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In extreme environments, the Rayleigh-Taylor instability (RTI) may occur under large
variations in density and temperature and with fluid transport properties strongly dependent
on temperature. Direct numerical simulations of the 3D fully compressible RTI are con-
ducted, examining the idealized configuration of a hotter, less dense fluid pushing against
a colder, denser fluid. Various temperature ratios and transport property configurations
are explored to examine how heat conduction, large variations in transport properties,
and sudden changes in transport properties can affect the evolution of the mixing layer.
Nonuniform fluid expansion and contraction induced by heat transfer can significantly
affect local density differences and overall instability growth, causing profile asymmetries
about the initial interface for flow and mixing statistics. The departures from classical self-
similar development of the instability along with misalignment between regions of mixing
and regions of most intense turbulent activity caused by both heat transfer and transport
property contrasts are examined. After sudden changes in fluid transport properties, which
may occur as a result of rapid heating (e.g., in inertial confinement fusion), the flow quickly
responds and begins to relax towards quasi-self-similar late-time evolution. For many
dynamical quantities such as vorticity and dissipation, this late-time evolution resembles
that of the configuration that already started with the final transport property magnitudes,
suggesting that these quantities depend only on the transport properties and not on past
flow history, provided that the density field distributions for the flows remain similar. On
the other hand, the mixing evolution after the transport property change is unique, implying
that both property magnitudes and previous history are impactful on the mixing. These
simulations demonstrate how various temperature-related effects are extremely important
to consider in compressible RTI flows with large temperature variations.

DOI: 10.1103/PhysRevFluids.9.043904

I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) most generally occurs when fluids are accelerated opposite
to their density gradient [1–4]. Small perturbations at the interface grow, developing spikes of heav-
ier fluid and bubbles of lighter fluid, which interact nonlinearly and eventually transition the flow to
turbulence. RTI development is influenced the strongest by the local density ratios, but parameters
such as compressibility, initial perturbation spectrum, temperature distribution, viscosity, surface
tension, mass diffusion, geometry, and magnetic fields can also have important effects. In certain
extreme situations, the RTI may occur under large variations in density and fluid transport properties
of viscosity, thermal conductivity, and mass diffusivity, through either temperature variations or
differences in the fluid properties themselves. In inertial confinement fusion (ICF), the dense walls,
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also known as ablator material, of an imploding fuel capsule are decelerated by the less dense but
more viscous compressed gas at the center, with temperature differences up to 107 K [5]. In a
supernova event, the exploding dense ejecta from the core is decelerated by the less dense, hotter
surrounding circumstellar matter, reaching temperature variations of 109 K [6]. Earth’s mantle-core
interactions and oceanic flows may also involve large variations in fluid density/buoyancy and
viscosity.

This paper focuses on exploring the effects of heat transfer due to a nonuniform background
temperature and temperature-dependent transport properties on the 3D compressible RTI. Currently,
most fully compressible simulations of the RT instability have started with a uniform initial
background temperature and assumed the fluids have equivalent, constant transport properties
[7–13]. It has been theorized that thermal conduction during the coasting/deceleration stage of an
ICF implosion and the formation of supernova remnants may significantly change the structure
of the interface and lead to very different instability progression [6,14]. Should the heat flux be
strong enough, the volumetric expansion of colder fluid regions may be high enough to ablate
material away from the interface. A few studies have considered compressible RTI configurations
with nonuniform background temperatures but have shown minimal heat transfer effects. The
significant differences between configurations with isothermal, isentropic, or isopycnic background
stratifications were briefly explored by Wieland et al. [15]. Chen et al. [16] used the Discrete
Boltzmann Method to determine how viscosity and heat conduction can affect the 2D single-mode
RT instability.

In ICF applications, there has been significant interest in the ablative RTI (ARTI) [17,18].
In the process called mass ablation during the acceleration phase of an ICF implosion, heat is
deposited onto the colder, denser fluid, causing it to expand and ablate off of the outer surface
of the interface. This ablated light fluid then pushes back against the heavy fluid in an RT unstable
manner. Simulations exploring ARTI typically begin with a fully developed ablative interface, with
a nonzero initial velocity field, continuous heating through a boundary heat flux or a heat source in
one fluid, and a time-varying gravitational force to fix the interface position. It has been found that
the mass ablation has a stabilizing effect in the initial linear regime but a destabilizing effect in the
late nonlinear and turbulent regimes. The conditions considered in this paper are not as extreme, the
observed heat transfer not strong enough to cause the mass ablation phenomenon.

According to Gerashchenko and Livescu [5], fluid compressibility can be independently charac-
terized apart from the speed of sound/flow compressibility effects by the ratio of specific heats of
the fluids participating in the mixing. Compressibility effects may be stabilizing or destabilizing,
depending on the configuration [5,19]. The speed of sound, which is set by the equilibrium pressure
at the interface, determines the equilibrium density profile. Much work has been done exploring
the effects of compressibility in the context of background density stratification [20–22]. The ratio
of specific heats determines a fluid’s ability to expand or contract in response to heat transfer and
pressure fluctuations. However, for the monoatomic ions that occur in high-energy density (HED)
plasmas in, for example, ICF, the ratio of specific heats is close to 5/3, while the equation of state
is close to ideal. In this case, the atomic/molecular weight ratio, besides directly determining the
driving density ratio, also influences the density response to changes in temperature and pressure, as
well as the heat capacities through variations in the ideal gas constant, altering the mixing behavior
of fluids that have different compositions. The simulations in this work hold the background
stratification constant to focus solely on the effects of compressibility in terms of a fluid’s ability to
change volume due to heat conduction.

In many flows with large variations in transport properties, the fluids involved are HED plas-
mas with highly temperature-sensitive transport properties. Plasma RT simulations in our specific
regime of interest, using particle-in-cell (PIC) or magnetohydrodynamic (MHD) flow solvers, have
mostly been limited to either a 2D domain or single-mode perturbations [23,24]. Studies using
hydrodynamic solvers specifically focusing on the effects of variable plasma transport properties
on mixing have been performed for the 2D RT and Kelvin-Helmholtz instabilities [25] and a
spherical mixing layer under adiabatic compression [26]. For non-HED flows, Jaberi, Livescu,
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and Madnia [27] compared chemically reacting compressible homogeneous turbulence to canonical
incompressible homogenous turbulence, identifying slight differences in turbulence structure that
were attributed to temperature-dependent transport property variations. This paper will compare the
differences in RT turbulence behavior between fluids with constant transport properties and those
with temperature-dependent plasma-type properties.

Further studies have also explored how flows respond to sudden changes in transport prop-
erties after mixing and turbulence has sufficiently developed. This occurs in ICF implosions,
where the central region called the “hot spot” experiences a significant increase in temperature
and therefore viscosity. Livescu and Daniel [28] have explored this using single-fluid forced
isotropic turbulence with transport property variations dependent on an evolving scalar field that
can represent either temperature or concentration. According to G. I. Taylor’s hypothesis, at high
enough Reynolds numbers, dissipation is independent of viscosity [29]. This has been confirmed in
variable density turbulent mixtures, where velocity gradients quickly adapt to changed spatially
varying viscosity fields, eventually leading to uniform dissipation throughout the domain, as if
the viscosity change had never been applied [30]. Similar results have been found in subsequent
work for variable-conductivity mixtures and scalar dissipation [31]. We examine if RT turbulence
with significant heat transfer and transport property contrasts still exhibits dissipation-viscosity
independence.

In this paper, we present a comprehensive analysis of how heat conduction, large variations in
transport properties, and sudden changes in transport properties affect the development of the 3D
fully compressible Rayleigh-Taylor instability. Starting from isothermal baseline cases, we vary
both the temperature ratio and transport property behavior. We explore how the initial instability
growth, structure of the mixing interface, transition to turbulence, and fluid mixing is affected in
the presence of large temperature gradients and temperature-dependent fluid transport properties.
In our simulations, we begin to approach conditions where one fluid has low enough viscosity to
easily transition to turbulence, while the other fluid has high enough viscosity that fully developed
turbulence cannot be sustained. Section II defines the governing equations and the nondimensional
parameters for the compressible RTI, the problem setup with description of the different transport
property configurations, and the numerical methods used for the DNS calculations. Section III
presents all the results, including the typical basic RTI flow characterizations, detailed analysis
of the flow dynamics and mixing state, and particular focus on the flow’s response to trans-
port property changes. Section IV puts the results of our idealized variable-temperature setup in
context of real-world situations and describes some of the numerical difficulties associated with
large transport property contrasts. The primary conclusions and discussion of future work are
in Sec. V.

II. PROBLEM DESCRIPTION

A. Governing equations

We solve the fully compressible Navier-Stokes equations for two miscible ideal gas species, with
the bottom fluid labeled (1) and the top fluid labeled (2). The variables are nondimensionalized
as follows: density ρ by the initial density difference ρ0 = [ρ(z+

int ) + ρ(z−
int )]/2, position �x by the

length scale L0, velocity �u by the velocity scale based on free fall velocity over a distance L0 (same as
gravity wave speed)

√
gL0 = U0, pressure P by ρ0U 2

0 , time t by
√

L0/g, energy E = ρ(e + �u · �u/2)
by ρ0U 2

0 , and temperature T by U 2
0 /Cp,0, where Cp,0 is the specific heat at constant pressure of

the top fluid and e is the mixture’s internal energy. The quantity zint is the initial interface position
shown in Fig. 1 and L0 is related to the most unstable wavelength. The nondimensionalization
of transport properties and the nondimensional parameters (Re, Pr, Sc) use the upper fluid (2)
properties at a reference pressure and temperature. With mass fraction Yi, viscosity μ∗ = μ/μ0,
bulk viscosity β∗ = β/β0, thermal conductivity κ∗ = κ/κ0, mass diffusivity D∗ = D/D0, ideal
gas constant R∗ = R/R0, ratio of specific heats γ , and enthalpy h∗

i = hi/ρ0U 2
0 , the governing
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FIG. 1. Schematic of the RT instability problem.

equations in nondimensional form are the following:

∂ (ρ∗Yi )

∂t∗ + �∇∗ · (ρ∗�u∗Yi ) = − 1

ReSc
�∇∗ · �J∗

i , (1)

∂ (ρ∗�u∗)

∂t∗ + �∇∗ · (ρ∗�u∗ ⊗ �u∗) = −�∇∗P∗ + 1

Re
�∇∗ · τ∗ + ρ∗�g∗, (2)

∂E∗

∂t∗ + �∇∗ · [(E∗ + P∗)�u∗] = −�∇∗ ·
(

1

Re
τ∗ · �u∗ − 1

RePr
�q∗

c − 1

ReSc
�J∗

d

)
+ ρ∗�g∗ · �u∗, (3)

P∗ = (1 − 1/γ )ρ∗R̄∗T ∗ with
1

M̄
= Y1

M1
+ Y2

M2
, R̄ = Ru

M̄
, γ = 5/3, (4)

where the Reynolds, Prandtl, and Schmidt numbers are

Re = ρ0U0L0

μ0
, Pr = Cp,0μ0

κ0
, Sc = μ0

ρ0D0
. (5)

The gravitational force points downwards such that �g∗ = −δi3. We use Fickian mass diffusion fluxes,

�J∗
i = −ρ∗D∗

i
�∇Yi, (6)

Newtonian viscous stress vector,

τ∗ = μ∗( �∇∗�u∗ + �∇∗�u∗T ) + (
β∗ − 2

3μ∗)( �∇∗ · �u∗)δ, (7)

conductive heat flux

�q∗
c = −κ∗ �∇∗T ∗, (8)

and the interspecies diffusion heat flux

�J∗
d =

∑
i

h∗
i
�J∗

i . (9)

From this point forward, the asterisks signifying the nondimensionalization are dropped from all
variables and expressions for clarity, unless indicated otherwise.

B. Software and numerical methods

The PadeOps software developed at the Stanford Flow Physics and Aeroacoustics Laboratory
uses a tenth-order compact finite difference scheme for calculation of spatial derivatives and a
fourth-order Runge-Kutta time-stepping scheme for time discretization. Details of the numerical
algorithms can be found in Ref. [32]. The software originally solves the governing equations in
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conservative form, where the fluxes in Eqs. (1)–(3) are calculated before the divergence operator
is applied, so any second derivatives are evaluated using two applications of the first derivative
operator. To increase solution accuracy and stability, we solve the equations in nonconservative
form, which contain terms expanded with the chain rule so the resulting derivatives of transport
properties and the second derivatives are directly calculated. For example, the viscous terms are
expanded as

∂

∂x j
(τi j ) = ∂μ̄

∂x j

(
∂ui

∂x j
+ ∂u j

∂xi

)
+ μ̄

(
∂2ui

∂x2
j

+ ∂2u j

∂xi∂x j

)
+ ∂

∂x j

(
β̄ − 2

3
μ̄

)
∂uk

∂xk
δi j

+
(

β̄ − 2

3
μ̄

)
∂2uk

∂x j∂xk
δi j . (10)

The species mass diffusion and thermal conduction terms are treated similarly. This ensures that
the effect of viscosity and other transport properties is properly applied at the Nyquist wavenumber,
critical for maintaining stability when no subgrid models, filtering, or localized artificial diffusion
(LAD) is used in the main body of the solution. Additionally, the convective terms in the governing
equations are expanded into a skew-symmetric form that has been shown to reduce aliasing
errors [33]:

∂ (ρYiu j )

∂x j
= 1

2
Yi

∂ (ρu j )

∂x j
+ 1

2
ρu j

∂Yi

∂x j
+ 1

2

∂ (ρYiu j )

∂x j
, (11)

∂ (ρuiu j )

∂x j
= 1

2
ui

∂ (ρu j )

∂x j
+ 1

2
ρu j

∂ui

∂x j
+ 1

2

∂ (ρuiu j )

∂x j
, (12)

∂ ((ρet + P)u j )

∂x j
= 1

2
et

∂ (ρu j )

∂x j
+ 1

2
ρu j

∂et

∂x j
+ 1

2

∂ (ρet u j )

∂x j
+ ∂ (Puj )

∂x j
. (13)

The code has been verified with successful replication of results from 2D single-mode RT simu-
lations conducted by Gauthier and Crueuer [7]. Additionally, further tests confirmed that in general
symmetry is maintained and that the numerics support a stable interface when no perturbations are
present.

C. Initial conditions

We consider the classical Rayleigh-Taylor instability configuration of a denser fluid (2) above a
less dense fluid (1) under a constant gravitational acceleration. The domain is 4L0×4L0×10L0 at a
resolution of 512×512×1280. Beginning with an isothermal ambient atmosphere base case of two
moderately stratifed exponential density fluid layers under hydrostatic equilibrium, we then investi-
gate cases where the fluids begin at different but uniform temperatures and have different transport
property configurations. In our variable temperature simulations, we choose the lower, light fluid to
be hotter, in order to mimic ICF hot spot conditions. The equations for the 1D background profiles
of density ρ(z), mass fraction Yi(z), and pressure P(z) used in our simulations have been developed
by Creurer and Gauthier [7]; example profiles are shown in Fig. 2. The density ρ(z) and other
profiles are constructed from regularized Heaviside functions H±(z) = [1 ± erf(z/δ)]/2 with an
initial interface length scale δ:

ρ(z) = (1 + At) exp(A−z)H+(z) + (1 − At) exp(A+z)H−(z), (14)

Y1(z) = (1 + At) exp(A−z)H+(z)/ρ(z)Y2(z) = 1 − Y1(z), (15)

p(z) = pb + (1−At2)

{
eA−zH+(z) + eA+zH−(z) −1

2

[
e	2

−erf

(
z

δ
−	−

)
−1

2
e	2

+erf

(
z

δ
−	+

)]}/
Sr,

(16)
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FIG. 2. (a) Nondimensional mass fraction, density, pressure, and temperature profiles for the isothermal
base case and (b) nondimensional temperature profile for the temperature ratio three cases.

where A± = −Sr/(1 ± At), 	± = A±δ/2 and pb is the integration constant that satisfies the isother-
mal temperature boundary conditions, as pressure is determined analytically by integrating the
density. Note that away from the interface, the temperature becomes constant, but different on
the two sides of the interface, except for the isothermal case. The ideal gas assumption is used
to calculate T (z):

T (z) = P(z)

ρ(z)R̄(z)
,

1
¯M(z)

= Y1(z)

M1
+ Y2(z)

M2
, R̄(z) = Ru

¯M(z)
, (17)

where Mi are the molecular masses of each species. The Atwood number defined in terms of the
density at both sides of the interface or the molecular mass ratio and temperature ratio is

At = ρ2(z+
int ) − ρ1(z−

int )

ρ2(z+
int ) + ρ1(z−

int )
=

(
M2

M1

T1

T2
− 1

)/(
M2

M1

T1

T2
+ 1

)
(18)

or equivalently

M2

M1
= 1 + At

1 − At

1

T1/T2
. (19)

This setup for the background state enables easy exploration of various Atwood numbers, tempera-
ture ratios, and stratification strengths.

While Eq. (18) shows that there is only one unique mass fraction ratio M1/M2 for each At for
an isothermal background state, we can increase the bottom fluid (hot spot) temperature in the
variable temperature cases by adjusting the molecular masses M1 and M2, effectively changing
the average gas constant R̄, so that the initial concentration, density, and pressure profiles remain
the same as in the base cases. For an At of 0.2, an isothermal case will have a molecular mass ratio
M1/M2 = 2/3, while a case with a temperature ratio T1/T2 = 3 will have M1/M2 = 2. Maintaining
the density profile is important for keeping the interface Atwood number constant between cases, so
any difference in the instability development can be directly attributed to the changes in temperature.
Furthermore, it is not possible to vary the temperature and preserve the initial density and hydrostatic
pressure profiles without changing the composition of the initial interface, which would complicate
mixing comparisons. Due to these restrictions, there is only one unique molecular mass ratio M1/M2

per each parameter set of temperature ratio and Atwood number.
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TABLE I. Simulation parameters for the isothermal base case; δ is the initial interface length scale
described in Ref. [7].

Re Sc Pr At Sr γ1 = γ2 δ

10 000 1 1 0.2 0.04 5/3 0.031

D. Transport property configurations

Three different transport property configurations are explored in the variable temperature simu-
lations, with the intent to systematically separate the effects of nonuniform background temperature
and temperature-dependent transport properties. The first constant property configuration assumes
that both fluids have equal and constant transport properties. When compared to the isothermal
case, the effects of heat transfer are isolated. The second variable property configuration assumes
the fluid transport properties obey a plasma-type temperature scaling. According to kinetic theory,
shear viscosity, diffusion constant, and thermal conductivity for HED plasmas in ICF applications
can approximately obey the power law μ ∝ T 2.5, D ∝ T 2.5, and κ ∝ T 2.5 [34]. Bulk viscosity is
zero because plasmas can be modeled as monoatomic ions. For the variable transport property cases,
a nondimensionalized transport property (represented by φ) variation is

φ(T ) =
(

T

T0

)2.5

, (20)

where T0 is the temperature of the upper fluid that does not change temperature between cases. For
a temperature ratio of 3, the transport property magnitude contrast is approximately 15.6. The third
transitional property configuration begins with constant transport properties, but after some time
has elapsed, the coefficients are artificially modified to reflect their dependence on the temperature
field. This approximates one of the fluids quickly heating up after the instability has progressed for
some time, such as during the formation of the hot spot in ICF. For these transitional cases, the
transport properties are implemented as

φ(t, T ) = (1 − ξφ ) +
(

T

T0

)2.5

ξφ, (21)

ξφ (t ) = 0.5 + 1/2erf((t − tt )/τt ) (22)

with transition time tt = 8.5, a transition timescale of τt = 0.1, and initial upper fluid temperature
T0. The transition time tt occurs after the flow has reached a sufficiently turbulent state. Signs that
the flow has transitioned to turbulence can be observed in the plots of penetration depths (Fig. 8)
and dissipation [Fig. 22(a)], but the most important criterion we use is that the velocity spectrum
has developed a classical turbulent inertial range. We apply the transport property change in our
transitional property cases as soon as possible due to the limited domain size. The function ξφ (t ) has
an initial value of 0 and a final value of 1, with τt chosen so there is a fast but smooth transition (as
opposed to a step function or a gradual change) at the time the temperature dependence is turned on.
The proper, physically realistic method to simulate fluid heating is to add a heat source term to the
energy equation. However, this is likely to introduce strong pressure waves, which will interfere with
flow development [35]. Artificially manipulating the transport properties as described will allow us
to avoid such complications and completely isolate the transport property effects.

E. Nondimensional parameters

The nondimensional parameters provided in Table I that characterize the simulations use trans-
port property magnitudes (μ, κ, D) referenced to the upper fluid, which remains at a constant
temperature across simulations. In the variable transport property configurations, the actual Re
is much lower in the hotter fluid, significantly increasing the influence of heat transfer and mass
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FIG. 3. (a) Normalized spectrum Eη(k) of the initial perturbations in wavenumber space, dashed line
indicates the most unstable wavenumber for the 2D version of the problem; (b) the initial perturbations in
physical space.

diffusion there. The Reynolds number is based on free-fall velocity over a distance L0, U0 = √
gL0,

and length scale L0 that is near the maximum wavelength of the applied initial perturbations.
The domain is moderately stratified with a stratification parameter Sr = gL/(TrR/Mr ) of 0.04.
Other literature on compressible RT choose to parametrize stratification using the isothermal Mach
number M = √

ρgL/P at the interface, which is related to Sr with M2 = Sr using the ideal gas
equation. The Schmidt number and Prandtl number are both set to 1 for generality. Typically, a Sc
of O(1) and low Pr to represent high thermal conductivity are used for a very crude approximation
of plasma properties [36]. Specific heat ratios of γ = 5/3 is a good approximation for monoatomic
plasma ions.

F. Initial perturbations

Defining the wavenumbers as kx = 2π/λx and ky = 2π/λy, where λx, λy are the perturbation
wavelengths in the two horizontal directions, we apply a randomized multimode perturbation
η(x, y, z) to the 1D background profiles Eqs. (14)–(17), turning them into perturbed fields in all
three dimensions:

η(x, y, z) = real

⎡⎣∑
i

∑
j

ai j exp(ikx,ix) exp(iky, jy) exp(−2π |z − zint|)
⎤⎦, (23)

ρpert (x, y, z) = ρ(z + η(x, y, z)), Ypert (x, y, z) = Y (z + η(x, y, z)),

Tpert (x, y, z) = T (z + η(x, y, z)), ppert (x, y, z) = p(z + η(x, y, z)), (24)

where ai j is the magnitude corresponding to the set of wavenumbers (kx,i, ky, j ). The ai j and their cor-
responding wavenumber values are stored for reproducibility of the results. Note that kx,i and ky, j can
be chosen to be negative. These perturbations to the background profiles decrease in intensity away
from the initial interface location zint = 5.5. The spectrum Eη(k) of η(x, y, zint = 5.5) is Gaussian

in k =
√

k2
x + k2

y wavenumber space with the peak located at kmax ≈ 14.5, a standard deviation of
2
3π , and has a total perturbation energy per area of

∫ Lx

0

∫ Ly

0 η(x, y, zint ) dx dy/LxLy = 1.2E − 5. The
value of kmax corresponds to most unstable mode of the equivalent 2D version of this problem. Note
that L0 is approximately the wavelength corresponding to the left tail of the spectrum distribution,
where the value of Eη(k) approaches 0 in Fig. 3. All simulations begin with the same initial
perturbations.
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FIG. 4. Example mask function ξ used for boundary filtering; red region indicates where the mask is
exactly zero.

G. Boundary conditions

Most simulations of the RTI apply slip walls at the top and bottom of the domain, but in com-
pressible simulations this allows acoustic waves to reflect off the boundary and potentially influence
instability growth and turbulent behavior. Instead, we leave the boundaries open to approximate an
infinite domain. While a tenth-order compact finite difference scheme is used to calculate derivatives
in the main body of the solution, we apply a general boundary closure for the last few points at the
boundary, with a fourth-order one-sided stencil for the boundary point, a fourth-order stencil for the
second point, a sixth-order stencil for the third point, and so on. However, if this boundary treatment
is applied by itself, numerical errors will add up over time as the simulation progresses and cause
boundary node instability, especially because the stratified background causes many variables to
have nonzero derivatives at the boundary. To stabilize the boundary nodes and eliminate the effects
of any acoustic waves that reach the boundary, we need to apply a few other boundary treatments.
We create a boundary diffusion zone by adding a forcing term and a numerical diffusion term to the
governing equations (1)–(3):

∂U
∂t

= F(U ) + νdξd
∂2U ′

∂x j∂x j
− Cf ξ f U ′, (25)

where U = (ρYi, ρui, E ) are the evolved quantities, U ′ = U − Ubackground are the perturbations from
the initial/background state, and ξd and ξ f are the diffusion and forcing term mask functions, an
example of which can be seen in Fig. 4. The forcing term forces the solution at the boundary towards
the initial background state, while the diffusion term is required to maintain numerical stability. The
numerical diffusion coefficient is defined as

νd = Cd
�x2

2�t
(26)

in which Cd = 1 corresponds to the stability limit of a general advection-diffusion equation. We also
apply a nonreflecting boundary that removes the energy of reflecting waves using the Navier-Stokes
characteristic boundary conditions (NSCBC) methodology [11].

The boundary antialiasing filtering is implemented as

U → (1 − ξ )U + ξŨ , (27)

where Ũ is the filter applied on the conserved quantities U and ξ is the filter mask, which is
nonzero only close to the boundaries. This filtering operation on U is applied at every substep
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of the time-stepping algorithm. The eighth-order compact filter that is used removes the top 10% of
the resolvable wavenumber components. In our simulations, we choose ξ = ξd = ξ f .

III. RESULTS

Compared to Boussinesq RT flows, which have well-studied self-similar scalings and symme-
tries, the behavior of compressible simulations depends on many factors such as stratification
strength, compressibility effects, the initial temperature profile, and others. This paper focuses
on the differences caused by two fluids starting at different temperatures and different transport
property configurations compared to a baseline isothermal case A, briefly characterized in Sec. III A,
that already experiences effects from the moderate At and stratification values. Starting with a
basic characterization of all the flow cases through various Reynolds numbers, length scales, and
examination of self-similar behavior in Sec. III B, we then closely examine how changes in the
density field affect the dynamics of the flows in Sec. III C. Next, we examine how heat transfer and
transport property contrasts can influence mixing in Sec. III D. Finally, we discuss how the flow
responds to rapid changes in transport properties through the lens of Taylor’s viscosity-dissipation
independence postulate and turbulence structure in Sec. III E.

A. Isothermal base case

This section briefly describes the isothermal base case. The precise definitions of the quantities
plotted in Fig. 5 will be covered in later sections, as explained below. Figure 5(a) shows the spike and
bubble penetration depths based on the 5% mole fraction limits (see Sec. III B, Fig. 8 for definition).
With a moderate Atwood number of 0.2, there is asymmetric development of the spikes and bubbles,
with penetration of the spikes into lower-density fluid higher than the penetration of the bubbles
into higher-density fluid. A transition from the initial exponential growth of the spikes and bubbles
to the beginning of a self-similar mixing stage can be seen at around t = 8. Figure 5(b) plots the
horizontally averaged mole fraction profiles against the vertical position scaled by the mixing height
at various times (see Sec. III B, Fig. 9 for definition). The curves at later times collapse into a self-
similar profile. The asymmetry of spike/bubble side growth and spatial self-similarity of quantities
such as average density or average concentration has been well documented in variable-density RTI
literature [37,38]. The time evolution of the θ mix parameter (see Sec. III D, Fig. 19 and Eq. (39)
for definition) is plotted in Fig. 5(c). The general temporal evolution of θ , along with the final
value of about 0.8, is also in line with previous literature [21,37,39]. Figure 5(d) contains plots
of the Favre turbulent kinetic energy (ρu′′

i u′′
i /2) and dissipation rate of turbulent kinetic energy ε,

volume averaged within the extents of the mixing zone (see Sec. III E, Fig. 22 and Eq. (31) for
definition). This volume-averaging operation is represented by 〈〉�. Due to the stratified background
density, the development of TKE and dissipation will be different from typical Boussinesq results,
since the spikes need to push into increasingly heavy fluid while the bubbles rise into increasingly
lighter fluid. The growth of TKE does not transition directly into the t2 incompressible self-similar
scaling, instead reaching a peak value followed by a slight trough, behavior that has been observed in
previous simulations of compressible RTI [9]. The magnitude of the dissipation rate reaches a peak
near the onset of turbulent mixing and then slowly decays. In more highly stratified conditions, the
turbulence will display a stronger decaying regime and dissipation decreases much more rapidly
[9], up to total suppression of the instability [12].

B. Basic flow characterization

The flow is periodic in the transverse directions, so the planar averages are taken in the direction
perpendicular to the direction of gravity. Angle brackets or overbars are used to denote the planar
averages, unless otherwise indicated. We decompose the velocity (u, v,w), density ρ, pressure
p, and specific volume υ into Reynolds (u = 〈u〉 + u′) and Favre (u = 〈ρu〉/〈ρ〉 + u′′ = ũ + u′′)
averages and their associated perturbations. The turbulent kinetic energy k̃, transverse Taylor length

043904-10



HEAT TRANSFER AND TRANSPORT PROPERTY …

FIG. 5. (a) Time history of the spike and bubble side penetration depths based on the 5% average mole
fraction limits (Sec. III B, Fig. 8). (b) Average mole fraction 〈 f1〉 profiles at various times, centered around the
mixing midplane location z50 and scaled by mixing height h95 (Sec. III B, Fig. 9) (c) Time history of Young’s
mixing parameter θ [Sec. III D, Fig. 19, Eq. (39)]. (d) Time history of the average Favre turbulent kinetic
energy and the average dissipation rate of turbulent kinetic energy ε, volume averaged within the mixing zone
[Sec. III E, Fig. 22, Eq. (31)].

scale λxx, vertical Taylor length scale λzz, and dissipation rate of turbulent kinetic energy ε are
defined as

k̃ = 〈ρu′′
i u′′

i 〉/(2ρ̄ ), (28)

λ2
xx = u′′2(

∂u′′
∂x

)2
, (29)

λ2
zz = w′′2(

∂w′′
∂z

)2
, (30)

ε =
〈
τ ′

i j

∂u′
i

∂x j

〉
, (31)

where τ ′
i j = μs′

i j and s′
i j = ∂u′

i
∂x′

j
+ ∂u′

j

∂x′
i
− 2

3
∂u′

k
∂x′

k
δi j .
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FIG. 6. (a) Vertical variation of the turbulent Reynolds number at t = 10 for all cases, with the dashed line
indicating the location of the initial interface position zint; (b) time history of the maximum turbulent Reynolds
number for all cases.

The turbulent Reynolds number and Taylor Reynolds numbers, all a function of vertical position
z, are defined as

Ret = k̃2ρ̄

ν̄ε
, (32)

Reλxx =
√

2k̃λxx

ν̄
, (33)

Reλzz = wrmsλzz

ν̄
, (34)

where wrms is the root-mean-square value of the vertical velocity at each z plane and ν̄ is the average
kinematic viscosity. The Kolmogorov length scale η is

η =
(

ν̄3ρ̄

ε

)1/4

. (35)

The extra ρ̄ in Eqs. (32) and (35) is required for consistency with our definition of ε.
The turbulent Reynolds number in RT mixing is best interpreted as the ratio between turbulent

eddy viscosity and molecular diffusivity and can also be considered as a measure of the scale
separation in the energy spectrum. It is importantly proportional to the quantity k̃2/ε, which is used
for estimating the eddy viscosity in many gradient transport turbulence models. As seen in Fig. 6,
it rises from zero at the edges of the flow and peaks somewhere within the mixing zone, but not
at the initial interface position zint = 5.5 for most cases. Heat transfer in case B slightly shifts the
peak of turbulence upwards and adding the transport property dependencies in case C shifts the peak
further into the heavy fluid region. Due to the large transport property contrasts in cases C and D,
the vertical variation of all the Reynolds numbers becomes highly asymmetric about zint. After the
transition to turbulence at around t = 8, both the Taylor and turbulent Reynolds numbers increase
over time until the simulation ends at t = 13. For the transitional property case D, the transport
property change is applied at t = 8.5, and the time of t = 10 represents a time at which the flow has
had ample time to respond to the property changes. The Ret values of the constant property case B
greatly exceed those of all our other cases after the transition to turbulence; the detailed explanation
for this phenomenon is covered in Sec. III C.

The Taylor Reynolds numbers Reλxx and Reλzz are based on the horizontal λxx and vertical λzz

Taylor microscales and their associated velocity scales. The Taylor microscales characterize the
length scales at which viscosity begins to influence the flow eddies and approximately marks the
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TABLE II. Description of all four cases and various metrics of the flow taken at the final simulation time.

Label T1/T2 Transport property Ret,max Reλxx,max Reλzz,max kmaxηmin

A 1 Constant (isothermal) 1700 150 220 1.4
B 3 Constant 4900 220 390 1.4
C 3 Variable 1800 150 250 2.1
D 3 Transitional 1900 150 240 2.1

threshold between the inertial subrange and dissipative scales. As expected for highly anisotropic
flows, the vertical Taylor Reynolds number is approximately 1.6 times as large as the horizontal
one at all times. The spatial and temporal evolution of Reλxx and Reλzz are similar to that of
Ret displayed in Fig. 6. Table II contains the maximum Taylor and turbulent Reynolds numbers
inside the mixing region at the final simulation time. In previous fully resolved simulations of
variable-density RT turbulence, Ret ≈ 4600 had been achieved at At = 0.5 [38] and Ret ≈ 6000
at At = 0.75 [40], corresponding to a Taylor Reynolds number Reλ based on the istropic turbulence
formula (i.e., Reλ = √

20/3Ret ) of approximately 175 and 200, respectively. At these Reynolds
numbers, some scale separation between the production and dissipative scales is expected. In fully
compressible RTI simulations, Gauthier [9] reached a maximum Reλzz of 76 while Luo and Wang
[21] reached a Reλzz of 65.7, although both explored highly stratified density configurations where
Reλzz does not monotonically increase the entire simulation. The values reached in the current work
are significantly higher.

The dimensionless parameter kmaxηmin based on the maximum resolvable wavenumber is kmax =
2π/(2�x) using grid size �x characterizes the resolution of the simulation. A kmaxηmin of 1.4–1.5
is adequate for resolving average values of quantities such as ε, but not for quantities involving
higher-order moments of velocity gradients [41,42]. Higher kmaxηmin is required for capturing
extreme velocity events, which are rare at the moderate Reynolds numbers explored here, especially
in cases C and D with higher viscosity in the lower fluid. Therefore, we expect all our direct
numerical simulations to have fully resolved statistics. The scale resolution is further characterized
below where the energy spectra are discussed. Cases C and D, with the higher viscosity and mass
diffusivity values, are better resolved for all the dissipative scales. In this problem, full resolution
of the dissipative scales of molar concentration is especially important because we closely examine
regions where significant molecular mixing occurs.

We choose a mixing height definition based on the 5% average mole fraction 〈 f 〉 limits. The
spike/bubble side penetration depths hs, hb are defined as the vertical distance between the initial
interface position zint and the z location where the average mole fraction is 0.05/0.95, and the mixing
height is h95 = hs + hb. In non-Boussinesq compressible RT flows, the mole fraction profiles display
less asymmetry than when using mass fraction or density [40]. Assuming self-similarity, the mixing
height grows (in dimensional terms) according to

h = αAtgt2 + 2(αAtgh0)1/2t + h0, (36)

and the growth rate α can be estimated with

α =
(

h(t )1/2 − h(t0)1/2

(Atg)1/2(t − t0)

)2

, (37)

where t0 in general can be an arbitrary time during self-similar growth stage [43,44]. This similarity
method has been shown to be more robust than estimating α with the time derivative of h and
is capable of providing a good estimate before the mixing layer width reaches the asymptotic t2

growth. While derived for Boussinesq RT flows, the model has been shown to apply to variable-
density cases with Atwood numbers up to 0.9 [40]. Equation (37) can be plotted against simulation
time t for various t0 values. If the chosen t0’s are during the mixing layer’s self-similar growth period,
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FIG. 7. Estimates of the growth rate α calculated for various t0 values using Eq. (37) for (a) isothermal case
A, (b) T1/T2 = 3 constant property case B, and (c) T1/T2 = 3 variable property case C.

then all the curves should theoretically converge on a flat value of α when t > t0. The earliest time
t0 that can successfully estimate a stable value of α marks the point when the turbulent mixing
layer growth is becoming self-similar [43]. The curves in Fig. 7 suggest that all the flows reach an
approximately self-similar state past t ≈ 8. To estimate α, values are sampled from the relatively
flat portions of the t0 = 8, 9, . . . , 13 curves and then averaged. Table III contains the average and
standard deviations of the sampled α values for cases A to C, along with comparisons to other
relevant simulations that begin with short-wavelength initial perturbations and experiments. The
value of α obtained is about 0.023 for the isothermal and constant property cases and about 0.036
for the variable property case. Note that none of the flows have developed to a point where the t2

term in Eq. (36) is dominant. These α values are in line with other similar compressible simulations
but lower than typical experimental values [37,38,45].

Figure 8 indicates that the mixing height as a whole does not differ much between the isothermal,
constant property and transitional property cases, but the behaviors of the spike and bubble sides
differ significantly. At the moderate At of 0.2 used here, there is slight asymmetry in the mixing
layer penetration depths, with the spikes falling faster than the bubbles ascending. Compared to the
baseline isothermal case A, both the heat transfer alone in the constant property case B and the
transport property contrast in the variable property case C slow spike side penetration after about
t = 7. For the temperature ratio of 3 explored here, the large-scale effects of heat transfer are not
apparent until the onset of self-similar mixing layer growth at approximately t = 8, which happens
to coincide with the change in slope of penetration depths (Fig. 8) and in the saturation of dissipation
[Fig. 22(a)]. For the variable property case, the initial spike side penetration is higher because of
the increased mass diffusion in the hotter, bottom fluid. The effects of heat transfer and transport
properties on bubble penetration are more complicated. Due to background density stratification and
the non-Boussinesq density ratio, the bubble growth rate in the isothermal case A slows slightly after

TABLE III. Comparisons of the growth rate α with results from other simulations
and experiments in the literature.

Case α

A: Baseline isothermal (DNS) 0.023 ± 0.006
B: T1/T2 = 3 constant property (DNS) 0.023 ± 0.005
C: T1/T2 = 3 variable property (DNS) 0.036 ± 0.005
Cabot and Cook [38,44,46] (DNS) 0.02
Livescu et al. [44] case RT2 (DNS) 0.02
Youngs [47] case A (LES) 0.027
Dimonte et al. [45] (aggregated simulation results) 0.025 ± 0.003
Dimonte et al. [45] (aggregated experimental results) 0.057 ± 0.008
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FIG. 8. Time history of (a) spike penetration depths, (b) bubble penetration depths, and (c) mixing heights
based on the 5% mole fraction limits.

t = 8. We can observe that the bubble side penetration in cases B and C displays no such slowing
and eventually exceeds that of the isothermal case A. Detailed examination and explanation of this
phenomenon are in the next section. In general, the sudden transport property changes in case D are
not strong enough to affect the average large-scale motions within the layer.

Figure 9 displays the average mole fraction profiles as a function of vertical position at various
times after the mixing layer has reached the self-similar regime for cases A, B, and C. The z
coordinate is shifted so that z = 0 corresponds to the location of the mixing midplane, defined
as the point where the average mole fraction 〈 f1〉 is 0.5, and is also scaled with the mixing width
h95. The mixing midplane location z50 is not a fixed point, instead moving into the light fluid side
as time advances, due to asymmetries in the spike and bubble sides penetrations. Note that the
time histories of z50 and the corresponding 〈 f1〉 = 0.05, 0.95 locations z5 and z95 can be found
in Fig. 15. Normalizing the z position in this manner collapses the mole fraction profiles for our
baseline case A very well, and is moderately successful in collapsing the profiles for cases B and C.
Heat transfer appears to preferentially suppress turbulent diffusion on the light fluid side, causing
the mole fraction profile to gradually sharpen over time, while the heavy fluid side profile remains
self-similar.

Figure 10 displays the average density profiles using the same z-coordinate normalization with
z50 and h95. For case A, the density profiles exhibit some deviation from self-similarity on the heavy
fluid side. Cases B and C display much weaker self-similarity, especially in the heavy fluid regions,
suggesting that heat transfer causes misalignment between mixing (which affects mole fraction) and
turbulent behavior (which is strongly influenced by density).

C. Interface structure and flow dynamics

The major differences in spike/bubble side penetration and turbulent behavior described before
can be attributed to the conductive heat transfer and its effects on the density field. There is heat

FIG. 9. Average mole fraction 〈 f1〉 profiles at various times, centered around the mixing midplane location
and scaled by mixing height h95 for (a) isothermal case A, (b) T1/T2 = 3 constant property case B, and
(c) T1/T2 = 3 variable property case C.
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FIG. 10. Average density 〈ρ〉 profiles at various times, centered around the mixing midplane location
and scaled by mixing height h95 for (a) isothermal case A, (b) T1/T2 = 3 constant property case B, and
(c) T1/T2 = 3 variable property case C.

flux from the hotter lower fluid to the colder upper fluid, causing expansion of the heavy fluid and
contraction of the light fluid. The heat flux is local to the interface, as there is no volumetric heat
source or heat flux entering from the boundaries. Considering the ideal gas equation P = ρRT ,
provided that pressure remains relatively constant near the interface, when the temperature changes,
the density inversely changes proportional to the magnitude of the ideal gas constants, or equiva-
lently the molecular masses of the gas. Therefore, the intensity of expansion or contraction depends
on the temperature ratio of the two gases and magnitude of ideal gas constants. Due to the setup
requirements of the temperature ratio cases, the ideal gas constant of the upper fluid is twice as large
as that of the lower fluid (R2 > R1). The falling spikes of heavy fluid will expand more vigorously
than how much the rising bubbles contract. These differences affect the local density values, which
can be quantified by a local Atwood number, and greatly influence the strength and direction of
buoyancy forces acting on the flow.

Figures 11 and 12 display a vertical slice of density during the nonlinear growth stage and
the turbulent stage of the instability, respectively. At early times, neither the heat transfer nor the
increased viscosity in cases B and C causes major changes in the structure of the spike and bubble
sides. A closer inspection reveals that the spikes in case B are slightly thinner than those in case
A, and that the spikes in case C lack both the characteristic mushroom-head shape and any clear
vortical structures that are typically generated at the spike tips. At late times, there are obvious

FIG. 11. Comparison of early time (t = 4) density contours at the interface for (a) isothermal case A,
(b) T1/T2 = 3 constant property case B, and (c) T1/T2 = 3 variable property case C.
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FIG. 12. Comparison of late time (t = 12) density contours at the interface for (a) isothermal case A,
(b) T1/T2 = 3 constant property case B, (c) T1/T2 = 3 variable property case C, and (d) T1/T2 = 3 transi-
tional property case D.

differences. With the heat transfer in the variable temperature cases, the distribution of local density
difference magnitudes is altered, including density reversals in the hotter fluid side, where the falling
spikes become less dense than the surrounding background fluid. Additionally, heat transfer causes
larger density differences to be maintained for a longer period of time in the cold fluid side. It is
important to note that this is an effect dependent on the molecular masses of the two fluids, and that
simulations exploring different or opposite molecular mass ratios could have drastically different
results. Applying transport property contrasts in C and D increases the average bubble/spike size
and decreases the range of scales in the turbulent flow.

Figure 13 follows the evolution of a single, representative spike in the variable property case C.
The series of figures shows the cold spike gradually equilibrating in temperature with the sur-
rounding, hotter background fluid. The spike undergoes notable volumetric expansion, represented
by the dark red positive dilatation and the surrounding fluid slightly contracts, represented by
the barely visible light blue, negative dilatation, a consequence of the upper fluid being more
compressible than the lower fluid. The density contours show the spike gradually becoming less
dense than the surrounding light fluid, causing buoyancy forces to act in the opposite direction and
reversing instability progress on the light fluid side of the interface. Conductive heat transfer is the
dominant source of fluid dilatation in these simulations. Although pressure waves are generated
at the simulation initiation and throughout the entire duration of the instability due to spikes and
bubbles acting as pistons [48], they are not strong enough to significantly affect any of the flow
dynamics.

Figure 14 follows the evolution of a single bubble in the variable property case C. We observe
the same progress towards temperature equilibrium as observed with the spikes. However, with heat
conduction, the light fluid in the bubble barely contracts and the surrounding heavy fluid undergoes
expansion, enveloping the bubble with less dense, formerly heavier fluid. Again, this is indicated
by the darker red, positive dilatation of the upper fluid and the lighter blue, negative dilatation
in the plots of velocity divergence. This causes the bubble penetration to be initially delayed and
maintains density differences longer to extend the instability progress on the heavy fluid side. As
shown in Fig. 12, the local density differences decrease over time in the upper region as the two
fluids mix, but the average magnitude of density differences remains larger in cases B, C, and D
compared to case A. Since case C has much higher thermal conductivity in the bottom fluid than
case B, the effects of heat transfer are felt much sooner in case C. However, once temperature
equilibrium is reached between the spikes/bubbles and the surrounding fluid at late times, the final
density distributions for cases B and C are remarkably similar.
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FIG. 13. Visualizations of temperature, dilatation and density tracking the evolution of a single spike in the
variable property case C for t = 4, 5, 6, 7, 8.

Figure 15 highlights the misalignment between mixing and turbulent activity caused by heat
transfer and variation in transport properties. The upper and lower solid lines indicate the mixing
extent determined by the 0.05 and 0.95 average mole fraction 〈 f 〉 locations, and the central solid
line indicates the location of the mixing midplane at 〈 f 〉 = 0.5. The location of the mixing midplane
does not stay at the initial interface position but drifts downwards into the light fluid for all cases.
The dashed lines indicate the extent of the most turbulent region, defined as the locations where
turbulent Reynolds number Ret is at least 80% of the peak Ret in the domain at that given point
in time. This is the region where velocity fluctuations (t < 8) and turbulent activity (t > 8) are
strongest, and mixing is dominated more by stirring compared to mass diffusion. In the isothermal
case A, the velocity fluctuations start relatively symmetric about the mixing midplane, but then the
most intense turbulent activity prefers the heavier fluid side. Heat transfer itself in case B shifts
turbulent activity upwards, while the transport property contrast in case C shifts it even further into
the heavier fluid. The flow responds to the transport property change in D by immediately shifting
the turbulent region extents to approximately the position in case C, where the flow had started with
the variable transport properties from the beginning. Compared to case A, the region of highest
turbulence is narrower in cases B, C, and D.

Figure 16 shows the weighted vorticity PDF at the plane of highest average vorticity magnitude
in the flow after case D has had time to respond to the transport property change at t = 10. The area
under the curve gives the vorticity variance. The vorticity distribution is not sensitive to heat transfer,
as the curves for case A and B are similar, but highly dependent on the magnitude of viscosity,
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FIG. 14. Visualizations of temperature, dilatation and density tracking the evolution of a single bubble in
the variable property case C for t = 4, 5, 6, 7, 8.

comparing cases A and C. As expected, higher viscosity decreases both the average magnitude and
range of the vorticity values in the flow. Interestingly, vorticity appears to depend only on the current
viscosity field, since both the flows that start with C and transition to D end up with similar viscosity
fields and vorticity distributions.

The spatial intermittency FA is defined as the fraction of the flow that can be considered turbulent
or above a certain vorticity threshold. The threshold chosen is the magnitude corresponding to 1%
of the vorticity variance magnitude at the plane of highest vorticity. The plots of intermittency, with
height z normalized by the mixing midplane location and mixing height, are shown in Fig. 16.
The peak intermittency of the isothermal case A is slightly misaligned with the center of mixing
at z/h95 = 0, but the turbulent fraction profile is mostly symmetric around the peak value. Note
that even at the center of the mixing region, there are still some small regions of laminar flow
for all cases. Agreeing with earlier results, the heat transfer in cases B, C, and D causes severe
misalignment between the turbulent regions and the plane z/h95 = 0. These cases also experience a
more steep drop in turbulent area fraction in the light fluid side compared to the heavy fluid side.

Due to buoyancy forces, the intensity of turbulent vertical velocity fluctuations is directly
proportional to the magnitude of local density differences, which can be quantified by a local
Atwood number that compares the magnitude of local density perturbations with the average
density. However, typical definitions of the local Atwood number [49] are unable to account for
density reversals, which can occur in isothermal, compressible RT flows where the density of the
surrounding fluid near the tips of the spikes or bubbles becomes more or less dense than the fluid
density inside the spikes/bubbles. In our cases with heat transfer, the density inversions, particularly
in the light fluid side, are much more extreme and play a huge part in the flow dynamics. We
introduce a metric, PDFs of a signed local Atwood number Atl = ρ ′/〈ρ〉, that can properly capture
the effects of any density reversals. Note that attempting any averaging operation on Atl would
destroy much of the relevant information, since its interpretation changes depending on the location
within the mixing zone. On the light fluid side, positive Atl values are regions with the falling spikes
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FIG. 15. Time history comparison of the 0.95, 0.5, and 0.05 average mole fraction 〈 f 〉 locations (solid lines)
and the boundaries of regions with the highest Ret (dashed lines) for (a) isothermal case A, (b) T1/T2 = 3
constant property case B, (c) T1/T2 = 3 variable property case C, and (d) T1/T2 = 3 transitional property
case D.

FIG. 16. (a) Weighted vorticity PDF at the plane location of highest average vorticity and (b) the fraction
FA of the plane that is considered turbulent across the mixing layer at time t = 10.
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FIG. 17. PDFs of the signed Atwood number inside the turbulent regions at the (a) 〈 f1〉 = 0.75, (b) 〈 f1〉 =
0.5, and (c) 〈 f1〉 = 0.25 plane locations for time t = 10.

and negative Atl are the regions with spike regions experiencing density reversal compared to the
surrounding light fluid. Conversely, on the heavy fluid side, positive Atl values represent the regions
of density inversion and negative Atl values correspond to the rising bubbles. Larger positive Atl
values indicate fluid being pulled downwards by gravity, while very negative Atl values indicate
fluid regions experiencing strong upward buoyancy forces.

In Fig. 17 we sample only from the turbulent regions to generate the PDFs, in order to prevent
the background heavy or light fluids that are not involved in the turbulent mixing from skewing
the distributions. On the light fluid side at 〈 f 〉 = 0.75, there is a higher proportion of negative
Atl regions in the variable temperature cases B, C, and D compared to the isothermal case A.
The resulting upwards buoyancy forces on the falling spikes experiencing density reversal is
responsible for noticeably slowing down the instability progress. With larger temperature ratios
and higher heat fluxes, Atl could become negative enough that the spike penetration reverses. At
the mixing midplane 〈 f 〉 = 0.5, both bubbles and spikes are present, along with density reversal
effects. With heat transfer, there are fewer extreme negative Atl values and much higher positive
Atl values, suggesting a decrease in the intensity of upwards buoyancy forces but much stronger
downward gravity forces acting on the flow. In the heavy fluid side at 〈 f 〉 = 0.25, the frequency
of extreme negative or positive Atl values is much higher in the variable temperature cases B, C,
and D compared to the baseline case A, indicating much higher gravitational/buoyancy forces and
stronger turbulent velocity fluctuations. The prolonged period of sustained density differences in the
heavy fluid enabled by heat transfer explains how cases B and C are able to reach such high Ret

compared to the isothermal case A, in which density differences are more quickly diminished. The
Atl distributions on the heavy fluid side are similar after temperature has mostly equalized within
the mixing layer for all the variable temperature cases. We have shown that many of the differences
in instability progress and turbulent intensity can be fully predicted by tracking the Atl behavior.

D. Mixing

Accurately resolving and characterizing the mixing state is important for predicting the level
of fuel-ablator mix in ICF applications, or in general, for predicting reaction rates. To analyze the
mixing resolution, we can consider the Batchelor scale λb, which describes the smallest length scales
for concentration fluctuations before molecular diffusion dominates, similar to the Kolmogorov
length scale η for velocity/turbulence. We define λb as

λb =
(

ν̄ρ̄D̄2

ε

)1/4

= η√
Sc

with Sc = ν̄/D̄. (38)

Therefore, with our intended computational Schmidt number of 1 in the simulations and the
moderate density variations in space due to the moderate At = 0.2 (density is normalized about
1), the mixing should be as well resolved as the dynamics. Figure 18(a) provides the Batchelor scale
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FIG. 18. (a) Spatial variation of the Batchelor scale λb at t = 10 for all cases, (b) average 1D mole fraction
f1 spectra at the mixing midplane location z50 at t = 10; the two dashed lines indicate the approximate limits
of the inertial range.

λb at t = 10 for all cases and note that the Kolmogorov scale η has nearly the exact same profiles.
Cases A and B have nearly the same minimum mixing length scale, but the heat transfer alone in
case B shifts mixing slightly upwards into the heavy fluid, compared to the isothermal case A. The
increased molecular diffusivity in cases C and D drastically increases the mixing length scale in the
hotter, bottom fluid region.

In Fig. 18(b) the one-dimensional mole fraction fluctuation spectra is examined at the mixing
midplane z50. It is calculated using the same method as with the velocity spectra in the next section,
taking the Fourier transform in one horizontal direction and averaging along the other horizontal
direction. Interestingly, the turbulent fluctuations are very similar for cases A/B and cases C/D.
The dashed lines indicate the approximate limits of the inertial range (the expected −5/3 scaling)
for cases A and B, where kx = 2π/λx is the 1D wavenumber associated with the wavelength λx and
ηmin is the minimum Kolmogorov scale at t = 10. Cases C and D at this time have either a very
narrow or nonexistent inertial range.

Young’s mixing parameter θ , based on the light and heavy fluid mole fractions f1 and f2, is used
to track the global mixedness:

θ =
∫ 〈 f1 f2〉 dz∫ 〈 f1〉〈 f2〉 dz

. (39)

θ is an integral measure that quantifies the evenness of mixing in each individual horizontal layer
in the domain. In the beginning, most layers are composed of either pure light or heavy fluid, so the
mixedness metric is high. As the instability grows, the mixedness decreases significantly because
the spikes and bubbles create many regions of pure light and heavy fluid in each layer. Eventually,
the breakup of the spikes and bubbles and transition to turbulence significantly increases the surface
area of the interface, facilitating mixing by molecular diffusion and leading to an increase in the
mixedness.

Comparing the isothermal A and variable temperature B cases with constant properties in Fig. 19,
we see that heat conduction slightly delays initial instability growth and hinders late-stage mixing,
since the rise of θ from the minimum is less steep. Moving from constant to variable transport
properties (case B to case C) at the same temperature ratio, we observe a larger delay of instability
development and generally a higher level of mixedness due to the boosted molecular diffusion. The
immediate boost in mixedness during the property transition in case D can also be attributed to the
increase in mass diffusivity.
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FIG. 19. Time variation of Young’s mixing parameter θ .

The density-specific volume correlation b = −〈ρ ′ν ′〉 is another measure of the mixing state and
a very important quantity to understand for turbulence modeling [38]. Typical interpretations are
that fully mixed regions have a b value of zero and higher b values suggest a higher potential for
future mixing. Figure 20 shows the variation of b both before the transport property adjustment
in case D and some time after. In general, the profile of b for the isothermal case A remains
approximately symmetric, but heat transfer shifts the peak far into the light fluid side for cases
B and C. At the earlier time, the increased mixing by molecular diffusion in case C is reflected in
the lower peak value of b. At t = 10, the density distributions and corresponding b profiles for the
variable temperature cases B, C, and D become quite similar, despite significant differences in mole
fraction PDFs in Fig. 21. The isothermal case A has much lower b magnitudes, indicating that the
layer has become comparatively much more evenly mixed in terms of density. In incompressible
variable density flows where the microscopic densities of the two fluids are constant, b can be a
good indicator of mixing, but in compressible flows where other factors can massively influence the
density field, b becomes a less useful quantity for assessing mixedness.

Agreeing with previous work on variable density mixing at non-Boussinesq Atwood numbers,
the blobs (spikes) of pure heavy fluid are slower to mix compared to the blobs (bubbles) of pure
light fluid in the isothermal case [50]. For the baseline case A, the light fluid side at 〈 f 〉 = 0.75 has

FIG. 20. Spatial variation of the density-specific volume perturbation correlation for (a) t = 6 and
(b) t = 10.
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FIG. 21. PDFs of light fluid mole fraction f1 at the (a) 〈 f1〉 = 0.75, (b) 〈 f1〉 = 0.5, and (c) 〈 f1〉 = 0.25
plane locations for time t = 10.

much less heavy fluid from spikes mixed into it, compared to how much light fluid from the bubbles
has mixed with the heavy fluid at 〈 f 〉 = 0.25. The middle of the mixing region for the isothermal
case is also highly asymmetric, containing much more pure light fluid than pure heavy fluid. In the
lower 〈 f 〉 = 0.75 plane and at the midplane, heat transfer in case B shifts the peak of distribution
towards lower f1 values, making areas of majority light fluid less common. The increased molecular
diffusivity of the light fluid in case C flattens out the mole fraction distributions, increasing the
uniformity of mixing for the nonpure fluids. At the upper 〈 f 〉 = 0.25 plane, both heat transfer and
the transport properties cause the mixed fluid to be less uniformly mixed at the molecular level,
dragging the bulk of the distributions away from f = 0.5.

E. Taylor hypothesis

In this section, we focus on how the flow responds to sudden changes in the transport properties.
We examine whether viscosity-dissipation independence applies for fully compressible RT mixtures
heavily impacted by heat transfer effects and strong molecular diffusion. We also explore if there
is similar behavior for the analogous total mixing rate TMR and mass fraction gradients. The total
mixing rate is defined as

TMR =
∫

D
∂ρY1

∂xi

∂ρY1

∂xi
dV. (40)

Figure 22(a) shows the time evolution of the volume averaged dissipation magnitude within the
extents of the mixing region. For the baseline case A, the dissipation rises until the flow becomes

FIG. 22. (a) Time histories of the dissipation of turbulent kinetic energy, domain averaged over the mixing
layer extents, and several moments throughout the evolution of case D are highlighted; (b) time histories of the
total mixing rate TMR.
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fully turbulent, then decays due to the influence of the stratified background. This decay increases
with stronger stratification [9]. It appears dissipation is not independent of the heat transfer in case
B, as the fluid dilatation and resulting changes to the density field affect the flow dynamics in a
major way. The average dissipation is also affected by the transport property contrast applied in
case C, likely because the Re in the more viscous light fluid falls far short of the threshold needed
for dissipation independence. In the transitional case D, there is a sharp jump in dissipation as the
transport property increase is applied, then a relaxation back towards a final state as the velocity
gradients adjust. The timescale of the flow relaxation is longer than the timescale of the transport
property change. The evolution of case D is highlighted at several moments: (i) corresponds to the
moment right before the transport property change is applied, (ii) corresponds to the peak of the
response in dissipation, (iii) corresponds to a time during the middle of the flow relaxation, and
finally, (iv) corresponds to a time after the flow has reached its long term behavior. Interestingly, the
dissipation and its long-time evolution in case D closely resembles the variable transport property
case C instead of the original constant transport property case B. This suggests that for these
flows with variable properties, as long as the density fields statistics remain similar, the current
dissipation levels of the flow depend only on the transport property magnitudes and not on the past
flow history.

Similarly, the total mixing rate TMR in Fig. 22(b) is not independent of heat transfer in case B or
the transport properties in case C. The heat transfer steepens gradients in ρ and Y while the boosted
molecular diffusivity smooths them, causing the higher and lower TMR magnitudes in cases B and
C, respectively. In the transitional case D, the general reaction of TMR to the transport property
change is similar to that of dissipation, with a peak and relaxation towards a new long-term mixing
evolution. However, unlike dissipation, this mixing evolution does not resemble that of cases B or
C. This indicates that TMR and more generally the mixing state is dependent not solely on the
transport properties, but also on the past history of mixing.

Figure 23 contains average 1D u compensated velocity spectra at the horizontal plane where
Ret is highest (i.e., the peak turbulence location) at various times during the flow response to the
change in transport properties of transitional case D. To calculate the spectra, the Fourier transform
of u is taken in one direction, then averaged over the other horizontal direction. For all cases, the
spectra were found to be independent of the vertical position z inside a portion of the mixing zone,
remaining constant at heights ranging from the mixing midplane location to a good distance into the
heavy fluid side of the interface, inside of which the most turbulent location is located. Flat regions
of the compensated spectra represent the canonical −5/3 scaling of the turbulence inertial range.
Cases A and B, which have constant properties, have similar spectra indicating fully developed
turbulence with a noticeable inertial subrange. Case C with the transport property contrast is still
turbulent, but lacks a clear inertial subrange and has a lower turbulent kinetic energy magnitude.
During the transition period in case D, the spectra can be observed moving away from the case B
spectra towards the case C spectra. As the final state in case D is reached, the spectra for cases
C and D are nearly indistinguishable, both in shape and magnitude. Note that the spectra of v, w

and turbulent kinetic energy behave similarly. This provides further evidence that after a period of
adjustment, many dynamical statistics of the flow conditions explored in this paper depend only on
the magnitude of the transport properties. Whether this dependence holds for higher temperature or
density ratios is to be explored in further work.

Figures 24(a) and 24(b) display PDFs of the alignment angles between the vorticity vector or
mass fraction gradient vector and the eigenvectors of the strain rate tensor. The vorticity-strain
angles ξ1, ξ2, ξ3 and mass fraction gradient-strain angles χ1, χ2, χ3 correspond to the eigenvalues
λ1 > λ2 > λ3 and associated eigenvectors of the strain rate tensor. Again, the statistics are taken
from a region surrounding the location of peak turbulence, the most appropriate place to probe the
turbulence structure. The alignments for the baseline isothermal case A and the constant property
case B qualitatively agree with a wide range of results from incompressible turbulent flows to
compressible chemically reacting flows [27]. The vorticity vector prefers to align with the inter-
mediate strain eigenvector, and the mass fraction gradient vector aligns with the most compressive
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FIG. 23. Average 1D compensated u velocity spectras at the peak turbulence location at the various times
described in Fig. 22(a): (i) initial state, (ii) peak of dissipation, (iii) middle of recovery period, and (iv) late-time
state.

eigenvector. Heat transfer and the transport properties do not impact vorticity-strain alignment, as
any differences in the distribution are indistinguishable from noise. The heat transfer does not affect
mass fraction gradient-strain alignment, but transport properties decrease the alignment of χ1 and
χ3 and increase the alignment of χ2. Farther from the most turbulent region, we observe more

FIG. 24. PDFs of (a) vorticity-strain alignment angles and (b) mass fraction gradient-strain alignment
angles at the peak turbulence location for the latest time in the simulation (t = 13).
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extreme differences in mass fraction-strain alignments and the beginnings of some deviations in
vorticity-strain alignment for cases C and D, but this should be expected because of the weaker
turbulence activity. In general, vorticity alignment is not very sensitive to heat transfer or transport
properties, and mass fraction gradient alignment is sensitive only to transport properties.

IV. DISCUSSION

With the moderate Atwood number and stratification, the baseline isothermal case A already
deviates from the symmetries and expected scalings that have been documented for Boussinesq RT
mixing. Therefore, this paper mainly focuses on comparing the differences between the variable
temperature cases B, C, and D and the base case A. By using the three different transport property
configurations, the sensitivity of various flow statistics to heat transfer itself or the accompanying
transport property contrasts can be examined. In general, all scales of the flow, from the spike
and bubble motions down to the dissipative regimes, are affected by heat conduction and transport
properties. Heat conduction modifies the density field, a key factor in buoyancy driven flows,
affecting the intensity and location of turbulent activity as the instability progresses. After sudden
transport property changes, certain dynamical quantities such as vorticity and dissipation appear to
lose memory of the past flow history and depend only on the current magnitude of the transport
properties. The quantity and uniformity of the mixed fluid at various positions within the mixing
zone, already asymmetrical to begin with in the baseline case, are further altered by all the
temperature-related effects.

This analysis identifies temperature differences and all its associated effects as a key factor to
consider in many ICF [51–53] and astrophysical simulations, and also expands on previous work
on isothermal compressible RTI, which mainly focused on stratification effects. However, these
simulations can serve as only a limited example of how thermal fluxes and transport properties
can affect the flow dynamics and mixing of a compressible RT flow. It must be reiterated that any
results described here in detail are highly specific to the particular molecular mass ratios and other
parameters in the problem setup. Here the molecular mass of the bottom fluid is double that of
the top fluid, so the top fluid is twice as isobarically compressible when changing temperature.
Real applications may have significantly different background density profiles, involve species with
more extreme or opposite molecular mass ratios explored in this study, and are not under hydrostatic
equilibrium. Additionally, in ICF, there is extensive experimental evidence of strong self-generated
electromagnetic fields generated during the implosion process [54–56], which can have a significant
effect on the development of the flow instabilities [57,58]. To our knowledge, the exact nature
of these electromagnetic fields is unclear, and we do not consider any electromagnetic effects in
our study.

A. Numerical stiffness

The addition of strongly temperature-dependent transport properties introduces a large amount
of numerical stiffness into the problem. The stability limit for time stepping becomes dependent
on both the magnitude of the transport properties and their spatial derivatives. It has been found
that the critical timestep required for stability at the onset in this compressible RTI problem can be
even more strict than suggested by typical viscous explicit time-stepping restriction scalings such
as �t ∝ ρ�x2

i /μ, as shown in Fig. 25. The critical time step �t was determined by running a
large set of simulations of a representative 1D version of the problem at different time-step sizes,
and �t is the minimum time-step size that prevents the solution from diverging. This stringent
time-step requirement presents significant challenges when pushing towards higher temperature
ratios, which is required to fully explore phenomena such as relaminarization and critical conditions
for the survival or suppression of the RT instability. Additionally, the computational restriction
places limits on domain size, but larger simulations are necessary for statistical convergence of
higher-order moments of flow variables and detailed budget calculations.
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FIG. 25. Time-step stability limit for a representative 1D RT test case and comparison to various scalings.

V. CONCLUSIONS

Direct numerical simulations of the 3D fully compressible Rayleigh-Taylor instability are con-
ducted for various temperature ratios and transport property variations. Inspired by ICF hot-spot
conditions, the problem setup consists of colder, heavy fluid on top of hotter, light fluid. Com-
parisons among cases with constant transport properties (cases A, with isothermal background
temperature, and B, with different temperatures for the heavy and light fluids), plasma-type
temperature-dependent variable transport properties (case C), and transitional transport properties
that vary in time (case D) allow the effects of heat transfer and transport property contrasts to
be isolated. The temperature differences and their related effects further amplify the asymmetries
already present in the baseline isothermal case, which has a moderate Atwood number and non-
negligible stratification. However, some aspects of the flow display very little sensitivity to the heat
conduction, transport properties, or both.

The main mechanism by which heat conduction affects the flow is through alteration of the
density field, in turn influencing the strength of gravitational or buoyancy forces acting on the
flow. The simulation cases B and C have different temperatures for the heavy and light fluids,
which leads to non-negligible heat transfer across the interface. Due to the heat transfer, these
cases lose the self-similar collapse of the average density profiles observed with the isothermal
case A. As heat is deposited into the colder regions from the hotter regions, the fluids undergo
local expansions and contractions, but the relative intensity of dilatation for the two fluids depends
on both the temperature ratio and the relative molecular masses of the two species. Therefore, the
spikes and bubbles, which begin at opposite temperatures and carry different molecular mass fluids,
are affected very differently. In this problem setup, the heat transfer hinders penetration of the falling
spikes, while extending the activity of the rising bubbles by affecting their densities.

A metric called the signed Atwood number Atl is introduced to describe the density field in
more detail, allowing phenomena such as density reversals to be characterized. With heat transfer,
the larger proportion of negative, lower magnitude Atl values on the light fluid side captures the
density expansions undergone by the spikes, predicting the slowed down instability growth on the
light fluid side and lessened turbulent activity. On the heavy fluid side, the prolonged and increased
turbulent behavior can be explained by the wider range of Atl values sustained over time. Heat
transfer shifts the peak of turbulent activity upwards into the heavy fluid and also increases the
intensity of turbulence, as evidenced by the much higher maximum Ret reached. In the most vortical
or turbulent regions, the vorticity-strain alignment distributions are similar to other fully developed
turbulent flows, and thus insensitive to heat transfer effects.
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Transport properties that have a power-law scaling with temperature significantly increase the
viscosity, thermal conductivity, and mass diffusivity on the hotter light fluid side. The higher
viscosity, along with quicker density changes brought on by the boosted thermal conductivity
further hinders spike penetration and delays bubble development. Interestingly, after temperature
has become approximately equilibrated within the mixing layer, the constant and variable transport
property cases show extremely similar density perturbation statistics on the heavy fluid side, as seen
with the Atl and b profiles. The addition of variable transport properties further shifts turbulent
activity upwards into the heavy fluid and also weakens it, reducing the intensity of velocity
fluctuations and vorticity in the region of peak turbulence.

Mixing is also asymmetrically affected by heat transfer and transport properties. From the mixing
midplane to the light fluid side, heat transfer slightly hinders mixing, increasing the amount of pure
heavy fluid, but the fluid that is molecularly mixed becomes more uniform. In the same region, the
variable transport properties cause a huge boost in the molecular diffusivity, decreasing the amount
of pure heavy fluid and greatly increasing the uniformity of the mixed fluid. On the heavy fluid side,
heat transfer causes a shift in the mixed fluid distribution from majority evenly mixed fluid towards
a preference for majority heavy fluid, and adding variable transport properties has little impact.
The mass fraction gradient-strain rate tensor alignment is sensitive only to the transport property
magnitudes, but remains similar with the alignment found in other fully developed turbulent flows.
The density-specific volume covariance was not found to be good indicator of the mixing state, due
to heat transfer’s influence on the density field.

Dissipation-viscosity independence does not apply in mixtures that have significant fluid dilata-
tion or if one fluid has too high a viscosity. When transport properties suddenly change in magnitude,
there is a peak in response for quantities such as dissipation and total mixing rate, TMR, then
a transition period as the flow relaxes towards a final evolutionary state. Many of the dynamical
quantities of the flow depend only on the current magnitudes of the transport properties. The
vorticity distribution, velocity spectra, and average dissipation magnitudes for the variable property
case C and the late time evolution in the transitional property case D exhibit many similarities.
However, mixing responds differently, as the late-time evolution in the transitional case does not
resemble any other configuration, suggesting a dependence on past mixing history in addition to the
current transport property magnitudes.

The simulations have demonstrated how heat conduction and variable transport properties as a
result of temperature differences can significantly affect the evolution of an RTI mixing layer. More
simulations are needed to tackle temperature ratios high enough that local relaminarization and
more significant effects on turbulence structure are observable in the variable transport property
cases. It remains to be seen if the conclusions we have made at temperature ratio 3 and the
corresponding transport property magnitude ratio of 15.6 for our variable/plasma-type property
simulations continue to hold for higher temperature ratios. The results in this paper will be compared
to those of analogous 2D simulations in future work, as current simulations targeting the relevant
applications of interest are mostly still limited to two dimensions. In literature, many studies have
uncovered significant differences between 2D and 3D RTI, so it would be useful to examine how
dimensionality impacts the effects of heat transfer and transport properties.
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