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Highlights

• A new method for deriving stable and high-order finite difference cut-cell schemes.
• The “small-cell” problem is addressed by construction using the TEMO procedure.
• Stability assessed on hyperbolic problems without numerical dissipation.
• Application to parabolic and elliptic systems highlights 8th order accuracy.



Foundations for High-Order, Conservative Cut-Cell Methods: Stable
Discretizations on Degenerate Meshes

P. T. Brady, D. Livescu

CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

Cut-cell methods for unsteady flow problems can greatly simplify the grid generation process and allow for
high-fidelity simulations on complex geometries. However, cut-cell methods have been limited to low orders
of accuracy. This is driven, largely, by the variety of procedures typically introduced to evaluate derivatives
in a stable manner near the highly irregular embedded geometry. In the present work, a completely new
approach, termed TEMO (truncation error matching and optimization), is taken to solve this problem.
The approach is based on two simple and intuitive design principles. These principles directly allow
for the construction of stable 8th order approximations to elliptic and parabolic problems. In addition,
when combined with the non-linear optimization process of Ref. [6], these principles allow for stable and
conservative 4th order approximations to hyperbolic problems without the addition of numerical dissipation.
To the best of the authors’ knowledge, these are the highest orders ever achieved for a cut-cell discretization
by a significant margin. This is done for both explicit and compact finite differences and is accomplished
without any geometric transformations or artificial stabilization procedures.
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cut-cell, high-order, conservative, stable, truncation error matching, optimization

1. Introduction

The cut-cell method [17] allows for the solution of partial differential equations (PDEs) defined on
complicated domains to be computed numerically on simple Cartesian meshes. This method has seen
extensive use in the fluids community, so we define the domain of interest, Ωf , as the fluid domain which is
bounded by Γf ∪ Γs, where the Cartesian and solid object boundaries are given by Γf and Γs, respectively.
A schematic of this is shown in Figure 1. Thus, the non-Cartesian physical boundaries are embedded into
the simpler Cartesian mesh, leading to computational cells which have been cut by the embedded object.
Rather than modifying the physical equations to implicitly account for this object, the cut-cell approach
modifies the discrete operators and imposes boundary conditions directly on Γs.

The allure of cut-cell type methods has attracted the attention and effort of a number of researchers for
many years (see [26] for a review). In theory, cut-cell methods obviate the need for unstructured meshes
and allow for the use of robust, accurate and conservative finite difference/volume schemes with only slight
modifications near the boundary. However, the current solutions to the severe numerical challenges of cut-
cell schemes typically lead to significant modifications of the discrete algorithm. The discrete algorithms
are modified by requiring extra procedures to evaluate derivatives near the boundary since a straightforward
evaluation leads to instabilities. The complexity of the correction procedures and the errors incurred by
them have made it difficult to achieve high order accurate cut-cell methods.

The numerical difficulties facing cut-cell methods, warranting these kinds of modifications, are three-fold:
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Figure 1: Schematic of solid object, Ωs, bounded by Γs, embedded in a fluid domain, Ωf . The right side shows the representation
of the generated cut-cells using from both a finite volume and finite difference perspective. Note that the finite volume approach
requires more geometric information than the finite difference based approach.

1. Evaluation of spatial derivatives on meshes where at least one point on Γs is arbitrarily close to a fluid
point in Ωf (termed a “degenerate mesh” herein) without compromising stability.

2. Robust and accurate interpolation of field data to evaluate spatial gradients at the boundary.

3. Robust and accurate handling of computational cells whose fluid/solid geometry varies with time.

A solution to item 2 is required for a multi-dimensional Γs with general boundary conditions. A solution
to item 3 is required for applying the cut-cell approach to moving objects. In the present work, we focus
exclusively on item 1 (known as the “small-cell problem”) as this is the foundation on which a complete
cut-cell method can successfully address items 2 and 3.

A comparison of a finite volume (FV) representation of a cut-cell with a finite difference (FD) repre-
sentation is illustrated in Figure 1, where an otherwise uniform mesh of constant spacing, h, is intersected
with an embedded objected bounded by Γs. An FV scheme will typically require integrating over faces and
volumes and thus requires the computation of fluid face area fractions (indicated as αA1 and αA2 in Figure 1)
and the fluid volume fractions (α in Figure 1) associated with cut-cells. An FD scheme stemming from a
typical method of lines discretization only requires a single 1D geometric quantity, the fluid line fraction
(ψ in Figure 1), to characterize the boundary induced by the embedded object. Although FV type cut-
cell methods have dominated the literature, the FD approach is pursued in this work due to its geometric
simplicity.

Regardless of the approach chosen, the small-cell problem manifests as a prohibitive increase in the
stiffness of the discrete system as ψ → 0 (or α → 0). As ψ → 0, the embedded wall approaches the first
fluid point in the domain leading to a degenerate mesh. Small cells leading to stiff systems have also been
a problem for finite element approaches (termed cut-element methods), requiring novel stabilization tech-
niques [11]. With the exception of preliminary work reported in [7, 36], to the best of the authors’ knowledge,
every cut-cell scheme that has been devised for unsteady flows, attempts to alleviate this problem through
either geometric manipulations to remove the small cells or some kind of stabilizing dynamic procedure
which depends on the value of the solution at any given time [1, 3, 4, 9, 10, 13–18, 20, 22, 24, 25, 27–30, 32–
35, 39–45]. That is, it is the conventional wisdom that something must be done about small cells. In this
work, we pursue a different strategy and devise schemes which are stable over the range ψ ∈ [0, 1] (with
ψ → 0 representing the strongest challenge to stability and accuracy) without any geometric modifications
or dynamic procedures or stabilizing source terms. In other words, small cells are not a problem for the
cut-cell discretizations presented in this paper.

The order of accuracy of cut-cell schemes for unsteady problems has been largely limited to 2nd order [1,
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3, 4, 13–18, 20, 22, 24, 25, 27, 29, 30, 32–35, 39–45]. To the best of our knowledge, the scheme of [9]
for incompressible flows (which was extended to compressible flows in [10]) is the only one which has
demonstrated 3rd order accuracy for unsteady problems. However, Ref. [9] mentions that the dynamic
correction procedure yields schemes which are unstable in the inviscid limit. To remedy this, dissipative
schemes are used in [10] to extend the method to compressible flow.

In this paper, it is shown that pursuing a fundamentally different strategy for constructing stable schemes,
based on truncation error matching and optimization (hence TEMO), allows for the development of 8th

order explicit and compact finite differences for parabolic and elliptic equations and conservative 4th order
discretizations which are stable for hyperbolic problems.

The paper is organized as follows. The formulation of a finite-differences based cut-cell scheme is de-
scribed in Section 2. The construction of these novel cut-cell stencils is described in detail in Section 3. Their
construction is driven by two intuitive and simple design principles which outline the desired behavior of the
cut-cell schemes in the limiting cases of ψ = 0, 1 through truncation error matching. These are described in
Section 3.1. The application of these principles to the construction of schemes that are valid over ψ ∈ [0, 1]
and have the desired behavior at ψ = 0, 1 is described in Section 3.2. Conservative, stable approximations
to hyperbolic equations require that certain constraints be satisfied. Discrete conservation constraints and
their impact on the construction of cut-cell stencils are described in Section 3.3. The work of Ref. [6] was
focused exclusively on uniform mesh boundary stencils. Specifically, the optimization procedure of Ref. [6]
was not designed with cut-cell discretizations in mind. Here, it is extended to hyperbolic cut-cell stencils
and used to determine the free parameters, allowed by the design principles, in the cut-cell discretizations.
This procedure is described in Section 3.4. The result of this procedure is a set of coefficients which are
polynomial functions of ψ. These closed form polynomials used for the the discretizations in this manuscript
are given in the supplementary material described in Appendix B. Two examples of discretizations using
these coefficients are given in Appendix A. The schemes are subjected to a variety of tests in Section 4 to
demonstrate their stability and accuracy, even for very challenging non-linear hyperbolic problems. In all
tests considered, the schemes demonstrate the advertised order of accuracy and excellent stability properties
over the whole range of ψ ∈ [0, 1] without any small-cell corrections or numerical dissipation.

2. Formulation of Finite Difference Based Cut-Cell Approach

The majority of cut-cell literature has been based on finite-volume formulations, with the work of [9]
and [10] as notable exceptions. A consequence of this choice is the need for advanced computational geometry
functionality to handle the volume/volume intersections of the embedded objects and the Cartesian mesh
cells. For example, as shown in Figure 1, a finite volume approach will require intersecting an embedded
geometry with a Cartesian mesh cell and also with all the faces of the cell to compute relevant volume and
area fractions. However, a finite difference scheme only requires the intersection of the embedded object
with a mesh line. It is our conjecture that a cut-cell method based on finite differences will be simpler to
implement and not require expensive computational geometry routines. As such, finite differences are used
as the basis for the present approach.

Consider a continuous Cartesian domain, Dc, defined by 3 orthogonal vectors: Lx, Ly, and Lz, with
respective lengths: Lx, Ly, and Lz, such that

Dc = X c × Yc ×Zc , (1)

where × denotes the Cartesian product and

X c = {x | x ∈ [0, Lx]} ,
Yc = {y | y ∈ [0, Ly]} ,
Zc = {z | z ∈ [0, Lz]} .
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F = { }, S = S0 ∪ S1 ∪ S2 = { }

S0

S1

S2

Figure 2: The introduction of 3 embedded objects into the domain, D. The discrete sets, S0, S1, and S2, which contain the
points in the domain that are inside each solid, are shown. The points making up each set is highlighted in gray. The remaining
nodes in the domain belong to the set of fluid nodes, F , and are highlighted in blue.

For a node-based scheme, the domain is discretized by first defining

I = {0, 1, . . . , Nx − 1} ,
J = {0, 1, . . . , Ny − 1} ,
K = {0, 1, . . . , Nz − 1} ,

where Nx, Ny, and Nz are specified based on resolution requirements. These are used to write the ordered,
discrete sets

X = {xi | i ∈ I} ⊂ X c ,
Y = {yj | j ∈ J } ⊂ Yc ,
Z = {zk | k ∈ K} ⊂ Zc ,

where in the present case only uniform meshes are considered (i.e. xi = iLx/(Nx − 1)). Thus, the discrete
Cartesian domain, D, is given by

D = X × Y × Z . (2)

Note that this is the standard definition for a discrete Cartesian domain that would be arrived at following
a method of lines spatial discretization. However, the above discussion is necessary since the description of
the cut-cell approach will make use of the various constituents of D.

Generalizing on Figure 1, M embedded objects are introduced into Dc. Associated with the mth ob-
ject are Ωs,m and Γs,m , which are continuous sets describing the embedded volume and bounding area,
respectively. The total solid volume, Sc, is given by

Sc =
⋃

m∈M
Ωs,m ,

where M = {0, 1, . . . ,M − 1} is an indexing set for the embedded objects. The discrete version of this set
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is then,

S = Sc ∩ D .

It is also possible to group the solid points according to their embedded object index:

Sm = Ωs,m ∩ D =⇒ S =
⋃

m∈M
Sm .

The corresponding set of fluid points is then F = D − S. An example of this is shown in Figure 2 with
M = 3. The individual contributions to the set of solid points are labeled S0,S1, and S2. It is important
to note that the points in S are not used in the cut-cell method. That is, the governing equations are not
solved in S. Nor are they included in the solution procedure as a means of indirectly imposing boundary
conditions. However, an implementation of the method may use the storage associated with those points (if
any).

Splitting the domain, D, into its disjoint constituents, F and S is not enough to fully describe a finite
differences based cut-cell method. The intersections of mesh lines with the embedded objects also needs to
be accounted for. To this end, one dimensional rays coincident with the mesh lines are given by,

Rxjk = {(x, yj , zk) | x ∈ X c} ,
Ryik = {(xi, y, zk) | y ∈ Yc}
Rzij = {(xi, yj , z) | z ∈ Zc} ,

where xi, yj , and zk are the elements of X , Y, and Z, respectively. The intersections of these rays with the
mth embedded object is given by

Rxm =
⋃

k∈K

⋃

j∈J
Rxjk ∩ Γs,m ,

Rym =
⋃

k∈K

⋃

i∈I
Ryik ∩ Γs,m ,

Rzm =
⋃

j∈J

⋃

i∈I
Rzij ∩ Γs,m .

As each embedded object may be associated with different physical boundary conditions, it is necessary to
form the sets of intersection points associated with each object. The full set of extra boundary points in
each direction, induced by the embedded objects are

Rx =
⋃

m∈M
Rxm ,

Ry =
⋃

m∈M
Rym ,

Rz =
⋃

m∈M
Rzm .

Figure 3 shows an example of the construction of Rxm for 3 embedded objects arrayed on a domain.
The intersection of a ray in the x-direction, Rxjk, with the embedded objects is shown. Constructing the
full set of intersection points involves marching this ray over J × K. These intersection calculations are
one dimensional calculations and are therefore relatively fast compared to the three dimensional volume
intersection calculations required for finite volume cut-cell schemes. The construction of Ry and Rz follow
similarly but are not drawn.

The points F and Rx/y/z are all that is needed when Dirichlet boundary conditions are associated with
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y
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Rx0 = { }, Rx1 = { }, Rx2 = { }, Rx = Rx0 ∪Rx1 ∪Rx2

Γs,0 Γs,1 Γs,2

Figure 3: The intersection of the boundary sets Γs,0, Γs,1, and Γs,2, with rays in the x direction are shown. The points in
the ray/object intersection sets, Rx0 , Rx1 , and Rx2 , are shown in green, blue, and red, respectively. The thicker black arrow is
an example of a ray in the x direction at a given (j, k) position, Rxjk. The intersection points of this particular ray with the

embedded objects are indicated with larger node sizes. The full set of intersection points can be constructed by marching such
rays over all available (j, k) positions.

each embedded object. However, when Neumann conditions are encountered on an embedded object, or
when there is no boundary condition and the value is allowed to float, then the governing equations must
be solved on Rx/y/z which requires another set of points.

To describe this required final set of points, first consider the set Pxm which can be used to label (or
index) all the points of Rxm. Utilizing the same idea for the y and z directions:

Pxm = {0, . . . , |Rxm|} ,
Pym = {0, . . . , |Rym|} ,
Pzm = {0, . . . , |Rzm|} ,

where |·| is used to indicate the size of the set. An example of this labeling for Rx0 and Ry0 is shown in
Figure 4 which focuses on the m = 0th shape from Figure 3. To motivate the construction of the final set
of points, consider the data required to evaluate (∂/∂x, ∂/∂y) at point 6 in Rx0 on the left side of Figure 4.
By construction, the point is on a mesh line in the x direction, making it straightforward to write a FD
discretization of ∂/∂x. However, point 6 is not on a mesh line in the y direction. Thus, formulating a FD
discretization of ∂/∂y at point 6, requires another ray of data originating from 6 and proceeding in the y
direction. This auxiliary ray is denoted by Rxy0,6 in Figure 4 and will be explained next.

By construction, the pth element of Rxm is the tuple of spatial coordinates, (x, yj , zk)p, recording the
intersection of a mesh line ray with the embedded object. To isolate different elements of the spatial
coordinates in the following descriptions, the p subscript will be distributed to each component such that
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Figure 4: An examination of the construction of the auxiliary line sets, Lxm, and Lym, for the m = 0 embedded object in the
domain. The labeled points in Rx0 and Ry0 are shown on the left and right, respectively. The collection of points in Lxm,p, are

the intersection points of the Cartesian mesh and a ray originating from the pth point in Rxm and extending in the ±y and ±z
directions as appropriate.

(x, yj , zk)p = (xp, yjp , zkp). The ray/object intersections are then written,

Rxm =
⋃

p∈Pxm

{(xp, yjp , zjp)} ,

Rym =
⋃

p∈Pym

{(xip , yp, zjp)} ,

Rzm =
⋃

p∈Pzm

{(xip , yjp , zp)} .

The set Rxym,p is introduced to describe the ray in the y direction, originating from the pth point of Rxm.

Likewise, Rxzm,p describes the ray in the z direction, originating from the pth point of Rxm. It is clear that
the auxiliary ray sets, Ryxm,p and Ryzm,p associated with Rym as well as Rzxm,p and Rzym,p associated with Rzm
are needed. They are formulated:

Rxym,p = {(xp, yj , zkp) | j ∈ [jp ± 1, jp ± q]} ,
Rxzm,p = {(xp, yjp , zk) | k ∈ [kp ± 1, kp ± q]} ,
Ryxm,p = {(xi, yp, zkp) | i ∈ [ip ± 1, ip ± q]} ,
Ryzm,p = {(xip , yp, zk) | k ∈ [kp ± 1, kp ± q]} ,
Rzxm,p = {(xi, yjp , zp) | i ∈ [ip ± 1, ip ± q]} ,
Rzym,p = {(xip , yj , zp) | j ∈ [jp ± 1, jp ± q]} ,

where the q is chosen based on accuracy and stability requirements, and the choice of ± in the index range
is dictated by the embedded object normal vector. For suitably aligned objects, both index ranges may be
equally applicable. Figure 4 shows the construction of the auxiliary ray sets Rxy0,p and Ryx0,p, and gives an
example of 4 of the rays to highlight the geometric interpretation of the notation. It can be convenient to
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group the auxiliary ray sets for an object into auxiliary line sets:

Lxm =
⋃

p∈Pxm

Rxym,p ∪Rxzm,p ,

Lym =
⋃

p∈Pym

Ryxm,p ∪Ryzm,p ,

Lzm =
⋃

p∈Pzm

Rzxm,p ∪Rzym,p .

Solving systems of equations with general boundary conditions and embedded object shapes, using the
present finite differences based cut-cell method, requires knowledge of F , Rxm, Rym, Rzm, Lxm, Lym, and
Lzm. In the spirit of finite differences, all of these sets are constructed via simple one dimensional geometry
operations and do not require any volume/volume intersections that are typical of finite volume based
schemes. Neumann boundary conditions do require information about the surface normal and moving objects
will require geometric information such as center-of-mass and orientation angles. Efficient generation of this
data is outside the scope of this manuscript.

It should be noted that the auxiliary line sets, Lx/y/zm are not on an equal footing with the points in F or
the ray/object intersections, Rx/y/z. That is, the governing equations are solved on F and Rx/y/z but never
on Lx/y/z. Rather, Lx/y/z represent convenient placeholders for one dimensional interpolation operations.
In some sense, Lx/y/z could be referred to as “ghost points”. However, this terminology has been avoided
since the typical use of ghost points is to avoid solving the equations directly on Rx/y/z, rather than to
provide supplemental information to facilitate the discretization of the system on Rx/y/z.

This manuscript will not address the fully general case where Lx/y/z ∩ Rx/y/z 6= ∅. Instead, a proof
of concept for stable finite differences based cut-cell discretizations will be explored for general shapes with
Dirichlet boundary conditions (i.e. Lx/y/z is not needed) or for planar shapes with Neumann and outflow
conditions (i.e. Lx/y/z ⊂ Rx/y/z). With these simplifications for the Neumann and outflow conditions,
solving the governing equations on the boundary does not require any interpolation operations as the lines
of data required by the derivative approximations are aligned with the mesh. This approach allows for the
cut-cell scheme to be parameterized by a single one dimensional value, ψ, the fluid line fraction (as shown
in Figure 1). Thus, the FD stencils on and near Rx/y/z can be written as functions of ψ. The stability of
these schemes can be systematically assessed over the range of ψ ∈ [0, 1]. This systematic assessment can
be used to optimize the cut-cell schemes for stability over the full range of ψ ∈ [0, 1] such that no small-cell
corrections or any in-situ dynamic procedures are necessary.

3. Construction of Embedded Stencils

The procedure for generating FD cut-cell stencils can be best understood when contrasted with the
procedure for generating FD derivative approximations on Cartesian meshes which do not contain any
embedded objects, that is, D = F . For example, if a two dimensional domain, D, is discretized with Nx, Ny
points in each direction, the approximation to ∂/∂x over the whole domain is given by the Kronecker
product,

∂

∂x
≈ Ox = Ox

1 ⊗ INy , (3)

where INy denotes the identity matrix with Ny elements and Ox
1 is an (Nx ×Nx) matrix describing the FD

discretization along a mesh line in the x direction. The choice of Ox
1 ⊗ INy or INy ⊗Ox

1 is arbitrary from a
mathematical standpoint and should be chosen based on the layout of the data to which the operator, Ox,
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will be applied. For the central finite differences considered in this paper, the sparse structure of Ox
1 is:

Ox
1 =

»

–

Bl(α)
C

Br(α)

fi

fl ,

where C is a narrow band circulant matrix describing the interior discretization, and Bl/r(α) are the small
block matrices describing the lopsided boundary stencils needed to evaluate the derivative to high accuracy
near the left, (l), and right, (r), walls. They are written as functions of free coefficients, α. Standard
central/compact finite differences are used in the interior in of the domain. The details of the these schemes
can be found many places, including Refs. [6, 23]. The exact form of the boundary schemes are given later
in equation (5a).

In the cut-cell case where D 6= F , the full operator Ox can no longer be constructed by repeating the one
dimensional operator, Ox

1 , Ny times along the diagonal. Instead, a new one dimensional operator is defined:

Ox,n
1 =

»

–

Bl(ψl,n,α)
C

Br(ψr,n,α)

fi

fl ,

where Bl/r are now functions of a one dimensional fluid line fraction ψl/r. The n superscript and subscript
are for labeling. In the cut-cell case, the discrete operator, Ox, is no longer given by equation (3) but rather
by,

Ox =

»

—

—

—

—

—

–

Ox,0
1

Ox,1
1

Ox,2
1

. . .

Ox,Qx

1

fi

ffi

ffi

ffi

ffi

ffi

fl

, (4)

where Qx is the total number of one dimensional operators required. In the case where the embedded objects
do not intersect with the domain boundary, Qx = NyNz+ |Rx|/2. This operator has been written as if there
are no “holes” in the data, that is, the data in F and Rx have been appropriately interleaved. Operators for
the y and z spacial derivatives, Oy and Oz can be similarly defined. Note that the sizes of the operators will
not necessarily be equivalent since Ox is defined over F ∪Rx, Oy is defined over F ∪Ry, and Oz is defined
over F ∪Rz. One could define mappings between these various spaces and write the operators assuming a
data layout as in equation (4), or one could formulate the operators using a block diagonal matrix similar
to (4) but only over F , augmented with a more general sparse matrix over Rx/y/z. Such implementation
issues will not be explored but are worth noting.

Therefore, formulating cut-cell stencils in the FD framework, is equivalent to designing the boundary
schemes, Bl/r(ψ,α).

3.1. Design Principles

To design the general cut-cell boundary matrix, B(ψ,α), attention is first focused on the limiting cases of
the uniform mesh, Bu(α) = B(1,α) and the degenerate mesh, Bd(α) = B(0,α). In the ensuing discussion,
the dependence on the free parameters, α, is not relevant and is dropped from the notation for brevity.

The width of the scheme used in the interior of the domain sets a minimum value on the number of
required boundary stencils. Likewise, the desired order of accuracy of the boundary stencils sets a minimum
requirement on their width. However, the number of boundary stencils and their respective widths may be
arbitrarily large. Additional rows and columns of coefficients can be added above these baseline requirements
to satisfy additional properties, such as discrete conservation [6], or energy stability [36]. Thus, two principles
(in addition to discrete conservation) were selected to drive the formulation of the cut-cell boundary stencils,

under the assumption that such constraints could be satisfied for suitable sizes of B
u/d
l :
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ψ = 1 ... Uniform Mesh
x0 x1 x2 x3 xN−1

ψ = 0 ... Degenerate Mesh
x1 x2 x3x0,xd xN−1

Figure 5: Uniform mesh with N equidistant points and a corresponding degenerate mesh with degenerate point xd collocated
with the left wall at x0.

1. Given a uniform mesh with ψ = 1, the addition of a degenerate point at a wall, such that ψ = 0,
should not change the truncation error at any point.

2. Do not violate the assumptions of continuity embedded in the FD formulation.

The first principle of truncation error matching is based on the observation of Schneiders et al. [33],
described in the context of moving Γs: the solution deteriorates (i.e. oscillations develop) when small
changes in Γs result in abrupt changes to the discrete operator which then result in abrupt changes in
truncation error acting as essentially discontinuous forcing terms. The abrupt changes to the discrete
operator are associated with 2 events: cell-crossing and cell-classification changes. In the context of [33], a
cell-classification change is when a cut-cell changes from a “regular” cell requiring no corrections to a “small”
cell which requires corrections. A cell-crossing event is when the geometry of a cell changes over the course of
a timestep such that ψ ≈ 1→ ψ ≈ 0 (or vice-versa). The events can be triggered by small changes Γs. This
observation has also been made by other cut-cell researchers, for example, Brehm et al. [8]. The cut-cell
method presented here does not do any small cell corrections so there are no cell-classification changes. The
goal of the first principle is to avoid the abrupt changes to the discrete operator caused by cell crossing
events, ensuring that small changes in Γs result in small changes in the truncation error of the scheme.
Note that a full mitigation of cell-crossing events require a robust treatment of the “fresh-cell”/“dead-cell”
problem for moving Γs and is beyond the scope of the present work which is focused on stationary objects.

To focus the discussion of principle 1, (the ‘TEM’ of TEMO), consider a domain of length L subject to
two different discretizations as shown in Figure 5. The first discretization uses N equidistant points resulting
in a uniform mesh of spacing h (labeled “Uniform Mesh” in Figure 5). The second uses the same N points as
the uniform case but contains an additional degenerate point, xd, collocated with the left wall at x0 (labeled

“Degenerate Mesh” in Figure 5). We will focus the derivations on the boundary stencils making up B
u/d
l

since the corresponding right wall stencils can be computed from a simple mapping applied to B
u/d
l [6]. If

each stencil in B
u/d
l is of length t, a discrete approximation of order q of the νth order derivative of some

function, f , defined on the grid and evaluated at a point, i, near the boundary, is given by:

f
(ν)
i =

1

hν

t−1∑

j=0

αuijfj + τuq , (5a)

f
(ν)
i =

1

hν

»

–αdidfd +
t−1∑

j=0

αdijfj

fi

fl + τdq , (5b)

where τ is the truncation error and the d and u superscripts indicate terms on the degenerate and uniform
meshes, respectively. To discover the form of τ , consider the Taylor series expansion of fj about fi in
equation (5):

fj = fi + (j − i)hf ′i +
p(j − i)hq

2

2!
f ′′i + ...+

p(j − i)hq
n

n!
f

(n)
i + ...

Expanding each fj in such a manner in equation (5) yields the truncation errors associated with a qth order
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approximation on the uniform, τuq , and degenerate, τdq , meshes:

τuq =
1

hν

∑

k=q+ν

f
(k)
i

k!

»

–

t−1∑

j=0

αuij
p(j − i)hq

k

k!

fi

fl ,

τdq =
1

hν

∑

k=q+ν

f
(k)
i

k!

»

–(−ih)kαdid +
t−1∑

j=0

αdij p(j − i)hq
k

fi

fl .

Associated with each truncation error is the q+ ν system of equations, with t unknowns, describing the FD
stencils:

f
(ν)
i − 1

hν

q+ν−1∑

k=0

f
(k)
i

k!

»

–

t−1∑

j=0

αuij p(j − i)hq
k

fi

fl = 0 ,

f
(ν)
i − 1

hν

q+ν−1∑

k=0

f
(k)
i

k!

»

–(−ih)kαdid +
t−1∑

j=0

αdij p(j − i)hq
k

fi

fl = 0 ,

for the uniform and degenerate meshes, respectively. Satisfying the first design principle requires τuq = τdq .
This can be accomplished with the r × t constraints:

αdid + αdi0 = αui0, (6a)

αdij = αuij , for all j ∈ [1, t). (6b)

Note that this principle also constrains the coefficients required to evaluate the discrete derivative at the

degenerate point, f
(ν)
d . Since this point is collocated with x0, the discrete derivatives must have the same

truncation error (i.e. the same coefficients).
The second design principle: do not violate the assumptions of continuity inherent in the FD formu-

lation, is used to supply one more relation and thus allow for the determination of all αd in terms of αu,
or equivalently, writing Bd

l in terms of Bu
l . To illustrate the implications of this constraint, consider a

degenerate mesh initialized with some solution, f(x). At this initial time, f(x0) = f(xd) since x0 = xd.
Suppose that the temporal evolution of f is governed by some sort of PDE such that the change in f between
timesteps is governed by the discrete spatial derivatives constructed according to the first principle. The
update to f0 and fd will be identical since the discrete derivatives are equal. However, f0 will be subject to
discrete boundary conditions and fd will not. This will result in a small difference between f0 and fd. Thus,
the assumption of continuity is violated in any discretization that is constructed based on a Taylor series
approximation and includes both of these points. It can be seen that by the formulation of the truncation
error given in equation (5), the discrete approximations on the uniform and degenerate meshes are only
strictly equal if f0 = fd. The application of boundary conditions (specifically, Dirichlet) at only x0, makes
them only approximately equal.

In order to avoid this violation, no stencil uses data from both x0 and xd as ψ → 0. Thus, the second
principle refines equation (6a) and requires:

αdid = αui0 or αdi0 = αui0. (7)

Recall that Bd
l operates on [f0, fd, f1, . . . ]

T . Therefore, this constraint impacts the first two columns of every
row of Bd

l . If there are r rows in Bd
l , this constraint leaves 2r combinations of parameters to be explored.

All combinations meet the desired accuracy constraints by construction, and are judged, in this work, by
their stability characteristics on various test problems. These considerations lead to 3 of the possible 2r

combinations being selected. To explore the 3 combinations of parameters, consider B̄u
l , the 3×3 submatrix

11



of Bu
l :

B̄u
l =

»

–

αu00 αu01 αu02

αu10 αu11 αu12

αu20 αu21 αu22

fi

fl .

If the choices for the degenerate boundary matrices are written as Bd,0
l , Bd,1

l , and Bd,2
l , their respective

3× 3 submatrices are:

B̄d,0
l =

»

–

αu00 0 αu01

αu00 0 αu01

0 αu10 αu11

fi

fl , B̄d,1
l =

»

–

αu00 0 αu01

0 αu00 αu01

0 αu10 αu11

fi

fl , B̄d,2
l =

»

–

0 αu00 αu01

αu00 0 αu01

0 αu10 αu11

fi

fl .

Note that the last row is the same in all submatrices. All schemes in this paper use αdi0 = 0 for all i ≥ 1.

It was found that Bd,0
l is suitable for first derivative approximations (as found in hyperbolic problems).

Second derivative operators, found in parabolic and elliptic problems, were best discretized with Bd,1
l when

Neumann boundary conditions are used and Bd,2
l when Dirichlet or floating conditions are encountered.

Boundary stencils to be used with Neumann conditions are of the form:

f
(ν)
i =

1

hν−1
ηif
′
0 +

1

hν

j=t−1∑

j=0

αijfj +O phqq , (8)

where the value f ′0 is prescribed. In addition to the constraints on α previously discussed, the design
principles dictate:

ηd0 = ηdd = ηu0 ,

ηdi = ηui for all i ≥ 1 .

This paper also considers compact finite differences [23] for the 2nd derivative approximations. As op-
posed to the typical formulations, these boundary schemes use central differences at the first point, that is,
equation (5a) at i = 0, augmented with:

k=1∑

k=−1

βikf
(ν)
i+k =

1

hν

j=t−1∑

j=0

αijfj +O phqq for i > 0, (9)

where βi0 = 1. On the degenerate mesh, the stencil evaluating f
(ν)
d uses an explicit FD formulation as well

which is constrained according to Bd,1
l or Bd,2

l . In addition to the constraints on α already discussed, the
design principles dictate constraints on β: βdik = βuik.

3.2. Application of Design Principles

The two design principles determine the relationship between the boundary operators on a uniform mesh,
Bu
l , and a degenerate mesh, Bd

l . The construction of cut-cell boundary schemes, Bl(ψ), which are valid over
the range ψ ∈ [0, 1], and have the limiting behavior: Bl(1) = Bu

l and Bl(0) = Bd
l , are now considered.

If the size of Bu
l is given by r × t, the size of Bd

l must be (r + 1) × (t + 1) Therefore, the size of the
general Bl(ψ) must also be (r+ 1)× (t+ 1), with its final row being equivalent to the interior scheme when
ψ = 1. Assuming the order of accuracy constraints were satisfied with only t points, the extra width, t+ 1,
brings with it a free parameter. The design principles inform the choices of the free parameter. Recall that
the second principle requires that as ψ → 0 either the coefficient modifying the wall or the degenerate point

12



also has to approach zero. The free parameter choices are therefore:

αiδ = ψαuiδ for i < r

αr,r−p = ψγ−p

where δ indicates the appropriate coefficient to send to zero which is selected according to the choice

of B
d,0/1/2
l , and γ−p is the left most coefficient of the centered interior scheme described by the p + 1

coefficients, {γ−p, · · · , γp}. Details on the interior schemes can be found in Ref. [6]. It is possible (and even
necessary when enforcing conservation) that there will be more than one free parameter in a given boundary
stencil. In such cases, the extra free parameters are written as first degree polynomials in ψ in terms of the
uniform mesh coefficients, αij = ψαuij + (1− ψ)αui−1,j−1. This ensures that the correct behavior is achieved
at ψ = 0, 1. This choice of polynomial is not unique but has proved effective.

Consider again the discrete approximation of order q of the νth order derivative of some function, f ,
defined on the grid and evaluated at a point, i, near the boundary (i.e. i ≤ r) written with the constraints
imposed by the design principles:

f
(ν)
i =

1

hν

»

–ψαuiδfδ +
t∑

j=0,j!=δ

αijfj

fi

fl + τq ,

where δ is again used to select the index of the coefficient that will be zeroed out in Bd
l . The data is defined

on the cut-cell mesh with x0 on Γs and

xi+1 − xi =

{
ψh, for i = 0
h, for i > 0

.

With ∆ij = (xj − xi), the system of (q + ν) equations for the accuracy requirements is given by

f
(ν)
i − 1

hν

q+ν−1∑

k=0

f
(k)
i

k!

»

–ψαuiδ∆
k
iδ +

j=t∑

j=0,j!=δ

αij∆
k
ij

fi

fl = 0 .

Note that the αu terms are specified rather than solved for. This avoids any singularities in the coefficients
in the range ψ ∈ [0, 1] and satisfies the design principles by construction. The interested reader can easily
verify this property of all schemes presented in this paper.

At this point, it is worthwhile to highlight that any free parameters in Bl(ψ) will be functions of the
uniform mesh coefficients, αu, by virtue of the above construction. Thus, when writing the full boundary
stencil matrix, Bl(ψ,α), it is understood that the vector of free coefficients, α coefficients are the free
coefficients in Bu

l . Some of the free coefficients are further constrained by discrete conservation and removed
from α. The remaining coefficients play a critical role in stability optimization procedure discussed in the
following sections.

3.3. Discrete Conservation Constraints

Discrete conservation is enforced for the first derivative operators. An involved discussion of the con-
straints which must be satisfied by the boundary stencils to be discretely conservative for hyperbolic systems
is given in [6]. In the interest of conciseness, the discussion that follows assumes the reader is familiar with
the constraints and will only present the single additional constraint introduced by the cut-cell boundary
schemes.

To define a “conservative” approximation, consider a scalar hyperbolic conservation law with the form:

∂u

∂t
+
∂f

∂x
= 0 ,
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for x ∈ [0, L] where f = f(u) is some flux function. Integrating this equation over the domain gives:

d

dt

∫ L

0

u(x, t) dx = f |x=0,t=t − f |x=L,t=t .

Thus, the solution to this equation has the property that the total change of u as a function of time is driven
solely by the flux function, f , at the domain boundaries. Therefore a conservative approximation is one
which satisfies a discrete version of the above integral for some choice of quadrature. It can be shown that
the one dimensional operator, O, is discretely conservative if one can derive a set of quadratures, w, such
that

wTOi = 0 , for i ∈ (0, N − 1) , (10)

where Oi is the ith column of O and w is the column vector of quadratures. This does not constrain the
first column, O0 (thus B0), of the operator. However, an examination of the boundary stencil matrices on
uniform and degenerate meshes shows that the coefficients in the first column of Bu

l move into the second
column of Bd

l . Thus, the coefficients are not constrained by equation (10) on the uniform mesh, but are
constrained in the degenerate case. This behavior makes it difficult to properly impose the constraint on
Bl(ψ). To address this problem, another constraint is introduced to ensure the proper limiting behaviour:

w0α00 = wT
uBu

l 0 ,

where the u subscript denotes quantities on the uniform mesh and Bu
l 0 indicates the first column of the the

uniform mesh boundary matrix, Bu
l . Therefore the conservation constraints considered in this paper form

a system of t+ 1 equations and r + 1 unknowns.
As discussed in [6], the size of Bl determines the solvability of the system. Following the guidelines

therein, for a set of r+ 1 boundary stencils of order q and length t+ 1 to be coupled with an interior scheme
of order 2p, r and t are given by:

t = p+ q + 1 + nextra, (11a)

r = q + 1 + nextra , (11b)

where nextra allows for the addition of extra rows and columns to provide additional free parameters in
α. This allows for the construction of boundary schemes of any order q < 2p which satisfy conservation
constraints. The cut-cell schemes generated in this way will have a number of free parameters which are
written as polynomials of ψ and α. Note that the conservation constraints must also be solved on the
uniform mesh to provide appropriately constrained αu. In the next section, we discuss how to tune the free
α for stability.

3.4. Optimization for stability

The optimization procedure (the ‘O’ of TEMO) was successfully carried out for 2 families of schemes: E21

and E41. The E prefix indicates the schemes are using explicit (as opposed to compact) finite differrences.
The number indicates the global order of the method, and the subscript indicates the derivative order.
Stability optimization is limited to first derivative operators because in the context of fluid dynamics, the
second derivative operators are associated with dissipative phenomema. The form of the conservative cut-
cell schemes for 1st derivative operators, constructed according to the design principles, are given in table 1.
The table lists the width, p, of the interior scheme of order 2p, the boundary scheme order, q, the number of
extra rows/columns that were added to facilitate optimization, nextra and the resulting free parameters in
the scheme, α. The footprint of the boundary scheme can be computed according to equation (11). Schemes
E21 and E41 utilize boundary schemes that are one order less than the interior scheme, resulting in globally
2nd and 4th order discretizations [19], respectively.

We label a system as “naturally” stable if the boundary and interior schemes can be successfully used
in a variety of numerical tests with the free parameters set to 0. These tests will be described in section 4.
None of the schemes described in table 1 have this property. That is, the values of the free parameters must
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Scheme p q nextra α zeros

E21 1 1 1 αu02, αu03, αu12, αu13

E41 2 3 0 αu04, αu14, αu24, αu25 αu05, αu15

Table 1: Conservative cut-cell schemes, for 1st derivatives, described in terms of the interior discretization, p, order of boundary
schemes, q, extra rows/columns added for optimization, nextra, free parameters, α, and zeroed parameters.

be carefully chosen to ensure stability. To address this issue, we apply a slightly modified version of the
optimization strategy presented in [6]. As a brief recap, that strategy consists of:

1. Evaluate the objective function, θ, at N random points in α space.

2. Use the best α as a starting point for a gradient ascent method using a line search approach to take
the largest possible steps

3. Record α in a database for further processing once θ reaches a critical value

4. Go back to step 1 when it is no long possible to find a better α

The most important aspect of the optimization procedure is the use of an objective function which can serve
as a proxy for a stability estimate. The differences in the present optimization procedure and that of Ref. [6]
consist of a change in the objective function, specifically, the addition of the ψ parameter to Algorithms 1–3
and its impact on mesh and operator construction. One could follow the same procedure of adding more
parameters to the objective function if optimizations over a different (or larger) space were desired. Adding
ψ in the present case is sufficient to make the algorithm “cut-cell aware”. In contrast to the uniform mesh
used in [6], the unoptimized base versions of the cut-cell stencils are far too large to print.

The optimization process to find suitable α, such that the resulting operator, O, yields a stable dis-
cretization of relevant systems, is based directly on the compressible Euler equations:

∂ρ

∂t
+
∂ρui
∂xi

= 0 ,

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
,

∂ρE

∂t
+
∂ρEui
∂xi

= −∂pui
∂xi

,

where ρ is the density, p the pressure, E the total energy, ui the ith component of the velocity vector, and
the Einstein summation convention is assumed. The system is then closed by an equation of state assuming
a calorically perfect gas,

p = (γ − 1) pρE − ρuiui/2q .

The speed of sound is a0 =
a

γp/ρ. For the numerical tests, the ratio of specific heats, γ, is assumed equal
to 1.4, corresponding to air.

The test problem is one-dimensional and starts with an initially quiescent fluid with a Gaussian density
distribution:

ρI = ρ(x, 0) = 1 +
exp(− (x−µ)2

2σ )
?

2πσ
, (12a)

EI = E(x, 0) =
ργ−1

γ − 1
, (12b)

where the energy has been initialized using isentropic relations. The one dimensional computational
domain is depicted in Figure 6. The mesh has a uniform grid spacing, h, excepting the spacing between
the embedded objects and first/last fluid nodes in F , with respective spacings ψlh and ψrh. The embedded
objects form the boundaries of the domain such that cut-cell boundary schemes are relevant at both ends
of the domain. The fluid line fraction between the embedded wall on the left and first fluid point is ψl.
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x0 xN−1x1 xN−2x2 xN−3

Rx0 Rx1
F

ψlh ψrh

Figure 6: One dimensional domain with N points and regular spacing h, used in optimization simulations. There are two
intersection points near the left and right boundaries of the domain, indicated with the sets Rx0 and Rx1 , respectively. The
interior N−2 points make up the fluid node set, F . The one dimensional fluid line fractions, ψl and ψr are varied independently.
A uniform mesh is achieved when ψ = 1, a degenerate mesh when ψ = 0. In contrast to the domain in Figure 5, the fully
degenerate mesh will be 2h shorter than the uniform mesh in the present case. This allows for the optimization simulations to
easily explore the full range ψ ∈ [0, 1].

Likewise, ψr is the fluid line fraction between the last point in F and the embedded right wall. Both ψl and
ψr are varied independently. The only physical boundary condition for this inviscid flow is that the normal
component of the velocity be zero at the walls [2]. In the one-dimensional case this becomes:

u(x1 − ψlh, t) = u(xN−2 + ψrh, t) = 0 ,

The boundary conditions for this problem lead to the conservation of the total mass and energy within the
domain:

d

dt

∫
ρ dx = 0,

d

dt

∫
ρE dx = 0 .

The use of conservative schemes ensures that these relations are satisfied discretely (to within machine
precision). This is verified using the quadrature weights, w, derived with each scheme. The timestep
restriction is given by the well-known CFL constraint,

∆t =
C h

max(|u|+a0)
, (13)

where typically C ≤ 1. Note that the timestep restriction is written in terms of the uniform mesh spacing,
h, and makes no reference to ψ. Since the equations are non-linear and there is no dissipation, infinitely
thin shocks will develop. The simulations are stopped before this happens when there are still about 15
points resolving the wavefront on the coarsest grid. The maximum energy at a given time, |ρE|∞, is shown
in Figure 7 for E41 with α = 0 and parameters: L = xN−1 − x0 = 5, µ = 5, σ = 2, N = 121, C = 0.5,
for the cases of (ψl = 1, ψr = 0.9) and (ψl = 1, ψr = 0.6). The simulation becomes unstable for decreasing
ψ, highlighting the need for an optimization procedure to chose α that yield stable schemes over the range
ψ ∈ [0, 1].

As in Ref. [6], the objective function, θ, is chosen so as to provided a reasonable quantification of
numerical stability, such that maximizing θ yields stable discretizations for systems of interest. It is split
into two helper functions. The first of these, T pO,α,N ,C,ψ, I, tcq → tr, quantifies the run time, tr, of
a set of simulations of the desired equations with a particular boundary and interior scheme described by
O and a particular set of free parameters α for a set of grid resolutions, CFL numbers, embedded wall
distances, and initial conditions given by N , C, ψ and I, respectively. The computation of tr is described
in Algorithm 1. Using this algorithm, it is clear that tr ∈ (0, tc].

The second helper function, E pO,α,N ,C,ψ, I, tc,Rq → ε, quantifies the solution smoothness for the
time and space interval specified by R. We make use of the monotonic nature of the energy per unit volume,
ρE, near the walls at a late time (t ∈ [9.5, 10.5]) when the initial density, ρI and energy, EI , are given by
equation (12), with σ = 2 and µ = L = 5. The monotonicity of the energy at times t = 9.5 and t = 10.5
can be seen in Figure 8. Thus, for a grid with N points, the monotonicity error on the the left and right
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Figure 7: Maximum energy, |ρE|∞, over the domain as a function of time, t, for cut-cell meshes with ψl = 1 and the indicated
value of ψr for scheme E41 with α = 0. The domain is discretized with N = 121 points. The RK4 method is used to integrate
the equations in time with C = 0.5. The simulation is not stable for ψr = 0.6.

0 1 2 3 4 5
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3
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x

ρ
E
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Figure 8: Energy, ρE at times t = ts = 9.5 and t = tc = 10.5 over the spacial domain. The areas near the left and right
boundaries delimited by the black vertical lines correspond to the boundary domains used for the monotonicity error when
m = 10 in equation (14)
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input : Boundary and interior scheme, O
input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N
input : Set of time constraints for temporal discretization, C
input : Set of embedded wall distances, ψ
input : Initial conditions, I
input : Completion time, tc
output: Average run time: tr

tr ← 0;
foreach {ψ, N , C} of ψ ×N ×C do

Initialize simulation of N grid points and initial conditions I;
Set coefficients for derivative operator, O(α, ψl = ψr = ψ);
Integrate equations in time using time constraint, C, until a time of td where td = tc if the
simulation completed successfully or td < tc if the simulation diverged at td;
tr ← tr + td;

end
tr ← tr/(|N ||C||ψ|);

Algorithm 1: T pO,α,N ,C,ψ, I, tcq→ tr

boundaries is:

Mm
L (f) = |TV m0 (f)− (fm+1 − f0)| (14a)

Mm
R (f) =

ˇ

ˇTV NN−m(f)− (fN−m−2 − fN−1)
ˇ

ˇ . (14b)

where total variation is given by:

TV kj (f) =
i=k∑

i=j

|fi+1 − fi| , (15)

and fi is the computed solution at point i. In equations (14) and (15), f0 and fN−1 refer to f evaluated
at the left and right embedded wall: Rx0,0 and Rx1,0, respectively, rather than at the points x0 and xN−1

which are in S. Note thatMm
L has been defined for a monotonically increasing function andMm

R has been
defined for a monotonically decreasing function to reflect the different behavior of ρE near the left and right
boundaries, respectively. With these definitions, the procedure for computing ε is given in Algorithm 2.

The objective function θ pO,α,N ,C,ψ, I, tc,Rq→ ν (where ν is a measure of the error ε) can then be
defined in terms of T and E and is given in Algorithm 3. With this, the optimization problem is stated
as: For a given stencil, O, set of grid resolutions, N , set of temporal resolutions C, set of embedded wall
distances, ψ, initial conditions, I, completion time, tc and interval for smoothness calculations, R, choose
α such that θ is maximized for the desired equations. The parameters used for optimization in the present
paper are:

N = {121, 151, 201}
C = {0.8, 0.1}
ψ = {10−6, 10−3, 10−2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
I = (ρI , EI , σ = 2, µ = 5, L = 5)

tc = 10.5

R = (ts = 9.5, te = tc,m = 10)

A gradient ascent method is applied to move through α space using a line search approach and arrive at
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input : Boundary and interior scheme, O
input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N
input : Set of time constraints for temporal discretization, C
input : Set of embedded wall distances, ψ
input : Initial conditions, I
input : Completion time, tc
input : Space-time interval for smoothness calculations, R = (ts, te,m)
output: Maximum error: ε

ε← 0;
foreach {ψ, N , C} of ψ ×N ×C do

Initialize simulation with N grid points and initial conditions I;
Set coefficients for derivative operator, O(α, ψl = ψr = ψ);
Integrate equations in time using time constraint, C, until a time of td where td = tc if the
simulation completed successfully or td < tc if the simulation diverged at td;

if td < tc then
ε← SENTINEL;
return;

end
Write α to database;
εL ← temporal average of Mm

L (ρE) over time interval t ∈ [ts, te];
εR ← temporal average of Mm

R (ρE) over time interval t ∈ [ts, te];
ε← max(ε, εL + εR);

end

Algorithm 2: E pO,α,N ,ψ,C, I, tc,Rq→ ε

input : Boundary and interior scheme, O
input : Set of free parameters, α
input : Set of grid resolutions for spatial discretization, N
input : Set of CFL constraints for temporal discretization, C
input : Set of embedded wall distances, ψ
input : Initial conditions, I
input : Completion time, tc
input : Space-time interval for smoothness calculations, R = (ts, te,m)
output: Quantification of stability: ν

ν ← T pO,α,N ,C,ψ, I, tcq;
ε← E pO,α,N ,C,ψ, I, tc,Rq;
if ε 6= SENTINEL then ν ← ν + log(1/ε);

Algorithm 3: θ pO,α,N ,C,ψ, I, tc,Rq→ ν

19



suitable schemes. It should be noted that the objective function described here is not unique but has proven
effective in finding schemes that behave well in systems that are similar to those encountered in studying
fluid dynamics. The optimization that is done here is based on solving the compressible Euler equations.
This tends to yield a great number of candidate boundary stencils which are then further refined by the
stability tests in the next section. The candidate boundary stencils are all written to a database for further
processing according to Algorithm 2. Note that all α for which td == tc are written to the database rather
than just those which maximize θ. This is done because θ is not an exact quantification of stability, and so,
beyond a certain threshold, it is not clear that the α which yield the largest values of θ are strictly better than
those which yield slightly lower values. Thus, the “effective” objective function is a combination of all these
tests, and provides a reasonable proxy for stability over a range of systems. Software limitations prevented
this “effective” objective function from being directly implemented as such. The benefits of combining the
present method of separate objective function and refining steps into a single objective function are being
explored.

It is worthwhile to discuss the nextra parameter in Table 1. The most obvious choice for this parameter
is 0. However, during the course of optimizing E21, no schemes with nextra = 0 were found to be stable
over the whole range of hyperbolic tests considered in Section 4. Adding one extra row and column to
the boundary scheme was enough to enable the optimization process to find stable E21 schemes. If other
systems of equations were found for which the present batch of cut-cell schemes were unstable, one could
increase nextra until stable schemes were found.

The optimization and refining process discovered 5300 stable E21 schemes and 2 stable E41 schemes.
These are included in a database in the supplementary materials. The first scheme for each family in the
database is shown in Appendix A. In terms of accuracy on the test problems of Section 4, the schemes
are roughly equivalent. Choosing the “best” scheme for a particular application would involve using the
schemes directly for the desired application or designing a test problem to use a proxy for the application
and sorting the schemes based on whichever criteria is deemed most important.

The optimization process was unnecessary for constructing second derivative approximations in parabolic
and elliptic equations. The schemes labeled: E2d2, E4d2, E6d2, and E8d2 refer to approximations of the second
derivative using explicit (central) differences such that the global orders are 2, 4, 6, and 8, respectively,
for Dirichlet or floating boundaries. Likewise, E2n2 , E4n2 , E6n2 , and E8n2 are boundary closures designed
for Neumann boundary conditions. Compact differences are also used for second derivative approximations
resulting the T4d2, T6d2, and T8d2 of orders 4, 6, and 8, respectively. Similarly, the boundary schemes for
Neumann conditions are: T4n2 , T6n2 , T8n2 . The coefficients for each scheme are given in the supplementary
material described in Appendix B.

4. Results

The stability and accuracy of the schemes for parabolic and hyperbolic equations is demonstrated through
a variety of tests and analysis. The asymptotic stability of the second derivative approximations is explored
through an eigenvalue analysis in Section 4.1. The accuracy and stability of these schemes is demonstrated
by solving the unsteady heat equation in Section 4.2 for a variety of embedded wall distances to highlight the
behavior of the schemes on degenerate meshes. The behavior of the schemes for convex geometries is explored
in Section 4.3. The behavior of the schemes when applied to elliptic problems is examined in Sections 4.4
and 4.5. The asymptotic stability of the conservative first derivative approximations given in Appendix A are
also explored through an eigenvalue analysis presented in Section 4.6. The accuracy and long-time stability of
the conservative cut-cell discretizations is assessed through two challenging hyperbolic problems. In the first,
in Section 4.7, a varying coefficient advection equation is simulated for long times over a convex geometry.
For the second test, in Section 4.8, the compressible Euler equations are solved with a moving (supersonic)
isentropic vortex. The embedded wall distances are again varied at the supersonic inflow/outflow boundaries.
Centered differences are used in the interior of the domain. These non-dissipative interior schemes make the
hyperbolic tests especially difficult. In all tests considered, the schemes demonstrate the advertised order of
accuracy and excellent stability properties over the whole range of ψ ∈ [0, 1].
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4.1. Asymptotic Stability: Eigenvalue Analysis for Parabolic terms
An asymptotically stable scheme is one for which the error does not grow unphysically with time [12].

To illustrate, consider the linear parabolic equation,

∂u

∂t
= k

∂2u

∂x2
,

defined on the cut-cell mesh given in Figure 6. As a notational convenience, xl is the x-coordinate of the
point describing the left embedded wall, Rx0,0. Similarly, xr is the x-coordinate of the right embedded wall,
Rx1,0. With this notation, the initial and boundary conditions for u = u(x, t) are:

u(x, 0) = f(x) , u(xl, t) = a(t) ,
∂u

∂x

ˇ

ˇ

ˇ

ˇ

x=xr

= b(t) ,

where it is assumed that the boundary conditions are consistent with the initial conditions. In its typical
formulation, the discrete second derivative operator, Ox,2, allows,

U ′′ = Ox,2U ,

where Ox,2 has dimensions N × N and U , U ′′ are column vectors of length N . However, the derivative
information at xl is not needed due to Dirichlet boundary conditions. Therefore, let the (N − 1)× (N − 1)
submatrix of Ox,2, which does not include the first row or column of Ox,2, be denoted as Q and let
Û = [u1, u2, . . . , uN−2, ur]

T . With this notation, the semi-discrete parabolic equation can be written as,

∂Û

∂t
=

k

h2
QÛ +G , (16)

where G is a column vector of length N − 1 giving the appropriate weights of the stencils on the boundary
data, a(t) and b(t). The stability of this semi-discrete system is governed by the eigenvalues, λ, of the spatial
discretization matrix, Q. If the real part of an eigenvalue is given by re(λ) and the maximum real part of
all the eigenvalues is given by maxλ re(λ), the semi-discrete system is then stable if [37],

max
λ

re(λ) ≤ 0 . (17)

The discretization matrix Q can be constructed for any scheme by consulting Appendix B. The compact
schemes require solving a system in order to form O and, consequently, Q. The stability of each scheme is
assessed by examining the eigenvalues of 1183 cases defined by the parameter space, {N × ψl × ψr}. The
set of discretizations examined is N = {31, 41, 51, 61, 71, 81, 91}. The ψ values considered are: ψl = ψr =
{0, 0.001, 0.01, 0.1, 0.2, . . . , 1.0}. Recall that ψl affects the Dirichlet boundary stencil, while ψr impacts the
Neumann boundary stencil. A summary of the results for T82 are given in Table 2. Similar results demon-
strating stability can be shown for all schemes and cases. The data for every case is in the supplementary
material.

4.2. Two-Dimensional Concave Geometry: Constant Coefficient Heat Equation
The stability and accuracy of the discretizations for the 2nd derivatives given in the appendix for Dirichlet

and Neumann boundary conditions are demonstrated by considering the heat equation:

∂T

∂t
= k∇2T ,

on the domain (x, y) for x ∈ [xl, xr], y ∈ [yl, yr], where

xl = h(1− ψl) yl = h(1− ψl)
xr = L− h(1− ψr) yr = L− h(1− ψr) .
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N maxψ(maxλ re(λ))

31 −2.74 · 10−3

41 −1.54 · 10−3

51 −9.87 · 10−4

61 −6.85 · 10−4

71 −5.04 · 10−4

81 −3.86 · 10−4

91 −3.05 · 10−4

Table 2: For the 8th order tridiagonal compact scheme, T82, with a given resolution, N , the maximum value of maxλ re(λ)
over 169 combinations of (ψl, ψr) is given in the second column.

This domain is a two dimensional extension of that shown in Figure 6. The length of the domain is L = 2
and the uniform mesh spacing is given by h = L/(N − 1). A manufactured solution, TM , was chosen for
this test:

TM (x, y, t) =
∑

n

An cos(fnt) exp

ˆ

− (x− µn,x)2

2σ2
n,x

− (y − µn,y)2

2σ2
n,y

˙

(18)

with parameters:

n An fn µn σn
0 2 0.5 (0.4,0.5) (0.5,0.2)
1 0.5 1 (0.2,2) (1/3,0.8)
2 -1.2 0.8 (1.5,1.6) (0.3,0.8)
3 3 0.2 (1.8,0.3) (2/3,0.9)

Following the method of manufactured solutions [5, 31], the modified governing equation for this problem
becomes:

∂T

∂t
= k∇2T +

∂TM
∂t
− k∇2TM (19)

The boundary conditions are given by:

T (xl, y, t) = TM (xl, y, t) , T (x, yl, t) = TM (x, yl, t) ,

∂T

∂x

ˇ

ˇ

ˇ

ˇ

x=xr

=
∂TM
∂x

ˇ

ˇ

ˇ

ˇ

x=xr

,
∂T

∂y

ˇ

ˇ

ˇ

ˇ

y=yr

=
∂TM
∂y

ˇ

ˇ

ˇ

ˇ

y=yr

.

This set of conditions was chosen to ensure that all combinations of corner boundary conditions would be
encountered. The discretized heat equation is advanced in time using the standard 4th order Runge-Kutta
(RK4) method with the timestep constraint given by the well known parabolic stability constraint:

∆t = C
h2

4k
.

For schemes E22, E42, E62, and T42, C = 0.4 was chosen. The stiffness of the higher order schemes
necessitated slightly smaller timesteps with C = 0.2 for E82 and T62, and C = 0.1 for T82. A thermal
diffusivity of k = 1/30 was used. An implicit time integration scheme could have been used to circumvent
the parabolic timestep restrictions. However, an explicit integration scheme has been used to highlight the
fact that small cells do not lead to an excessively stiff system.

Figure 9 shows the evolution of the L∞ error norm for all second derivative operators with N = 31 and
ψl = ψr = 0. As can be seen, the operators result in stable discretizations even for this very challenging
case and require no reduction in the timestep compared to the uniform mesh case.
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Figure 9: Time history of L∞ for N = 31 and (ψl, ψr) = (0, 0) for (left) central schemes and (right) compact schemes when
solving the heat equation (19).
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Figure 10: Maximum L∞ for t > 50 as a function of ψl and ψr for N = 31, 71 and 111 using the 8th order E82 and T82
schemes when solving the heat equation (19).
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Figure 11: Maximum L∞ for t > 50 for the central and compact second derivative operators applied to equation (19). The
filled data points correspond to ψl = ψr = 0. For comparison, the open data points correspond to ψl = ψr = 1. The shapes
of the open data points match the shapes (and therefore schemes) of the filled points. A line (on the log-log plot) is fit to the
ψ = 0 data and annotated with its slope, indicating the convergence of the scheme.

Figure 10 shows the maximum L∞ error for t > 50 for the 8th order second derivative operators E82 and
T82 as functions of ψl and ψr for N = 31, 71, and 111. The set of sampled values for (ψl, ψr), is adopted
from the eigenvalue examination in Section 4.1. There is some variation in the measured L∞ error with ψl
and ψr. The supplementary material contains the results for N = {31, 51, 71, 91, 111}, for all schemes. The
schemes remain well behaved in all cases.

The accuracy of the schemes is demonstrated in Figure 11, which shows the maximum L∞ error for t > 50
for all second derivative operators at N = 31, 51, 71, 91, 111 in the fully degenerate case of ψl = ψr = 0 (filled
symbols) and the uniform case with ψl = ψr = 1 (open symbols). The labeled solid black lines indicate the
observed order of convergence for each scheme on the degenerate mesh. It can be observed that under mesh
refinement the 2nd and 4th order schemes yield the same results in the uniform and degenerate cases while
small differences persist for the 6th and 8th order schemes. The cause of this discrepancy is twofold. Firstly,
the domain size and the location of boundary condition application are functions of ψ and are therefore
different on the two meshes. Secondly, according to the discussion in Section 3.1, the application of boundary
conditions leads to discrete operators with slightly different truncation errors in the uniform and degenerate
cases. The sum of these differences is washed out by the truncation errors of the 2nd and 4th order schemes
but does have an impact on the higher order schemes. All schemes demonstrate the expected convergence
on both the uniform and degenerate cases under grid refinement.

This test case has allowed for fully characterizing the behavior of the cut-cell operators over the full range
ψ ∈ [0, 1], for both Dirichlet and Neumann boundary conditions. In the next test case, a convex geometry is
considered to explore the impact of having stencils with different values ψ throughout their neighborhood.

4.3. Two-Dimensional Convex Geometry: Constant Coefficient Heat Equation

In this section, the constant coefficient heat equation with the manufactured solution term given by
equation (19) is again solved but on a different domain. Rather than planes of varying ψ, the embedded
portion of the domain is described by,

G(x, y) =
a

(x− xc)2 + (y − yc)2 − r , (20a)

Ωs = {(x, y) | G(x, y) < 0} , (20b)

Γs = {(x, y) | G(x, y) = 0} , (20c)
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Figure 12: Initial conditions for convex geometry test in Section 4.3.

where the object subscript has been dropped since there is only one object. The initial conditions are given
by the manufactured solution field. The boundary conditions are:

T (x, y, t)|(x,y)∈Γs
= TM (x, y, t) ,

∂T (x, y, t)

∂x

ˇ

ˇ

ˇ

ˇ

x=0|2
=
∂TM (x, y, t)

∂x

ˇ

ˇ

ˇ

ˇ

x=0|2
,

∂T (x, y, t)

∂y

ˇ

ˇ

ˇ

ˇ

y=0|2
=
∂TM (x, y, t)

∂y

ˇ

ˇ

ˇ

ˇ

y=0|2
,

To avoid any fortuitous cancellation of errors due to problem symmetry, the embedded object is placed
off-center with respect to the mesh with xc = 16/17, yc = 25/22, and r =

?
3/10. The initial conditions for

this geometry and manufactured solution are shown in Figure 12. With the given initial conditions, and the
timestepping described in the previous section, the solution is advanced in time until t = 65. An equidistant
uniform mesh is used with Nx = Ny = N . Figure 13 shows the L∞ error norm as a function of time for all
second derivative operators with N = 51. The operators are all well behaved and yield stable simulations.

The order of accuracy of the schemes is examined by observing the maximum L∞ error norm for t > 50
for N = 51, 71, 91, 111. The number of points per diameter, Np, for the grid sizes are: Np = 8.7, 12.1, 15.6,
and 19.1. The error for the different schemes is shown in Figure 14. The observed order of each schemes is
given by a labeled solid black line. In all cases, the schemes achieve or are very close to their design order
of accuracy. Note again that this is accomplished without any geometry modifications or in-situ correction
procedure.

4.4. Two-Dimensional Concave Geometry: Constant Coefficient Poisson Equation

In this section we examine the behavior of the second derivative cut-cell operators in the context of a
Poisson equation with walls offset by ψl and ψr as in Section 4.2. The equation to be solved is:

∇2T = ∇2TM (x, y, 0) (21)

25



0 20 40 60
10−6

10−5

10−4

10−3

t

L
∞

Er
ro

r

E22 E42 E62 E82

0 20 40 60

t

T42 T62 T82

Figure 13: Time history of L∞ for test case in Section 4.3 with Nx = Ny = 51 for (left) central schemes and (right) compact
schemes.
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Figure 14: Maximum L∞ for t > 50 for all second derivative operators for the concave geometry test in Section 4.3. The filled
points correspond to the central schemes. The open points correspond to the compact schemes. A line (on the log-log plot) is
fit to the data for the central schemes and annotated with its slope, indicating the observed convergence of the schemes over
the range of grids.
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Figure 15: L∞ error norm as a function of ψl and ψr for N = 31, 71 and 111 using the 8th order E82 and T82 schemes.

where TM is given by equation (18). As in Section 4.2, the domain is given by (x, y) for x ∈ [xl, xr],
y ∈ [yl, yr] where

xl = h(1− ψl) , yl = h(1− ψl) ,
xr = L− h(1− ψr) , yr = L− h(1− ψr) .

The boundary conditions are:

T (xl, y) = TM (xl, y, 0) , T (x, yl) = TM (x, yl, 0) ,

∂T (x, y)

∂x

ˇ

ˇ

ˇ

ˇ

x=xr

=
∂TM (x, y, 0)

∂x

ˇ

ˇ

ˇ

ˇ

x=xr

,
∂T (x, y)

∂y

ˇ

ˇ

ˇ

ˇ

y=yr

=
∂TM (x, y, 0)

∂y

ˇ

ˇ

ˇ

ˇ

y=yr

.

A systematic study of the behavior of the schemes is conducted by solving equation (21) and examining
the L∞ errors of 845 cases defined by the parameter space, {N × ψl × ψr}. The set of discretizations
examined is N = {31, 51, 71, 91, 111}. As in Sections 4.1 and 4.2, the ψ values considered are ψl = ψr =
{0, 0.001, 0.01, 0.1, 0.2, . . . , 1.0}. This is done to force the small-cell issue.

Figure 15 shows the L∞ error for the 8th order second derivative operators E82 and T82 as functions of
ψl and ψr for N = 31, 71, and 111. Compared to the results for the heat equation in Figure 10, there is
more variation with the observed L∞ error with ψl and ψr, but the errors remain well-behaved in all cases.
Similar results for all schemes can be seen by examining the supplementary materials.

The accuracy of the schemes is demonstrated in Figure 16, which shows the L∞ error norm for all
second derivative operators for all N in the fully degenerate case of ψl = ψr = 0 (filled points), as well as
the uniform case with ψl = ψr = 1 (open point). The variation of L∞ with ψ is not as strong with the 2nd

and 4th order methods so the filled and open points are largely collocated. There is a noticable difference in
the error magnitude between the uniform and degenerate cases for the 6th and 8th order schemes as per the
discussion in Section 4.2, however, the order of the convergence of the schemes is as expected in all cases.

4.5. Two-dimensional Convex Geometry: Constant Coefficient Poisson Equation

In this section, the constant coefficient Poisson equation with the manufactured solution term given by
equation (21) is solved but on a domain described by equation (20), allowing for a circle in the domain
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Figure 16: L∞ error norm for (left) central differences and (right) compact differences applied to equation (21). The filled data
points correspond to ψl = ψr = 0. For comparison, the open data points correspond to ψl = ψr = 1. The shapes of the open
data points match the shapes (and therefore schemes) of the filled points. A line (on the log-log plots) is fit to the ψ = 0 data
and annotated with its slope, indicating the convergence of the scheme.

centered at (xc, yc). The boundary conditions are:

T (x, y)|(x,y)∈Γs
= TM (x, y, 0) ,

∂T (x, y)

∂x

ˇ

ˇ

ˇ

ˇ

x=0|2
=
∂TM (x, y, 0)

∂x

ˇ

ˇ

ˇ

ˇ

x=0|2
∂T (x, y)

∂y

ˇ

ˇ

ˇ

ˇ

y=0|2
=
∂TM (x, y, 0)

∂y

ˇ

ˇ

ˇ

ˇ

y=0|2
.

As before, the embedded object is placed off-center with respect to the mesh with xc = 16/17, yc = 25/22,
and r =

?
3/10. The solution for this geometry and manufactured solution are given by the initial conditions

of the problem described in Section 4.3 and shown in Figure 12.
The order of accuracy of the schemes is examined by computing the L∞ error norm for N = 51, 71,

91, 111, 131, 151. The number of points per diameter, Np, for each of the grid sizes are: Np = 8.7, 12.1,
15.6, 19.1, 22.5, and 26. The error for the different schemes is shown in Figure 17. The data corresponding
the central schemes: E22, E42, E62 and E82 are shown with filled points. The compact schemes make use
of the same stencil for first point and are therefore not very different. The open data points are used to
indicate the L∞ error for T42, T62, and T82. A least squares line fit is done for the central schemes and is
annotated with the slope. While E22 converges with the desired accuracy, the 4th, 6th and 8th order schemes
converge with one order less than expected. The intended order could be achieved by increasing the order
of the cut-cell boundary schemes by 1, but such schemes are unstable for parabolic problems. Future work
may explore optimizing such schemes for stability following the procedure in Section 3.4. It should again
be noted that there were no geometry modifications to avoid the small cell problem or any other corrective
procedure.

4.6. Asymptotic Stability: Eigenvalue Analysis for Hyperbolic Terms

Similar to the eigenvalue analysis performed on the heat equation, the asymptotic stability of the E21

and E41 schemes is assessed in the context of the linear hyperbolic equation:

∂u

∂t
+
∂u

∂x
= 0 , forxl ≤ x ≤ xr, and t ≥ 0 ,
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Figure 17: L∞ error norm for all second derivative operators as a function of points-per-diameter ,Np, applied to the Poisson
equation for the concave geometry test in Section 4.5. The filled points correspond to the central schemes. The open points
correspond to the compact schemes. A line (on the log-log plot) is fit to the data for the central schemes and annotated with
its slope, indicating the observed converged of the schemes over the range of grids.

where the domain is once again given by Figure 6, with a uniform mesh spacing of h throughout the domain
excepting the near wall distances of ψlh and ψrh. The initial and boundary conditions are:

u(x, 0) = f(x) , u(xl, t) = a(t) .

In its typical formulation, the discrete first derivative operator, Ox,1, allows,

U ′ = Ox,1U ,

where Ox,1 has dimensions N × N and U , U ′ are column vectors of length N . However, the derivative
information at xl is not needed due to Dirichlet (inflow) boundary conditions. Therefore, let the (N − 1)×
(N−1) submatrix of −Ox,1, which does not include the first row or column of Ox,1, be denoted as Q and let
Û = [u1, u2, . . . , uN−2, ur]

T . With this notation, the semi-discrete linear hyperbolic equation can be written
as:

∂Û

∂t
=

1

h
QÛ +G , (22)

where G is a column vector of length N − 1 giving the appropriate weights of the stencils on the boundary
data, a(t). The stability of this semi-discrete system is governed by the eigenvalues, λ, of the spatial
discretization matrix, Q and is stable if condition (17) is satisfied. The supplementary material contains
the information for constructing 5302 discretization matrices. Figure 18 highlights the eigenvalue spectrum
for the E41 scheme given in Table A.4. The real (re) and imaginary (im) components of the eigenvalues are
shown for ψl = ψr = 1 and ψl = 0, ψr = 10−6. Both plots indicate the largest real part of the eigenvalue
spectra with the right most tick label. In both cases the stability condition (17) is satisfied. Note that the
outflow stencil will contain a repeated row at ψr = 0, yielding λ = 0. Figure 18 demonstrates that the
scheme approaches this limit in a stable manner.

The stability of the 5302 schemes is assessed by examining the eigenvalues of 676 cases defined by the
parameter space, {N × ψl × ψr}. The set of discretizations examined is N = {31, 61, 91, 121}. The ψ
considered are ψl = ψr = {10−6, 0.001, 0.01, 0.1, 0.2, . . . , 1.0} Recall that ψl impacts the inflow stencil while
ψr impacts the outflow stencil. The supplementary material records maxλ re(λ) for all cases and shows that
no eigenvalues with positive real parts are found.
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Figure 18: Eigenvalue spectrum for E41 applied to equation (22) at the indicated (ψl/ψr) combinations and grid resolutions.
The left boundary, ψl, is associated with an inflow boundary condition. The right boundary, ψr is associated with an outflow
boundary condition. For each plot, maxλ re(λ) is indicated by the right most tick mark. It remains negative, indicating
stability.

4.7. Two-Dimensional Convex Geometry: Varying Coefficient Hyperbolic Equation

In this section, the accuracy and time stability of the conservative cut-cell schemes are demonstrated by
solving a varying coefficient hyperbolic equation:

∂u

∂t
+∇G · ∇u = 0 , Lx = Ly = 2 , (23)

where G(x, y) and the embedded object are given by equation (20). For this test, 4 different embedded
circles, ln = (xcn , ycn), are used in order to trigger different geometry errors. Each object has a radius of
r = 0.2 and centers: l0 = (1.053, 0.901), l1 = (1.033, 1.101), l2 = (0.989, 1.037), l3 = (0.933, 0.999). The
initial and boundary conditions for each shape are given by:

u(x, y, 0) = sin(2πG) , u(x, y, t)|G=0 = − sin(2πt)

where (xc, yc) in G are taken from the particular ln being used. Figure 19 shows the initial conditions for
geometry l0. The exact solution is a circular pulse radiating out from the embedded object with a period of
1:

u(x, y, t) = sin p2π(G− t)q

This series of tests consisted of constant CFL tests with C = 0.5 and constant timestep tests with
∆t = 8 · 10−4. The constant CFL tests allow for demonstrating that the cut-cell schemes do not require
special timestep restrictions or implicit integration when compared to the uniform mesh case. However,
larger timesteps (in the context of the RK4 time integration scheme) introduce numerical dissipation. The
very small constant timestep series of tests minimizes this dissipation and allows for demonstrating the order
of accuracy through convergence studies on an unsteady problem.

The constant CFL tests are carried out for all 5302 schemes over 32 cases defined by the parameter
space, {N × l}. The set of discretizations examined is N = {51, 61, 71, 81, 91, 111, 131, 151}. The set of
geometries is l = {l0, l1, l2, l3}. To demonstrate the asymptotic stability of the schemes, the simulations are
run for a full 1000 periods (until t = 1000). Figure 20 shows the L∞ error as a function of time for the E21

and E41 schemes in the appendix. The plot is broken to highlight the early time behavior, t ∈ [0, 4], and the
late time behavior, t ∈ [996, 1000]. The L∞ error norm settles into a periodic steady state around t ≈ 2 after
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Figure 19: Initial conditions hyperbolic scalar equation (23) for geometry l0. The circular pulse radiates out from the embedded
object as time evolves.

brief transient. The curve continues, unchanged, for the duration of the simulation, demonstrating the time
stability of the schemes. Integration in time is done using the standard RK4 method. The supplementary
material records the maximum L∞ over the time t ∈ [980, 1000] for all schemes and cases. The constant ∆t
tests are carried out for all 5302 schemes over 24 cases defined by the parameter space, {N × l}. The set
of discretizations examined is N = {51, 71, 91, 111, 131, 151}. The set of geometries is l = {l0, l1, l2, l3}.
Once again, the schemes are run until a time of t = 1000 and the maximum L∞ over the time t ∈ [980, 1000]
is recorded for all schemes in the supplementary material. Figure 21 shows the L∞ error as a function of
the number of points per diameter, Np, for each geometry using the E21 and E41 schemes in the appendix.
There is no apparent impact of the geometry on the behavior of E21, which converges with second order
accuracy. There is some spread in the observed L∞ for E41 at the finest two meshes but approximately 4th

order convergence is still observed. This was achieved through the design principles and offline optimization
process without any geometry corrections or in-situ procedures.

4.8. Two-Dimensional Nonlinear Test: Inviscid Vortex / Numerical Reflection

In this section the two-dimensional compressible Euler equations are solved to examine the transport of
an inviscid vortex through a domain and it’s numerical collision with a supersonic outflow boundary. This
collision with the the outflow boundary generates very high frequency errors which propagate back into
the domain with the potential to destabilize the simulation over long periods of time. The transport of an
inviscid vortex through a periodic domain has been studied to quantify the impact of dissipation in upwind
schemes [46]. The supersonic inflow/outflow case has been examined in Refs. [21] and [38] for relatively
short times (1.5 flow through times based on the background streamwise velocity). In more recent work,
this challenging case was run for 50 flow through times to highlight the stability of high order boundary
schemes on uniform meshes [6]. In the present case, the conservative cut-cell schemes are used at the
inflow/outflow boundaries and periodic boundary conditions are imposed in the cross-stream direction.

We adopt the notations from Ref. [38] to describe the analytic solution for a vortex of non-dimensional
circulation, ε, centered at (xc, yc) at time t = 0 and propagating in the x direction. The solutions are
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Figure 21: Maximum error, L∞, over 980 ≤ t ≤ 1000 plotted against points-per-diameter, Np, for ∆t = 8 · 10−4 and the
indicated schemes/geometries in solving equation (23). A line (on the log-log plot) is fit to the results for l0 and annotated
with its slope, indicating the convergence of the scheme. The 2nd order E21 is very insensitive to changes in geometry. The
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Figure 22: Pressure contours of the solution at times t = 0, 5, 10 as the vortex moves from left to right. The vortex has
completely left the domain by a time of t = 12.

repeated below for convenience:

ρ

ρ∞
=

ˆ

1− γ − 1

2
f2

˙1/(γ−1)

,

u

a∞
= M∞ +K y f ,

v

a∞
= −K xf ,

p

p∞
=

ˆ

ρ

ρ∞

˙γ

,

where f = ε
2π exp((1 − K2(x2 + y2))/2), M∞ is the free stream Mach number, and γ = cp/cv = 1.4. As

with the previous tests, time integration is carried out using a standard RK4 method. The tests were run
on a computational domain of x ∈ [xl, xr], y ∈ [0, 10] with (xc, yc) = (10, 5), K = 1, ε = 1.5 and M∞ = 2.0.
The meshes are chosen such that the grid spacing in the x and y directions are equivalent. The x-direction
mesh is once again described by Figure 6, with uniform mesh spacing, h, throughout the domain excepting
the near wall distances of ψlh and ψrh. When ψl = ψr = 1, x ∈ [0, 20]. Figure 22 shows contours of the
pressure at t = 0, 5, 10. On the coarsest mesh, the vortex represented by these contours is resolved by 8
points. Constant CFL tests with C = 0.5, are carried out for all 5302 schemes over 6 cases defined by
the parameter space, {N× ψ}. The set of discretizations examined is N = {51× 26, 101× 51, 201× 101}.
The set of ψ values considered is ψ = {ψl = ψr = 1, ψl = ψr = 0}. The reduced parameter space of the
present test is due to the larger simulation cost compared to previous tests. The supplementary material
records maximum L∞ error in pressure (which occurs as the vortex leaves the domain through the outflow
boundary) as well as the final L∞ pressure error for all schemes and cases.

To illustrate the robustness of the conservative cut-cell schemes, Figure 23 shows the evolution of L∞
error of the pressure for E21 and E41 over the parameter space. The colored lines are used to indicate the
degenerate mesh results. The light gray lines are used to indicate the results for the uniform mesh. Note
that degenerate mesh results track very closely to the uniform mesh results. The spikes in error around
t = 10 correspond to the vortex leaving the domain. The cut-cell schemes remain well behaved even when
encountering this difficult non-linear event on a degenerate mesh.
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Figure 23: L∞ norm of error in pressure as a function of time, t, for the indicated conservative cut-cell scheme. The color
lines correspond to the degenerate mesh simulations with ψl = ψr = 0. The light gray lines correspond to the uniform mesh
simulation with ψl = ψr = 1. The uniform mesh simulations tend to closely follow the path of the degenerate mesh simulations.
Large spikes in error occur around t = 10, when the vortex is leaving the domain.

5. Conclusions

The numerical challenges facing cut-cell methods stem from the highly irregular grids which naturally
arise near the embedded boundaries of a non-Cartesian object embedded in a Cartesian mesh. This paper has
focused exclusively on the stability issues that result from approximating derivatives on this irregular, and at
times, degenerate mesh. This has been termed the “small-cell problem” in the literature. Previous attempts
to solve this classic problem have employed either geometric manipulation algorithms to redistribute the
irregularities or some kind of dynamic correction procedure which often results in numerical source terms
being added to the governing equations. These approaches have been largely limited to 2nd order accuracy
for unsteady problems.

In this paper, a fundamentally different approach, TEMO (truncation error matching and optimization),
has been taken. This method is based on the intuitive design principles that a degenerate mesh ought to
yield the same solution as the equivalent uniform mesh and that the assumptions of continuity, which form
the foundation of finite differences, ought not be violated in the process. These two principles are all that
is needed to construct the stable 4th, 6th and 8th order accurate approximations to parabolic and elliptic
equations using both explicit and compact finite differences.

The construction of stable and conservative approximations to hyperbolic problems requires that these
two design principles be supplemented with discrete conservation constraints and a novel non-linear opti-
mization strategy. This process produced stable and conservative approximations of 2nd and 4th order.

The stability and accuracy of the schemes for parabolic, elliptic, and hyperbolic equations is demon-
strated through a variety of tests and analysis. Asymptotic stability is explored through an eigenvalue
analysis in which all schemes yielded stable eigenvalues. The accuracy and stability of the second derivative
approximations was demonstrated by solving the Poisson equation and the unsteady heat equation for a
variety of embedded wall distances as well as an embedded circle test case. The accuracy and long-time
stability of the conservative cut-cell discretizations was assessed through two challenging hyperbolic prob-
lems. In the first, a varying coefficient advection equation is simulated for very long times with an interior,
embedded circle serving as the inflow boundary. For the second test, the compressible Euler equations are
solved (without any numerical dissipation) for a moving (supersonic) isentropic vortex. The embedded wall
distances are again varied at the supersonic inflow/outflow boundaries. In all tests considered, the schemes
demonstrate the advertised order of accuracy and excellent stability properties over the whole range of
geometries, from uniform to degenerate meshes.
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α0,0 = −2.769707867422022

α0,1 = 4.394343202305503ψ

α0,2 = 4.394343202305503 − 5.873906004650443ψ

α0,3 = −1.47956280234494 + 1.3344902698063992ψ

α0,4 = −0.145072532538541 + 0.145072532538541ψ

α1,0 = (−2.769707867422022 + 0.3948457470551643ψ) /(1 + ψ)

α1,1 = 1.150196406378214ψ

α1,2 =
(
4.394343202305503 − 2.5501660272730517ψ

2 − 1.3203764394447342ψ
)
/(1 + ψ)

α1,3 = −1.47956280234494 + 1.2548970883562962ψ

α1,4 = −0.145072532538541 + 0.145072532538541ψ

α2,0 = 0.17185962499047314ψ

α2,1 = −1.187431060183429 + 0.34371181020248276ψ − 0.17185962499047316ψ
2

α2,2 = 1.150196406378214 + 0.17185962499047314ψ
2 − 0.8064771563972674ψ

α2,3 = 0.261900367793859 + 0.06624000721566786ψ

α2,4 = −0.224665713988644 + 0.224665713988644ψ

α3,0 = 0

α3,1 =
(
−5.854968681519409 + 7.238307504438035ψ + 0.6392337735764906ψ

3
+ 0.36877946535523365ψ

4 − 2.391352061850366ψ
2
)
/e0

α3,2 =
(
34.59906599295791 + 6.190942468885872ψ

2 − 1.6063383960657007ψ
4 − 2.6066103934877307ψ

3 − 30.765971981157694ψ
)
/e0

α3,3 =
(
−17.564906044558235 + 21.71492251331414ψ + 1.9177013207294775ψ

3
+ 1.1063383960657005ψ

4 − 7.174056185551086ψ
2
)
/e0

α3,4 =
(
−11.17919126688027 + 1.8127419634055244ψ + 3.3744657785155803ψ

2
+ 0.04967529918176233ψ

3
+ 0.13122053464476655ψ

4
)
/e0

e0 = −34.068319896799366 + 18.102098935687152ψ + 1.9662274333304404ψ
2

+ 1.3778181455165115ψ
3

+ ψ
4

Table A.3: Scheme E21: explicit conservative cut-cell boundary closures for first derivatives with 2nd order interior scheme.

Appendix A. Conservative Cut-Cell Discretizations for First Derivatives

The conservative cut-cell discretizations are given by the elements of the boundary matrix, B(ψ,α). The
general form of this matrix is too large to print but is available in the supplementary material. Tables A.3
and A.4 give specific instances of the E21 and E41 families that were found by the optimization procedure
and used in the test cases in this paper.
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α0,0 =
(
−19.877376814069642 − 3.ψ

2 − 56.63213044220892ψ
)
/
(
6. + 11.ψ + 6.ψ

2
+ ψ

3
)

α0,1 = 8.918251209379761ψ

α0,2 =
(
8.918251209379761 − 27.73431643048422ψ

2 − 1.93868840703482ψ
)
/(1. + ψ)

α0,3 =
(
−20.75475362813928 + 9.316065221104461ψ + 30.1934420351741ψ

2
)
/(2 + ψ)

α0,4 =
(
18.75475362813928 − 12.85693961641458ψ

2 − 11.816065221104461ψ
)
/(3. + ψ)

α0,5 = −1.47956280234494 + 1.47956280234494ψ

α0,6 = 0

α1,0 = (−19.877376814069642 + 18.162985641122255ψ) /
(
6 + 11ψ + 6ψ

2
+ ψ

3
)

α1,1 = −1.547601471175436ψ

α1,2 =
(
8.918251209379761 + 3.163241611181368ψ

2 − 6.938688407034821ψ
)
/(1. + ψ)

α1,3 =
(
−20.75475362813928 + 17.31606522110446ψ − 0.2041160064914882ψ

2
)
/(2. + ψ)

α1,4 =
(
18.75475362813928 − 2.8910869358593843ψ

2 − 14.816065221104461ψ
)
/(3. + ψ)

α1,5 = −1.47956280234494 + 1.47956280234494ψ

α1,6 = 0

α2,0 = −0.8770687218264502ψ

α2,1 = −0.07143296553947431 + 0.3905026400439473ψ + 1.6079593233484921ψ
2

+ 0.8770687218264505ψ
3

+ 0.14617812030440838ψ
4

α2,2 = −1.547601471175436 + 1.946264327130012ψ − 0.4385343609132251ψ
4 − 2.1926718045661255ψ

3 − 2.6312061654793513ψ
2

α2,3 = 2.571402206763154 + 1.3156030827396754ψ
2

+ 1.7541374436529005ψ
3

+ 0.4385343609132251ψ
4 − 2.919396490695018ψ

α2,4 = −1.2142681378421027 + 1.946264327130012ψ − 0.14617812030440838ψ
4 − 0.43853436091322523ψ

3 − 0.29235624060881676ψ
2

α2,5 = 0.261900367793859 − 0.486566081782503ψ

α2,6 = 0

α3,0 = 0.6961450379207412ψ

α3,1 = −0.8770687218264502 + 0.42462426012860605ψ − 0.11602417298679019ψ
4 − 0.6961450379207411ψ

3 − 1.2762659028546923ψ
2

α3,2 = 2.9502758399838243 + 2.0884351137622237ψ
2

+ 1.740362594801853ψ
3

+ 0.3480725189603706ψ
4 − 4.258411478208746ψ

α3,3 = −4.863749475004126 + 5.825952932341509ψ − 0.34807251896037056ψ
4 − 1.3922900758414822ψ

3 − 1.0442175568811118ψ
2

α3,4 = 3.1602806033739372 + 0.2320483459735804ψ
2

+ 0.34807251896037056ψ
3

+ 0.1160241729867902ψ
4 − 3.135082908265525ψ

α3,5 = −0.145072532538541 + 0.22210644209477137ψ

α3,6 = −0.224665713988644 + 0.224665713988644ψ

α4,0 = 0

α4,1 =
(
−17.540945247724775 + 136.8872106322367ψ + 332.657888919291ψ

2
+ 13.474345105867513ψ

3 − 0.6778464862382794ψ
9 − 10.817315419280217ψ

8

− 66.55351613252738ψ
7 − 174.35167249687643ψ

6 − 166.11737202522914ψ
5 − 46.96077684951908ψ

4
)
/e0

α4,2 =
(
64.02319500448931 + 158.33667525651526ψ

4
+ 653.4217049549081ψ

5
+ 703.0444457818155ψ

6
+ 273.9984433548364ψ

7
+ 45.79767101871374ψ

8

+ 2.9639178813369282ψ
9 − 66.08934182445557ψ

3 − 1258.2734987586696ψ
2 − 533.2984309736585ψ

)
/e0

α4,3 =
(
−72.28424196120802 + 776.9504344019497ψ + 1651.5251149385265ψ

2
+ 62.84926186977691ψ

3 − 5.077206662964922ψ
9 − 75.35086321538616ψ

8

− 433.28173917411794ψ
7 − 1077.3359887996094ψ

6 − 971.2160503086135ψ
5 − 208.1769746550032ψ

4
)
/e0

α4,4 =
(
45.918893441692546 + 570.1283631129575ψ

5
+ 718.2208287916981ψ

6
+ 308.68564685840187ψ

7
+ 57.93971772667819ψ

8
+ 4.2265775632559865ψ

9

− 55.85254863749133ψ
4 − 227.1961303834413ψ

3 − 978.96820052106ψ
2 − 443.10314795269153ψ

)
/e0

α4,5 =
(
−18.175858040589983+ 41.99911392203342ψ+208.19563395503837ψ

2
+ 262.53615381792383ψ

3
+ 204.37907808912647ψ

4 − 1.6879742317735251ψ
9

− 19.930952785651765ψ
8 − 89.22165019129679ψ

7 − 170.8779037507821ψ
6 − 65.81738721737831ψ

5
)
/e0

α4,6 =
(
−1.9410431966590622+ 20.56481997013003ψ+44.863061466873575ψ

2
+ 1.3002904737542476ψ

6
+ 6.3728152847038775ψ

7
+ 2.3617426749262207ψ

8

+ 0.25253193638381144ψ
9 − 20.39925851664461ψ

5 − 51.72545320362801ψ
4 − 45.5742885856713ψ

3
)
/e0

e0 = −25.197256738504368 − 37.8864504890495ψ + 164.96997270972506ψ
2

+ 200.2939631081134ψ
3

+ 133.31412637240055ψ
4

+ 56.108852223817124ψ
5

+ 26.024791923333847ψ
6

+ 8.469381240138295ψ
7

+ ψ
8

Table A.4: Scheme E41: explicit conservative cut-cell boundary closures for first derivatives with 4th order interior scheme.
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