neurons each. We use ReLU (rectified linear unit) as
activation functions and no biases in the linear layers.

The Naive NN, as it concatenates bias-less linear
layers and ReLU activations, all degree-1 homogenous
functions, is itself degree-1 homogeneous. Therefore it is
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Fig. 2 Sketch of a Neural Network architecture imple-
menting the group averaging method. The core network
(gray box on the left hand side) is evaluated 8 times on

rotated/shifted versions of the input. The inverse transfor-
mation is applied to the 8 outputs which are then averaged
in order to produce the final prediction

hardwired to respect the scale equivariance P1. Yet, no
other properties such as conservation of mass, momen-
tum and D8 equivariance are imposed, thus the denom-
ination naive.

To amend this lack, in the reminder of this section
we consider three further architectures:

– NN Sym, satisfying properties P1, P2, P4;
– NN Cons, satisfying properties P1, P3;
– NN Sym+Cons, satisfying properties P1, P2, P3.

Before detailing the structure of these networks, we
present a more general approach to satisfy P1, which
we will use in all next three architectures. It hinges on
considering pre- and post-collision populations normal-
ized by the corresponding macroscopic density (invari-
ant, P3). In formulas, we effectively consider and train
a NN, Ω̂NN , operating as

φ̃post
i = Ω̂NN(φpre

i ), (17)

where the normalized pre-collision populations are
defined as

φpre
i = fpre

i /ρ = fpre
i /

8∑

i=0

fpre
i . (18)

The normalized post-collision populations are defined
analogously.

Our final collision approximator, ΩNN, prepends and
appends rescaling operations as

f̃post
i = ΩNN (fpre

i ) = ρΩ̂NN (φpre
i ). (19)

On this basis, we can enforce positivity, P4, by consid-
ering a softmax activation function at the final layer of
the network (i.e., in place of a ReLU activation). Let
y0, . . . , y8 be the 9 inputs of the final activation, then
the softmax outputs read

φ̃post
i =

eyi

Z
=

eyi

∑8
i=0 eyi

. (20)

Note that this returns normalized populations by con-
struction (cf. Equation 18).
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3.2 D8 equivariance: NN Sym

We establish a collision NN, Ω̄NN, in which we enforce
the rotation and symmetry equivariance (cf. Equa-
tion 10). We achieve this by applying a D8 group aver-
aging operation on a generic collision ΩNN. In formulas,
Ω̄NN operates as follows:

f̃post
i = Ω̄NN(fpre

i ) =
1

|D8|
∑

σ∈D8

σ−1ΩNN(σfpre
i ). (21)

A proof that Eq. 21 satisfies P2 (Eq. 10) is provided in
Appendix D. Note that this approach is general: given
any symmetry group the average in Eq. 21 generates
an operator that is equivariant with respect to such
a group action. Note that here we perform a convex
combination of populations, hence ensuring positivity
of populations, with combined weight of unity, which
ensures preservation of density (assuming the original
operator ΩNN had these properties).

In Fig. 2, we report our implementation of Eq. 21.
Both at training time and for predictions the core net-
work ΩNN is evaluated 8 times on rotated/shifted ver-
sions of the input (σfpre

i ). The outputs are then aver-
aged after an application of the inverse rotation/shift
(σ−1).

3.3 Conservation of mass and momentum: NN Cons

A possible approach to ensure that Eq. 11 is satisfied,
is algebraically correcting the lattice populations which
the NN outputs (see also Ref [51] for an example where
hard-constraints on conservation laws are imposed on
the full Boltzmann equation). The method is based on
the observation that all the conserved quantities are
linear combinations of the lattice populations. Let

f = [f0, . . . , f8]T (22)

be the vector of the lattice populations, and C be an
invertible matrix (representing change in bases):

C = [c0, . . . , c8]T (23)

with

c0 · f = ρ

c1 · f = ux

c2 · f = uy. (24)

Consequently, the remaining column vectors c3, . . . , c8
are linearly independent and complementing c0, c1, c2
to a base of R9.

The matrix C represents an invertible map R
9 → R

9

which can be used to express a change in basis:

b = Cf ⇐⇒ f = C−1b. (25)

Thus, the first three entries of b are the density and the
momentum components.

Let I1 and I2 be two diagonal matrices adding up to
identity matrix (i.e., I1 + I2 = I), and satisfying

I1 = diag(1, 1, 1, 0, . . . , 0)
I2 = diag(0, 0, 0, 1, . . . , 1) . (26)

We define the algebraic corrections as

f̃
post

= Ωc(fpre) = Afpre + BΩNN(fpre),

with A = C−1I1C and B = C−1I2C.
(27)

The choice of A and B is not unique. In what follows we
will report results where the algebraic reconstruction is
applied to the populations of index 2, 5 and 8, using:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 2 1 0 2 2 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

− 1
2

1
2 0 − 3

2 −1 1 −1 −2 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1
2

1
2 0 1

2 1 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

−1 0 0 −2 −1 0 −2 −2 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1
2 − 1

2 0 3
2 1 0 1 2 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

− 1
2 − 1

2 0 − 1
2 −1 0 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

A second example is provided in Appendix C. Since
the reconstruction occurs after the last hidden layer of
the NN in general it does not ensure strictly positive lat-
tice populations, even when used in combination with
the softmax activation function (nevertheless, we never
observed negative populations in the numerical results
reported in the coming sections).

Note that this approach allows to enforce the con-
servation of mass and momentum at training time and
yields no additional hyperparameters to be tuned.

An alternative approach, commonly adopted in the
literature [52–54], consists of introducing a soft con-
straint in the loss function in order to penalize mass
and momentum mismatches. In formulas, this reads:

L = MSRE + α1|ρ̃ − ρ| + α2‖ũ − u‖ , (28)

where ρ̃ and ũ are the macroscopic quantities calcu-
lated over the lattice populations output of the network
f̃i

post
, while α1 and α2 weights the relative importance

of each single constraint.
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Since we have observed that the imposition of hard
constraints via algebraic reconstruction systematically
outperforms the soft-constraint based approach, the lat-
ter will not be covered in our analysis in the coming sec-
tions. Nevertheless, a few numerical results are reported
in Appendix B where we highlight the shortcomings of
this approach.

4 Numerical results

In this section, we present the results of LBM simula-
tions where the collision term is replaced by either of the
four neural networks introduced in the previous section:
NN Naive, NN Sym, NN Cons, NN Sym+Cons. For
each NN architecture we trained 50 instances, adopt-
ing random weights initialization. We stop the training
process at 200 epochs. See Table. 1 for the full list of
training hyper-parameters.

We will first provide a static evaluation of the NN
prediction error on the post-collision lattice popula-
tions. We also report on the physical properties of the
learned collision operator. We will then turn our anal-
ysis to the comparison of time dependent flows consid-
ering two standard benchmarks: a Taylor–Green vortex
decay, and a lid-driven cavity flow.

4.1 Static accuracy evaluation

We start by comparing the accuracy of the various
NN architectures described in the previous section tak-
ing into consideration the training error. In Fig. 3a we
show the distribution of the absolute relative error on
the post-collision populations committed by the NN
on the test dataset (generated following the procedure
described in Appendix A). The boxplots compare the
accuracy of 50 different instances of each NN architec-
ture in the prediction of populations of index i. By com-
paring the median values we observe that NN imple-
menting symmetries slightly, although systematically,
outperform the Naive NN. On the other hand, hard-
wiring conservation laws do not lead to an improve-
ment in the prediction of the lattice populations. This
is due to the specific choice of algebraically reconstruct-
ing populations of index 2, 5 and 8 to restore the con-
servation of mass and momentum, and it can indeed be
seen from the plot that the largest errors area associ-
ated with these three elements. A major improvement
is achieved when combining conservation with rotation
and symmetry equivariance (NN Sym+Cons). This case
allows to improve accuracy in the prediction of the sin-
gle lattice populations between 1 and 2 order of mag-
nitudes with respect to all the previous cases.

We now evaluate how well the different architecture
comply to the physical properties of the collision opera-
tor. In Fig. 3b we evaluate the distribution of the error
committed in the momentum conservation by the vari-
ous NN. We define

ε1 = (upre
j − upost

j )/cs , (29)

Fig. 3 Static evaluation of the accuracy achieved by the
four different NN architecture considered in this work. a
Comparison of the absolute relative error on the post-
collision populations of index i (cf. Figure 1). b Error com-
mitted in the conservation of momentum, with the uni-
formly filled boxplots representing the error associated with
ux, and the boxplots with patterned filling the error associ-
ated with uy (see Eq. 29 for the definition of the error met-
ric). Note that the errors for NN Cons and NN Sym+Cons
are zero to machine precision. c Error committed in violat-
ing rotation and mirroring equivariance (see Eq. 30 for the
definition of the error metric). Note that for NN Sym and
NN Sym+Cons the error is zero down to machine precision

with upre
j the momentum calculated on the pre-collision

distribution functions, and upost
j the momentum calcu-

lated from the distribution functions predicted by the
NN; in the plot the case j = x is represented by the box-
plots with uniform filling, and j = y by the boxplots
with patterned filling.

The ε1 error distribution for the Naive NN is different
when comparing the two spatial components, and also
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Fig. 4 Time evolution of the average absolute value of the
velocity field in a Taylor–Green vortex, comparing the ana-
lytic solution (gray dotted line) against simulations making
use of NNs with different architectures. The boxplots show
variability among 50 different instances for each different
NN architecture. The NN with built-in symmetries and con-
servation properties (red) is the most accurate, followed by
NN with only conservation properties (blue), followed by
NN with only symmetries (orange). The naive NN (green)
is the least accurate

asymmetric with respect to zero. We observe that the
NN implementing the symmetries of the lattice (NN
Sym) outperforms the Naive NN, in turn restoring the
symmetry in the error distribution. By construction,

the error for the NN implementing conservation laws is
systematically zero to machine precision.

Finally, in Fig. 3c we evaluate the distribution of the
following error metric

ε2 =
1

|D8|
8∑

i=0

∑

σ∈D8

∣
∣
∣σΩ(fpre

i ) − Ω(σfpre
i )

∣
∣
∣ , (30)

which quantifies the violation of the D8 equivari-
ance. For D8-equivariant collisions, i.e., satisfying P2
(Eq. 10), the term within the absolute value is zero
to machine precision. We evaluate ε2 over the entire
test dataset. We observe that the network implement-
ing conservation laws (NN Cons) commits a larger error
even when comparing with the Naive NN. This is due
to the fact that the algebraic reconstruction procedure
used to implement the conservation laws leads to the
error accumulating along some lattice directions. The
error metric is systematically zero for all the NN imple-
menting the group-averaging technique.

In the coming sections we compare the performance
of the different NN in the simulation of time-dependent
fluid flows.

4.2 Benchmark I: Taylor–Green vortex

We consider the time dynamics of a Taylor–Green vor-
tex, a standard benchmark for the validation of fluid
flow solvers since it provides an exact solution to the
Navier–Stokes equations.

Fig. 5 Velocity profile from simulations of a Taylor–Green
vortex decay, after 1000 time steps. Color map indicates the
absolute value of the velocity vector, whereas white lines

provide the velocity streamlines. We compare the ground
truth from a LBM simulation against the results provided
by different NN implementations
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Starting from the following initial conditions in a 2D
periodic domain:

ux(x, y) = u0 cos (x) sin (y),
uy(x, y) = −u0 cos (y) sin (x), x, y ∈ [0, 2π] (31)

with u0 the initial value for |u|, it is simple to show
that the flow decays exponentially and proportionally
to

F (t) = exp (−2νt), (32)

where ν is the kinematic viscosity of the fluid (Eq. 5).
This benchmark allows us to evaluate the time dynamic
of a flow, covering different orders of magnitude in the
values of the macroscopic parameters, and also to eval-
uate the preservation of symmetries by observing the
structure of the vortexes.

We consider a 32×32 grid, with u0 = 10−2, τ = 1. In
Fig. 4, we compare the time decay of the average abso-
lute value of the velocity field from simulations making
use of different NNs, comparing against the analytic
solution. Once again, for each type of NN we have eval-
uated the results from 50 different networks trained
starting from a random choice of the initial weights.
The plot highlights the variability in the results from
the different NNs by means of boxplots. From the plot
we can see that the Naive NN is able of correctly follow
the flow decay for only 20-40 iterations, after which
not only the flow stops decaying but we also observe
an increase in the kinetic energy. By employing a NN
satisfying the symmetries of the lattice it is possible
to restore the decaying trend of the flow, although we
observe a deviation from the correct decaying rate. This
can be attributed to the network not being able of pre-
serving momentum. On the other hand, NNs enforcing
the conservation laws are able to provide a more accu-
rate dynamic, with only small variability around the
analytic solution, which can be further reduced by com-
bining conservation and preservation of symmetries.

The importance of embedding conservation laws and
symmetries together in the NN is even more evident
in Fig. 4, where evolution statistics is shown for four
types of NN designs. Embedding symmetries or con-
servation properties shows an immediate and dramatic
improvement over the naive NN in the ability of the NN
to capture the decay rate of the average velocity field.
Enforcing conservation properties is appreciably more
important (for the purpose of this test) than enforcing
symmetries. Yet, enforcing both symmetries and con-
servation properties produces the most accurate results
capturing the decay of average velocity with minimal
variability all the way to machine precision, which is
a remarkable result, especially compared to the perfor-
mance of a naive NN. Moreover, we should stress that
a NN with a lower training error will not necessarily
guarantee for better results when employed in simula-
tions; for example, NN Cons, which in Fig. 3a presents
the larger training error, is among the best performing
one when looking at Fig. 4.

On a more qualitative basis, in Fig. 5 we provide
snapshots of the velocity field at a later stage of the

Fig. 6 Steady state profiles for a ux along the vertical
centerline, and b uy along the horizontal centerline of the
domain of a lid-driven cavity flow at Re = 10. Simulations
are performed on a square grid of side L = 64. We compare
the results of a LBM simulation (black line), against results
obtained employing the four NN architectures considered in
this work. The boxplots report the variability in the results
from 50 instances of each NN architecture

dynamics (after t = 1000 iterations), comparing the
ground truth given by a plain LBM simulation against
an example of the profile provided by each of the differ-
ent NN implementations. The figure shows that, besides
failing to reproduce the decay of the flow, the Naive NN
is also not able to preserve the structure of the vortexes.
The NN with symmetries, on the other hand, nicely pre-
serves the geometric structure, although the amplitude
of the velocity is slightly off with respect to the refer-
ence LBM profile. The NN enforcing conservation laws
correctly capture on average the decaying rate (c.f. Fig-
ure 4), however, Fig. 5 clearly shows that the structure
of the vortexes is not symmetric anymore. This can be
attributed to the fact that the algebraic reconstruction
is performed on 3 lattice populations, leading to a less
balanced distribution of the error (cf. Figure 3c). Only
by combining conservation and symmetries in the NN
it is possible to reproduce correctly the velocity profile.

4.3 Benchmark II: Lid driven cavity flow

As a second example, we consider the lid-driven cavity
flow, a wall-bounded benchmark in a very simple geom-
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Fig. 7 Steady state profiles for a ux along the vertical
centerline, and b uy along the horizontal centerline of the
domain of a lid-driven cavity flow at Re = 100. Dotted lines
represent results obtained using a NN Sym+Cons architec-
ture for increasing number of nodes in the grid side L. We
compare the results against a LBM simulation (black line,
L = 256), and reference data from Ghia et al. [55] (orange
dots, L = 129)

etry, still leading to a non-trivial dynamic. Indeed there
is no analytic solution for this flow, and for this reason
we will compare this time only against reference LBM
simulations.

The setup consists of a top-lid moving at a constant
velocity (u0), with no-slip boundary conditions at bot-
tom and side walls. We consider a L×L grid, the relax-
ation time set to τ = 1, and report the results for simu-
lations at two different Reynolds numbers, respectively,
Re = 10 and Re = 100, with

Re =
u0L

ν
. (33)

In simulations the NN does not handle the evolution
of the boundary nodes. Instead, we employ standard
LBM approaches for implementing the boundary con-
ditions. In particular, the bounce back rule is used to
implement the no-slip condition. Here the lattice pop-
ulations that during the streaming step interact with
a solid wall get reflected to their original location with

their velocity reversed:

fī(x, t + 1) = fi(x, t) , (34)

where fī is the population of index ī such that ξī = −ξ.
For the top wall we use a Dirichlet boundary condition

fī(x, t + 1) = fi(x, t) + 2wiρw
ξi · uw

c2s
, (35)

where ρw and uw = (u0, 0) are respectively the density
and the velocity at the top wall.

In Fig. 6, we show the steady state velocity profiles
along the vertical (a) and horizontal (b) centerlines of
the lid-driven cavity for Re = 10, comparing the results
from a plain LBM simulation against results obtained
employing NNs with different architectures. All simu-
lations are performed on a square grid of side L = 64.
Once again we show data collected simulating 50 dif-
ferent instances of each NN architecture, with the box-
plots reporting the variability in the obtained results.
We observe that in this case the results of the Naive
NN are much closer to the reference data with respect
to the previous benchmark. This can be attributed to
the boundary conditions constraining the flow. Both
NN Sym and NN Cons provide an improvement over
the Naive NN, however it is interesting to point out
that the results provided by the latter present a much
higher variability than the one observed in the simula-
tion of the Taylor–Green vortex. Indeed, the plot clearly
shows that only the case NN Sym+Cons is able to cor-
rectly reproduce the results of the LBM simulation. We
select this NN architecture to perform simulation at a
higher Reynolds number. In Fig. 7 we show the results
obtained at Re = 100, varying the grid size, and com-
paring with both a LBM simulation as well as with ref-
erence data from Ghia et al. [55]. The results from the
simulation using the finer grid resolution (L = 256) are
found to be in excellent agreement with the reference
data. On the other hand, we see that for coarser grid
sizes the NN struggles to correctly reproduce the veloc-
ity in the proximity of the moving plate (see Fig. 7b).
We shall discuss the origin of this mismatch in the com-
ing subsection.

In Fig. 8, we show a more qualitative comparison for
the case Re = 100, presenting snapshots of the velocity
field at the steady state, and comparing the results from
a LBM simulation with results produced by the differ-
ent NN architectures. It is interesting to observe that
each different NN make a different prediction for the
location of the main vortex, and only few reproduce the
secondary vortex located at the bottom right corner.
As expected from the analysis above, NN Sym+Cons
provides results in excellent agreement with the LBM
simulation.

4.4 Extrapolation

In Fig. 7b, we have observed significant deviations in
the numerical results produced by the NN Sym+Cons
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Fig. 8 Steady state profile of the velocity field for a lid-
driven cavity flow at Re = 100, comparing the results of
a LBM simulation against the results provided by differ-
ent NN implementations. Colors map the absolute value of

the fluid velocity normalized over the lid velocity, whereas
white lines provide the velocity streamlines. Simulations are
performed on a square grid of side L = 128

architecture in the proximity of the moving plate, in
particular for coarse grids. Since in simulations we are
keeping fixed the kinematic viscosity and the Reynolds
number, it follows from Eq. 33 that by increasing the
grid resolution we also decrease the numerical value of
the lid velocity u0. For L = 64 the numerical value
used at the top lid u0 ≈ 0.26 falls well outside the
range of values shown to the network at training time.
It is, therefore, interesting to investigate the extrapola-
tion capabilities of the different NNs. In Fig. 9, we show
the average MSRE on 50 instances of each NN archi-
tecture, calculated in the prediction of the equilibrium
distribution f eq

i (ρ = 1, ux, uy = 0) at varying values
of ux. The continuous lines show the performance of
the NNs trained on a dataset where the macroscopic
velocity takes values in the interval (−0.03, 0.03); like-
wise, the dotted lines show the results for NNs trained
on values of the macroscopic velocity in the interval
(−1/3, 1/3). Corresponding gray continuous (dotted)
vertical lines are reported to identify the boundary of
the two training datasets. Here we can see that when
working in the range of values shown to the NN dur-
ing the training, the NN Sym+Cons outperforms all
the other network architectures. On the other hand,
this NN commits the largest extrapolation error, i.e.,
it commits a larger error in predicting the equilibrium
distribution outside of the values of the training set.
While the reason for this behavior is currently unclear
to us and will be object of further analysis in future
work, these results explain the discrepancies observed
in Fig. 7, where simulations with numerical values for

the top-lid, which were outside of the training dataset,
led to larger discrepancies with respect to the reference
solution. This, in turn, points to the need of extra care
in the preparation of the training dataset.

5 Conclusion

In this work, we have presented a machine learning
approach for learning a collision operator for the Lattice
Boltzmann Method from data. As a proof of concept,
we have developed a neural network capable of approx-
imating to good accuracy the BGK collision operator.
We have discussed in details a few methods which allow
enriching the structure of the neural network to enforce
relevant physical properties of the collision operator.
We have shown that only by embedding conservation
laws and lattice symmetries in the neural network it is
possible to correctly reproduce the time dynamics of a
fluid flow.

This work can be regarded as a first step toward the
application of neural networks for extending the appli-
cability of LBM in kinematic regimes not supported by
the basic method. To give an example, in future exten-
sions of the present work, we plan to evaluate the possi-
bility of using our approach for learning collision oper-
ators from molecular dynamics and Monte Carlo sim-
ulations in regimes beyond hydrodynamic limit. While
moving in this direction we expect that dealing with
boundary conditions will become increasingly impor-
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Fig. 9 Comparison for the accuracy of the different NNs
architecture within and outside the training dataset. The
plot shows the average MSRE, computed on 50 instances
of each NN architecture, in the prediction of the equilib-
rium distribution feq

i (ρ = 1, ux, uy = 0) at varying values of
ux. The continuous lines refer to NNs trained on a dataset
where the macroscopic velocity takes values in the interval
(−0.03, 0.03), while the interval (−1/3, 1/3) has been used
to train the NNs corresponding to the dotted lines. The gray
continuous (dotted) vertical lines identify the boundary of
the two training datasets

tant, and one can think of training multiple NN for
implementing diverse type of boundary conditions.

Moreover, we will take into consideration other
approaches for embedding symmetries in the network
to allow for a scalable extension to the 3-dimensional
case, and for employing higher order stencils.
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Appendix A: Training data generation algo-
rithm

In this appendix section, we summarize the steps followed in
the generation of the training dataset. While the procedure
described in Algorithm 1 is general, we provide values which
are specific for the D2Q9 model (for example the coefficients
in Eq. 40).

Appendix B: Conservation with
soft-constraints

In Sect. 3, we have discussed the possibility of employing
soft-constraints in order to impose conservation of mass
and momentum. In this appendix, we report the results
obtained training a NN with the following architecture: (i)
same hyperpameters as in Table 1, (ii) softmax activation
function at the final layer, combined with the rescaling oper-
ations in Eq. 19, (iii) an additional term in the loss function
penalizing the violation of momentum conservation:

L = MSRE + α
‖ũ − u‖
‖1 + u‖ , (44)

where ũ is the velocity vector computed over the lattice
populations output of the NN, and α is a parameter which
weights the importance of the soft constraint. Note that
mass conservation is already ensured by the combination of
the softmax activation function with the rescaling of input
and output.

We have scanned several values of the parameter α,
for which we report here three representative cases: α =
0.1, 1, 10. For each of these selected values of α we have
trained 20 NNs. In Fig. 10, we present the results obtained
on the Taylor Green vortex benchmark described in the
main text. For the case where no symmetries are enforced
in the NN, the results are inline with those reported for the
Naive NN in Fig. 4, i.e., we do not correctly reproduce the
decaying behavior if not for very few time steps. By repeat-
ing the training embedding symmetries in the NN architec-
ture (Fig. 2), results improve significantly. From the plot we
can observe that by tuning α it is possible to adjust the vari-
ability in the results produced by the different instances of
the NN. Still, we not in general achieve the correct decaying
rate.
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Algorithm 1 Training data generation algorithm
1: Sample

ρ ∼ U(ρmin, ρmax) (36)
u = u0(cos(θ), sin(θ)) ,

with

u0 ∼ U(0, umax
0 ) (37)

θ ∼ U(0, 2π) .

2: Compute

feq
i = feq

i (ρ, u) (38)

using Eq. 3.
3: Sample

f ′neq
i ∼ N (0, σ2) (39)

from normal distribution N (0, σ2) with mean 0 and
standard deviation σ.

4: Map f ′neq
i to a mass- and momentum-less fneq

i (Eq. 16)

fneq
i = f ′neq

i − 1

9
ρ′ − 1

6
ξi · ρ′u′. (40)

where

ρ′ =

8∑

i=0

f ′neq
i (41)

ρ′u′ =
8∑

i=0

f ′neq
i ξi .

5: Compute

fpre
i = feq

i + fneq
i . (42)

6: Compute

fpost
i = Ω(fpre

i ) (43)

using the BGK collision operator in Eq. 2.

These results show that NNs imposing conservation laws
via hard constraints systematically outperforms the soft-
constraints based approach, with the added advantage of
not requiring tuning of extra parameters (such as α in the
example above).

Appendix C: Symmetric algebraic recon-
struction

In the main text, we have described one possible way
to apply algebraic reconstruction to hardwire conservation
laws in the NN. In particular we have considered an example
which involves adjusting 3 of the 9 populations outputted by
the NN. This approach, which may introduce a slight bias
along those lattice directions, was useful to expose the rel-
ative importance of embedding different physical properties
in the NN architecture.

Fig. 10 Time evolution of the average absolute value of
the velocity field in a Taylor–Green vortex, comparing the
analytic solution (gray dotted line) against simulations mak-
ing use of NNs employing a soft-constraint on momentum
conservation, for a few selected values of the parameter α
which weights the relative importance of the soft-constraint
(see Eq. 44). For each value of α we show results obtained
with and without the group-averaging method used for
embedding symmetries in the NN architecture. The box-
plots show variability among 20 different instances for each
different NN architecture

However, as mentioned in Sect. 3, there are several possi-
ble approach for imposing conservation of mass and momen-
tum in the NN.

A more “symmetric” approach, which we found to give
excellent results even when not combined with the group-
averaging method for embedding symmetries in the NN,
reads as follows:

f̃i
post

= ΩNN(fpre
i ) + κ1 + κ2ξi,x + κ3ξi,y (45)

where the parameters κ1, κ2, κ3 are lattice dependent,
and for the D2Q9 are given by:

κ1 = −1

9

8∑

i=0

(
ΩNN(fpre

i ) − fpre
i

)

κ2 = −1

6

8∑

i=0

(
ΩNN(fpre

i ) − fpre
i

)
ξi,x

κ3 = −1

6

8∑

i=0

(
ΩNN(fpre

i ) − fpre
i

)
ξi,y (46)

Appendix D: The group-averaged operator
Ω̄ satisfies D8 equivariance

We prove here that the the group averaged operator defined
in Eq. 21, respects property P2 (Eq. 10). The proof that we
propose here is indeed general and holds for any symmetry
group. For this reason, we indicate here the symmetry group
with the generic symbol S.

Proof We shall show that

Ω̄(ηf) = ηΩ̄(f), ∀η ∈ S.
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By definition, it holds

Ω̄(ηf) =
1

|S|
∑

σ∈S
σ−1ΩNN(σηf)

=
1

|S|
∑

σ∈S
ηη−1σ−1ΩNN(σηf)

= η
1

|S|
∑

σ∈S
(ση)−1ΩNN(σηf)

= η
1

|S|
∑

σ∈Sη

σ−1ΩNN(σf).

Yet, Sη = S or, equivalently, the presence of η yields a per-
mutation of the terms to add (by uniqueness of the inverse
within a group). Thus, we can write

Ω̄(ηf) = η
1

|S|
∑

σ∈S
σ−1ΩNN(σf)

= ηΩ̄(f),

which concludes the proof. ��
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