
Physica D 403 (2020) 132250

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Revisiting the late-time growth of single-mode Rayleigh–Taylor
instability and the role of vorticity
Xin Bian a,∗, Hussein Aluie a,b, Dongxiao Zhao a,b, Huasen Zhang a,b, Daniel Livescu c

a Department of Mechanical Engineering, University of Rochester, NY 14627, USA
b Laboratory for Laser Energetics, University of Rochester, NY 14627, USA
c Los Alamos National Laboratory, Los Alamos, NM 87545, USA

a r t i c l e i n f o

Article history:
Available online 11 November 2019
Communicated by V.M. Perez-Garcia

Keywords:
Rayleigh–Taylor instability
Nonlinear instability
Vorticity
Turbulence

a b s t r a c t

Growth of the single-fluid single-mode Rayleigh–Taylor instability (RTI) is revisited in 2D and 3D
using fully compressible high-resolution simulations. We conduct a systematic analysis of the effects
of perturbation Reynolds number (Rep) and Atwood number (A) on RTI’s late-time growth. Contrary
to the common belief that single-mode RTI reaches a terminal bubble velocity, we show that the
bubble re-accelerates when Rep is sufficiently large, consistent with Ramaparabhu et al. (2006) and
Wei and Livescu (2012). However, unlike in Ramaparabhu et al. (2006), we find that for a sufficiently
high Rep, the bubble’s late-time acceleration is persistent and does not vanish. Analysis of vorticity
dynamics shows a clear correlation between vortices inside the bubble and re-acceleration. Due to
symmetry around the bubble and spike (vertical) axes, the self-propagation velocity of vortices points
in the vertical direction. If viscosity is sufficiently small, the vortices persist long enough to enter the
bubble tip and accelerate the bubble (Wei and Livescu, 2012). A similar effect has also been observed
in ablative RTI (Betti and Sanz, 2006). As the spike growth increases relative to that of the bubble at
higher A, vorticity production shifts downward, away from the centerline and towards the spike tip. We
modify the Betti–Sanz model for bubble velocity by introducing a vorticity efficiency factor η = 0.45
to accurately account for re-acceleration caused by vorticity in the bubble tip. It had been previously
suggested that vorticity generation and the associated bubble re-acceleration are suppressed at high
A. However, we present evidence that if the large Rep limit is taken first, bubble re-acceleration is still
possible. Our results also show that re-acceleration is much easier to occur in 3D than 2D, requiring
smaller Rep thresholds.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The Rayleigh–Taylor instability (RTI) appears at a perturbed
interface when a light fluid is accelerated against a heavy fluid
[1,2]. RTI is important in many engineering applications such as
inertial confinement fusion (ICF) [3] where it can significantly
degrade a target’s performance [4,5]. It also plays an important
role in the evolution of astrophysical systems, such as supernova
explosions [6] and gaseous hydrogen clouds [7]. There has been
significant theoretical, experimental, and numerical advances to-
wards understanding the fundamental physics of this problem
[8–12]. Refs. [13,14] offer an extensive recent review on the
topic.

At early times, when the instability amplitude is sufficiently
small, the flow is well-described by linear analysis [1,2]. For the
simple incompressible, inviscible, immiscible case in a domain
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much larger than the perturbation wavelength, the perturbation
at the interface grows exponentially with a rate γ =

√
Akg ,

where g is acceleration, k = 2π/λ is perturbation wavenum-
ber (λ is wavelength), and A = (ρh − ρl)/(ρh + ρl) is the
Atwood number (ρh and ρl are the density of the heavy and
light fluids, respectively). Numerous studies have addressed the
roles of viscosity, mass diffusivity, finite domains, compressibil-
ity, background stratification, surface tension, etc., e.g., [15–19].
At later times, when the instability amplitude exceeds ≳ 0.1λ,
nonlinear interactions become important and the flow develops
interpenetrating bubbles (due to the light fluid rising) and spikes
(due to the heavy fluid sinking).

The nonlinear stage in single-mode RTI has been studied by
many analytic models [20–29]. An important early contribution
was by Layzer [21], whose model relied on assuming a poten-
tial flow away from the fluid–vacuum interface in RTI flows
with A = 1. Goncharov [28] later generalized Layzer’s theory
to arbitrary Atwood numbers but still relying on the potential
flow assumption. The model predicts a terminal bubble velocity
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of

UB =

√
2 A g

(1 + A) C k
, (1)

where C = 3 in 2D and C = 1 in 3D. The model also yields a ter-
minal spike velocity US =

√
2Ag

(1−A)C k , although its validity breaks
down due to vorticity generation near the spike tip, violating the
potential flow assumption [28].

The growth of the bubble and the extent of its penetration into
the heavy fluid have been the focus of many studies due to the
critical role it plays in ICF implosions by mixing ablator material
into the fuel. This can have severe adverse effects on the ICF
target performance [3,30–33]. Recent experiments and numerical
simulations [34–42] have shown that even the prediction of a
terminal bubble velocity breaks down at late times. In ablative
RTI, it was found that the bubble is accelerated to velocities
above the potential flow prediction after a quasi constant-velocity
phase [34]. This re-acceleration was attributed to vortices gener-
ated near the spike and advected by the ablative flow towards
the bubble tip. The vortices then exert a centrifugal force against
the bubble tip causing its re-acceleration.

Rampamprabhu et al. [35,37] used Implicit Large Eddy Simula-
tions (ILES) to show that a similar phenomenon occurs in classical
RTI at low Atwood numbers, where secondary Kelvin–Helmholtz
instabilities (KHI) are responsible for vorticity generation which
leads to bubble re-acceleration. However, Refs. [35,37] observed
that the bubble velocity increase above the ‘‘terminal’’ value is
only transient and that the bubble experiences an eventual decel-
eration which slows down the bubble back to its terminal velocity
at later times. Moreover, Rampamprabhu et al. [35,37] observed
that bubble re-acceleration is completely suppressed for high
density ratios with A ≥ 0.6. It is worth noting the simulations
in [35,37], while being ground breaking at the time, were at a
relatively low cross-sectional grid-resolution of 1282 by today’s
standards. This is especially relevant since the simulations, being
ILES, had significant dissipation from the numerical discretization.
Indeed, visualizations in [35,37] indicate that their RTI flows do
not preserve the symmetry across the (vertical) bubble axis which
indicates a violation of momentum conservation. In the absence
of a horizontal force (gravitational acceleration is vertical), mo-
mentum conservation necessitates that the center of mass of the
entire domain remain along the same vertical line. A break in the
left–right symmetry for single-mode RTI implies a horizontal shift
in the center of mass.

Direct numerical simulations of 2D single-mode RTI at A =

0.04 in the incompressible variable density limit [38] showed that
when symmetry around the bubble (vertical) axis is maintained,
the self-propagation velocity of vortices points in the vertical
direction. This enhances the background vertical advection of
vortices and leads to their efficient propagation into the bubble
tip, resulting in re-acceleration. When viscosity is sufficiently
small, the vortices last long enough to reach the bubble tip,
where the induced vortical velocity brings in less mixed fluid
from the interior of the layer and accelerates the bubble. The
role of viscosity was quantified using the perturbation Reynolds
number Rep ≡ λ

√
A

1+Agλ/ν, where ν is kinematic viscosity and
the Atwood number dependency follows Goncharov’s result [28].
Ref. [38] showed that bubbles experience different growth stages
at low and high Rep. Above a threshold Rep value, RTI under-
goes re-acceleration followed by what they termed a ‘‘chaotic
development’’ stage where the bubble front’s mean acceleration
is constant, corresponding to quadratic growth in mixing layer
width. In the work of Wei and Livescu [38], the chaotic develop-
ment stage at high Rep refers to the late-time quadratic growth
stage (hB ∝ gt2), which is different to the ‘‘chaotic mixing’’ stage

in Ref. [37] used to describe the break of symmetry across the
(vertical) bubble axis at late times.

However, at high Atwood numbers, as the growth of bubble
and spike becomes asymmetric, the largest vorticity production
moves downward, away from the (initial interface) center-line
and towards the spike tip. Consequently, the vortices need to
travel larger distances to reach the bubble tip. Results from
Ref. [38] suggest that higher Atwood numbers require smaller
viscosities and that the numerical fidelity of simulations maintain
symmetry around the bubble (vertical) axis to observe bubble re-
acceleration. Nevertheless, no DNS study has been performed to
date to test this hypothesis.

Despite the important work in the aforementioned studies,
several issues remain in the late-time behavior of single-mode
RTI which motivate our paper:

(1) Does the bubble decelerate back to a constant velocity
growth after a transient re-acceleration as suggested in [37] and,
if so, is this constant velocity similar to the ‘‘terminal velocity’’?
Moreover, are subsequent re-accelerations possible after a failed
re-acceleration? Since the RTI flows in [37] were under-resolved
and lost symmetry at late-times, the persistence of bubble re-
acceleration deserves revisiting.

(2) Is there a threshold Atwood number above which re-
acceleration is completely suppressed as suggested in [37]? Wei
and Livescu [38] studied the effects of varying Rep at a fixed A =

0.04 using incompressible 2D DNS, while in ICF the A ≈ 1 [43].
Other studies investigating this issue [44,45] were also at a fixed
low Atwood number.

(3) Are there fundamental differences in RTI bubble growth
between 2D and 3D? Previous studies of late-time bubble growth
were either restricted to 2D [38,44,45] or included 3D but were
numerically under-resolved [35,37]. The absence of vortex stret-
ching in 2D RTI makes the underlying vortex dynamics signifi-
cantly different from 3D RTI.

(4) Will the dynamics of re-acceleration and chaotic devel-
opment shown in [38] using incompressible fluid simulations
be similar when using the fully compressible dynamics? Com-
pressible effects such as background stratification, finite acoustic
speed, non-zero velocity divergence, and the fluid’s equation
of state can have non-trivial effects on the RTI development
[45–48]. Ref. [49] found that rising bubbles compress the heavy
fluid and generate shocklets which merge with each other into
a normal shock. A compressible code using Parallel Adaptive
Wavelet Collocation Method (PAWCM) was developed [44] and
showed that background stratification tends to suppress both
bubble and spike growth at A = 0.1 using 2D DNS. More
recently, the effects of isothermal background stratification on
2D compressible RTI at A = 0.04 were studied by Wieland
et al. [45] using PAWCM, where they showed the perturbation
baroclinic torque is the main driver for RTI growth. In their
2D simulations, re-acceleration was observed for weak but not
strong stratification. As noted in [45], it is still not clear whether
the chaotic development stage will appear or not in fully com-
pressible simulations due to the small computational domain in
their study. The instability suppression does not appear when
the initial configuration has constant density on each side of the
interface [47].

In this paper, we perform high-resolution fully compressible
simulations that maintain symmetry until very late times. The
late-time behavior of bubbles and spikes is studied systemically
at both low and high Atwood numbers for different Rep. To avoid
the complications due to instability suppression in the presence
of background stratification, the initial configuration is out of
thermal equilibrium, with constant density on each side of the
interface. A comparison between 2D and 3D RTI is also conducted.
The results show that the re-acceleration and chaotic develop-
ment stages appear if Rep is above a threshold which depends on
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A. Higher A have higher Rep thresholds. This is consistent with
the incompressible 2D DNS results of [38] which investigated Rep
at a fixed A. Furthermore, at sufficiently high Rep, the increase in
bubble velocity above its ‘‘terminal’’ value is persistent and does
not decrease. Our analysis indicates that bubble re-acceleration
above its ‘‘terminal velocity’’ will occur even in the A → 1 limit if
the Rep → ∞ limit is taken first. A comparison between 2D and
3D RTI shows that RTI grows much faster and requires a smaller
Rep threshold to re-accelerate in 3D than in 2D.

The paper is organized as follows. A brief description of the
governing equations, initialization, and numerical schemes is pre-
sented in Section 2. Section 3 discusses the main results, the
effects of Rep, A, and 3D. We conclude with Section 4. The effects
of filtering in our numerical scheme are compared to DNS results
in Appendix A.

2. Numerical methodology

2.1. Governing equations

The numerical simulations are conducted with the DiNuSUR
code which has been used in many previous studies (e.g. [41,50–
52]). We use sixth-order compact finite differences [53] in the
vertical direction and pseudo-spectral method in the horizontal
direction, similar to previous RTI DNS in the variable density
limit [54,55]. Time integration uses fourth-order Runge–Kutta.
We solve the single-fluid compressible Navier–Stokes equations
over a Cartesian grid, including the continuity equation (2), mo-
mentum transport (3), and total energy transport (4):

∂tρ + ∂j(ρuj) = 0, (2)
∂t (ρui) + ∂j(ρuiuj) = −∂iP

+ ∂jσij − ρgδiz, (3)
∂t (ρE) + ∂j(ρEuj) = −∂j(Puj)

+ ∂j(uiσij) − ∂jqj − ρuigδiz, (4)

where ρ is density, u is velocity, P is pressure, g is the gravita-
tional acceleration along the vertical direction z, E = |u|

2/2+e is
the specific total energy per unit mass, with e the specific internal
energy. The viscous stress σij is defined as

σij = 2µ(Sij −
1
3
Skkδij), (5)

where Sij = (∂jui+∂iuj)/2 is the symmetric strain tensor. The heat
flux qj is defined as, qj = −κ∂jT , where T is temperature and κ is
thermal conductivity. The ideal gas law, P = ρRT , e = R/(Γ −1)T
is used, with the gas constant, R, and the ratio of specific heats,
Γ . R, Γ , µ and κ are constants in space and time.

2.2. Comparison to previous studies

Compared to the previous studies of late-time behavior in
single-mode RTI, [38] (two-fluid incompressible) and [44] (two-
fluid compressible), the compressible single-fluid model is used
in this work, leading to differences in background stratification,
acoustic wave generation, and baroclinic vorticity production.

2.2.1. Background stratification
To avoid the instability suppression due to background stratifi-

cation, the initial density field, ρ0, is uniform on each side of the
interface. The hydrostatic equilibrium then requires that, away
from the interface, the initial (background) pressure varies as,

P0 ∼ ρ0gz, (6)

where z is the vertical position. For the single fluid case, us-
ing the ideal gas equation of state yields that the background

temperature gradient is constant and equal on both sides of the
interface. Thus, the initial conditions represent a particular case
of the analysis of Ref. [19], with dT0/dz = g/R. Away from
the interface, when thermal conductivity coefficient is constant,
a constant temperature gradient implies that the heat conduc-
tion term vanishes in the energy equation, so that the initial
conditions are also in thermal equilibrium.

2.2.2. Initial acoustic effects
At the interface, as density changes between the heavy and

light regions (see below), the temperature gradient can no longer
be constant. The energy equation then has non-zero time deriva-
tive at initial time,

∂t (ρe) = ∂j(κ∂jT0), (7)

which results in the generation of acoustic waves at initial time.
The generation mechanism of acoustic waves in two-fluid mis-

cible RTI [44,45] is different. In the latter case, it is the enthalpy
diffusion term in the energy equation leading to non-zero time
derivative and the generation of acoustic waves,

∂t (ρe) = −∂j(cplTsjl), (8)

where cpl is specific heats at constant pressure of l fluid, sjl =

ρD∂jYl (D is the mass diffusion coefficient, Yl is mass fraction of
l fluid). By adding an initial dilatational velocity consistent with
the incompressible variable density limit [11,56],

∇ · u = −D∇
2 ln ρ, (9)

Ref. [44] was able to minimize the generation of initial acoustic
waves. In a similar manner, it is possible to initialize with a
dilatational velocity that is consistent with the heat conduction
term, i.e. ∇ · u = κ∇

2T , to minimize initial acoustic wave
generation. Investigating the role of such initializations on RTI
growth has not been explored here and is beyond our focus. A
detailed survey of similarities and differences between flows with
density variations due to thermal and compositional changes is
presented in Ref. [57].

2.2.3. Baroclinic term
The vorticity equation in this paper (compressible single-fluid)

is as follows,

∂tω + (u · ∇)ω = (ω · ∇)u − ω(∇ · u)

+
1
ρ2 ∇ρ × ∇P + ∇ × (

∇ · σ

ρ
). (10)

The baroclinic term, ∇ρ × ∇P , is essential for the instability
growth. While the form of the term is the same in the two-
fluid compressible and incompressible, as well as single-fluid
compressible RTI cases, the dynamics are potentially different.
Thus, for the compressible cases, the pressure density relation is
mediated by the equation of state. For the two-fluid configuration
the mixture gas constant varies in both space and time so that
mixing also plays a role on baroclinic generation. There is no
ideal gas law relation between pressure and density in two-fluid
incompressible RTI [38]. The additional constraint is from the
non-zero velocity divergence shown above.

2.3. Dimensionless parameters

Wei and Livescu [38] have shown that the development stages
of incompressible single-mode RTI are strongly affected by a
perturbation Reynolds number defined as λ

√
A

1+Agλ/ν, where λ

is the initial wavelength. In this paper, the late-time behavior is
studied with Prandtl number Pr = ν/α = 1, where α = κ/(cpρ)
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Fig. 1. Initial conditions for dimensionless density ρ∗
= ρ/ρ|z=0 (Blue), T ∗

=

T/T |z=0 (Black), and pressure P∗
= P/P|z=0 (Red) along z∗

= z/Lz in a A = 0.25
simulation. ρ|z=0 , T |z=0 and P|z=0 are the initial density, temperature, and
pressure at the bottom (z = 0), respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

is thermal diffusivity. Rep here is defined using the interfacial
density ρI = (ρh + ρl)/2 as,

Rep ≡

λ

√
A

1+Agλ

µ/ρI
. (11)

In the Reynolds number definition, λ is the perturbation wave-
length.

√
A

1+Agλ is a characteristic velocity proportional to the
terminal velocity from potential flow theory [28]. To quantify the
simulation grid resolution, we use the grid Grashoff number [58]
Gr∆ ≡ 2Ag∆3/ν2, where ∆ is the mesh size. Gr∆ ≤ 1 has
been used to denote well-resolved simulations [38,58]. The Gr∆
in the simulations is shown in Tables B.1 and B.2 in Appendix B.
To compare the RTI evolution under different parameters, we
use the non-dimensional time τ = t

√
Ag/λ, and dimensionless

bubble/spike front velocity, also called Froude number, FrB/S ≡

UB/S/

√
A

1+Agλ, where UB/S is the dimensional bubble/spike ve-
locity. Note that our dimensionless time, τ , is smaller than the
definition used in Ramaprabhu et al. [35,37] by a factor

√
2π . For

example, τ = 6 in this paper corresponds to dimensionless time
≈ 15 in [35,37].

A computational domain with aspect ratio 8 is used in both 2D
and 3D simulations. The physical size of the domain is Lx × Lz =

0.4×3.2 in 2D and Lx ×Ly ×Lz = 0.4×0.4×3.2 in 3D. The initial
perturbation is at the middle of the computational box, z0 =

0.5Lz , where Lz is the height of the computational box. For high
A simulations (A ≥ 0.6), the interface is shifted up to z0 = 0.75Lz
to allow for longer temporal evolution given the asymmetric
growth of bubbles and spikes. The detailed parameters are shown
in Tables B.1 and B.2 in Appendix B. In the simulations, Rep is
varied by adjusting µ (and κ to keep Pr = 1) and fixing other
parameters.

The initial density follows an error function profile in the
vertical direction [38]:

ρ(x, y, z) = 0.5{1 + erf[Yv z + ξ ]}(ρh − ρl) + ρl, (12)

where Yv = 170 is the slope coefficient, ξ is the initial density
perturbation in the form of:

ξ (x) = Acos(
2πx
λ

) in 2D, and (13)

ξ (x, y) = A[cos(
2πx
λ

) + cos(
2πy
λ

)] in 3D. (14)

Here, A = 0.5 is the amplitude of ξ . For single-mode RTI, the
perturbation wavelength is λ = Lx. The actual amplitude of the
density profile is A/Yv [38]. Fig. 1 illustrates the initial condition

Fig. 2. 2D density ρ visualizations at A = 0.04 for three typical Rep = 100,
1000, and 20000. (a–c) show results of Rep = 100 at τ = 2, 4, and 6. (d–f) are
results of Rep = 1000 at τ = 2, 4, and 6. (g–i) show results of Rep = 20000 at
τ = 2, 4, and 6. The plots show more vortical structures are generated at higher
Rep .

along the center line (x = Lx/2 and y = Ly/2) from a simulation
with A = 0.25.

Periodic boundary conditions are used in the horizontal direc-
tions. In the vertical direction, we have no-slip rigid walls for the
velocity, a zero heat flux boundary condition for temperature, and
a hydrostatic condition dP/dz|z=0,Lz= −ρg for pressure.

3. Results

We will now show a systematic analysis of the influence of Rep
and A in both 2D and 3D compressible RTI. At low A = 0.04, we
observe bubble re-acceleration that is temporally persistent when
Rep exceeds a threshold value (Rep = 6000 in 2D and Rep = 400 in
3D). We also observe the emergence of asymmetry in the bubble
and spike development (height and velocity) at late times, even
at the lowest A = 0.04 when Rep is high. At moderate Rep below
the threshold, re-acceleration is only transient and the bubble
eventually decelerates as in [37]. However, the deceleration does
not seem to stop at a constant bubble velocity. Even at Rep = 100,
when the re-acceleration does not occur, the constant velocity
growth is not maintained for long times as the bubble eventually
exhibits slight deceleration. At a fixed Rep, increasing A above
a threshold suppresses the bubble re-acceleration. However, the
A threshold value increases for higher Rep, suggesting that re-
acceleration can be maintained as A → 1 if the Rep → ∞

limit is taken first. We find that the effect of Rep and A in 3D
is qualitatively similar to 2D except that re-acceleration is easier
to attain in 3D, requiring lower Rep threshold values. An analysis
of the vorticity dynamics shows that bubble re-acceleration is
indeed due to the vortices propagating into the bubble tip [34,37].

3.1. Effect of perturbation Reynolds number

Fig. 2 presents the density visualizations for A = 0.04 at dif-
ferent Rep. The corresponding bubble and spike development (ve-
locities and heights) is plotted in Fig. 3. The bubble (spike) height,
hB/S , is defined by the location (relative to the initial interface) of
the maximum vertical density gradient, ∂zρ|x=0 (∂zρ|x=Lx/2), along
the line x = 0 (x = Lx/2). The bubble/spike velocity, FrB/S , is
calculated from the vertical velocity at that location.

Fig. 3 shows three main trends for FrB development, with the
plots for Rep = 100, 1000, and 20000 being representative of
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Fig. 3. Effects of Rep on the bubble velocity FrB (top left), the spike velocity FrB (top right), the bubble front location hB (bottom left), and the spike front location
hS (bottom right) in 2D RTI at A = 0.04. The dashed line shows the potential model prediction of FrB =

√
1/(3π ). hB/S is measured relative to the initial interface

position z0 = 0.5Lz . The plots show that the bubble and spike growth (both velocities and heights) are similar at low A and Rep , however they experience asymmetric
growth at late times at the highest Rep , even at low A = 0.04 cases shown here. A sustainable re-acceleration stage is observed at high Rep . The results are similar
to the incompressible RTI results in Ref. [38]. Note that, τ here is smaller than the definition used in Ramaprabhu et al. [35,37] by a factor

√
2π (τ = 6 here

corresponds to time ≈ 15 in [35,37]).

these trends. During the linear stage at early times, FrB increases
exponentially for all cases. When the bubble height amplitude
exceeds the nonlinear criterion (hB ≈ 0.1λ), the bubble velocity
becomes saturated. The saturation value agrees with Goncharov’s
‘‘terminal velocity’’ from potential theory [28]. However, in none
of the simulations, this constant velocity growth is fully main-
tained to the end of the simulation. At Rep = 100, after reaching
the saturation value predicted by Goncharov slightly after τ = 4,
FrB starts to slowly decay. When Rep exceeds 100, the bubble
accelerates beyond this saturation value at later times in the deep
nonlinear phase (hB ≳ λ). The bubble velocity at Rep = 1000
reaches more than twice the ‘‘terminal velocity’’ before eventually
decaying. At yet higher Rep (Rep = 8000 and 20000), the bubble
undergoes further re-acceleration (τ ≈ 6) in the deep nonlinear
phase. This stage was the onset of the so-called ‘‘chaotic develop-
ment’’ stage in [38], where the bubble rises with a mean constant
acceleration [38]. However, our fully compressible simulations
are more expensive than in [38] and we were not able to advance
to sufficiently late times to observe a clear chaotic development
stage.

While a higher Rep also leads to a larger growth rate during
the early linear stage, γ =

√
Akg − 4νk2γ (see Fig. 3), such a

correlation does not need to imply a causal relation between the
viscous effects during the linear stage and their effects on the
bubble speed in the deep nonlinear stage. Indeed, from Fig. 3,
we observe that despite the different linear growth rates for
different ν, all cases plateau to the same value at the end of the
linear stage. As shown in Fig. 2(c, f, i), the density visualization at
τ = 6 suggests more vortices are generated by KHI at higher Rep.
This suggests that the mechanism by which viscosity affects the
growth during the deep nonlinear stage is different in its nature
and is primarily involved in the damping of the generation and
advection of vorticity into the bubble tip. Section 3.5 will show
that the re-acceleration in the deep nonlinear phase is indeed due
to the vortices propagating into the bubble tip.

The time evolution of the spike velocity and height (right
panels in Fig. 3) is very similar to that of the bubble, especially at

early times, τ < 4. At later times, the spike velocity, especially at
high Rep > 1000, is larger than the corresponding bubble velocity,
while the results of low Rep = 100 are almost identical. This
highlights the asymmetry in the development between bubbles
and spikes even at very low A = 0.04.

The main conclusions from analyzing Rep dependence are
that (a) at sufficiently large Rep, the enhancement in bubble
velocity beyond the ‘‘terminal’’ value is sustained and does not
decrease at later times as had been previously observed in lower-
resolution simulations [37] and (b) even at lower Rep, when the
re-acceleration seems to fail or is not achieved over the duration
of our simulations, the bubble velocity does not maintain a con-
stant value but decays instead at late times. Note that we do not
observe re-acceleration at lower Rep, even when simulated over
times longer than those reported here (using longer domains). We
attribute this to a lack of vortices in the bubble tip, which will be
shown to be the reason for bubble re-acceleration in Section 3.5.

3.2. The effects of Atwood number

Fig. 4 presents density visualizations for Rep = 20000 at
different A. The corresponding bubble and spike development
(velocities and heights) are shown in Fig. 5. The simulations with
higher A (A = 0.6 and 0.8) end sooner due to the spike approach-
ing the bottom wall in less time. We also note that the spike for
the A = 0.8, Rep = 20000 case exhibits very slight asymmetry
at the latest times, close to the wall. In the four cases, the time
evolution of the bubble velocity at different A is similar during
the linear and early nonlinear stages (hB ≲ λ). At later times,
varying A leads to differing development trends. For the A =

0.04 case, the bubble front undergoes re-acceleration and exhibits
the putative onset of chaotic development as discussed in the
previous subsection. For the A = 0.25 case, the bubble front still
undergoes re-acceleration but with a smaller magnitude. In the
simulations with A = 0.6 and 0.8, the bubble front experiences
repeated unsustainable re-accelerations and its speed decays to
temporarily low values at later times. A clear and sustainable
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Fig. 4. 2D density ρ visualizations at Rep = 20000 for A = 0.04, 0.25, 0.6, and 0.8. (a–c) show the results of A = 0.04 at τ = 2, 4, and 6. (d–f) are the results of A =
0.25 at τ = 2, 4, and 6. (g–i) show the results of A = 0.6 at τ = 2, 4, and 6. Note the A = 0.04 and 0.25 simulations have an initial interface position at z0 = 0.5Lz ,
while the A = 0.6 and 0.8 simulations’ initial interface position is at z0 = 0.75Lz . Also note that in the A = 0.8 simulation, the spike reaches the bottom soon after
τ = 6.

Fig. 5. Effects of A on the bubble velocity FrB (top left), the spike velocity FrB (top right), the bubble front location hB (bottom left), and the spike front location hS
(bottom right) in 2D RTI at Rep = 20000. The dashed line shows the potential model prediction of FrB =

√
1/(3π ). hB/S is measured relative to the initial interface

position z0 = 0.5Lz at A = 0.04 and 0.25 and z0 = 0.75Lz at A = 0.6 and 0.8. The plots show the absence of the bubble re-acceleration and the asymmetric
development of bubbles and spikes at high A. Note that, τ here is smaller than the definition used in Ramaprabhu et al. [35,37] by a factor

√
2π (τ = 6 here

corresponds to time ≈ 15 in [35,37]).

re-acceleration at high A is not observed over the time and Rep
in these simulations. Due to the vortices transported towards the
bubble tip, we anticipate that bubble velocity keeps fluctuating at
later time instead of saturating at a constant velocity. In addition,
the morphology of the layer becomes different than when the
quasi-constant bubble velocity is first observed. Therefore, it is
doubtful that the original ‘‘terminal velocity’’ has any relevance
for the long time behavior. However, a more definitive statement
on the bubble behavior at even later times requires taller domains
which is beyond what we were able to perform in this study.

To better understand the bubble front behavior at high A,
Fig. 6 compares the evolution of bubble velocities for A = 0.8
at different Rep. The plots show a clear trend for more intense
fluctuations in the bubble velocity as Rep increases. This suggests
that a sustainable re-acceleration regime can appear at arbitrarily
high A if Rep is large enough, although determining this with

definitive certainty requires even higher resolution simulations
beyond what we were able to perform in this study.

Fig. 5 allows for comparing the bubble and spike velocities at
one of the highest Rep = 20000 value considered in this study.
The spike approaches free-fall behavior and experiences weaker
resistive drag as A increases from 0.04 to 0.8. For A = 0.04 and
0.25, the spike reaches a quasi-constant velocity growth before
re-accelerating at τ ≈ 3.5. After that, there are subsequent accel-
eration and deceleration phases around FrS = 1, which might be
indicative of the emergence of the ‘‘chaotic growth’’ regime, with
mean quadratic growth. However, the simulations are not long
enough to clearly identify this regime. Larger A leads to larger
deviations from the ‘‘terminal velocity’’

√
2Ag

(1−A)3k obtained from
potential flow theory [28], which has been well-known to be due
to vortices generated near the spike tip. For the highest A = 0.8,
the spike speed never passes through a constant velocity stage.
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Fig. 6. Time evolutions of bubble velocities at A = 0.8 for different Rep . The
plot indicates that the fluctuation amplitude becomes stronger as Rep increases
and that bubble re-acceleration is possible at sufficiently high Rep .

The evolutions of bubble and spike heights are also plotted in
Fig. 5. The bubble height development shows that hB increases
faster as A decreases. In contrast, the spike height development
shows that hS increases faster as A increases. The plots suggest
that the asymmetric development between bubbles and spikes
becomes more significant at larger A, as is well-known. For ex-
ample, hS is about 4.7 times larger than hB for A = 0.8 at τ ≈ 6,
while hS ≈ 1.12hB for A = 0.04 at the same time.

The main conclusion from analyzing A dependence is that
increasing A makes it more difficult for bubble speed to in-
crease and persist above the ‘‘terminal velocity’’ value of potential
flow theory. This is consistent with the findings of Ramaprabhu
et al. [37]. However, the results in [37] showed an eventual
deceleration back to the ‘‘terminal velocity’’ after a transient re-
acceleration stage for all Atwood numbers, including low A =

0.005 (see Figs. 7 (a) and (c) in Ref. [37]). In contrast, our results
indicate that the bubble speed enhancement above the ‘‘terminal’’
value can be sustained regardless of A if the Rep is sufficiently
large. The differing results are most probably due to the difference
in resolution and momentum conservation. The results reported
here maintain symmetry and are at a significantly higher reso-
lution than what was possible several years ago when [37] was
conducted. Compared to the simulations in [37] our simulations
show a clear and sustained bubble speed enhancement at A =

0.04 and 0.25. At higher A > 0.25, the bubble velocity exhibits
intermittent oscillations above the ‘‘terminal’’ value with an in-
tensity that increases with increasing Rep, suggesting that a clear
sustained bubble speed enhancement is possible if Rep is suffi-
ciently large. Future studies using higher resolution simulations
with larger Rep are encouraged to verify the bubble’s late-time
behavior at high A, which is of particular relevance in ICF.

3.3. 3D Effects

We now report on 3D effects at different Rep and A. The main
conclusion is that compared to 2D results, 3D bubbles develop
faster and require smaller Rep threshold values (e.g. Rep = 400 at
A = 0.04) for re-acceleration.

Fig. 7 presents density visualizations at τ = 5. The bubble
velocity for A = 0.04 at different Rep is plotted in Fig. 8. It is
shown that the bubble velocity in all cases increases persistently
without returning to the ‘‘terminal velocity’’ and does not exhibit
the temporal fluctuations observed in 2D. Even at the lowest
Rep = 100 and 400, the bubble never seems to pass through a
constant velocity phase after the exponential growth of the linear
stage. At A = 0.04, the plots also show that the evolutions of
the bubble and spike velocities are very similar, although they
become asymmetric at high Rep at late times.

The absence of a constant velocity stage and larger growth
rates in 3D are not surprising. Faster (properly normalized)

Fig. 7. 3D density ρ visualizations at τ = 5. (a), (b) are results at A = 0.04 for
Rep = 1000 and 8000, respectively. (c), (d) are results at A = 0.8 for Rep = 1000
and 8000, respectively. Note the initial interface position is z0 = 0.5Lz for
A = 0.04 and z0 = 0.75Lz for A = 0.8. The plots show that 3D RTI generates
more vortical structures than 2D RTI.

growth rates in 3D than in 2D were already shown by previous
studies in both single-mode and multi-mode RTI [23,59]. In 3D
RTI, the assumption in potential theory is easier to violate than
that in 2D due to vortex stretching which significantly amplifies
vorticity. As a result, the density contour in Fig. 7 indicates much
more intense vorticity generation in 3D than in 2D, resulting in
faster bubbles and spikes. In addition, vortex rings self-propagate
faster than vortex pairs.

Overall, our results indicate weaker requirements for re-
acceleration in 3D than in 2D. For example, at Rep = 1000, the
bubble front can re-accelerate at A ≤ 0.25 (see Fig. 9), while, the
bubble front in 2D exhibits only a weak re-acceleration followed
by a deceleration at later times, even for A = 0.04 at this Rep value
(see Fig. 3).

3.4. Re-acceleration phase diagram

The above results show the influence of A and Rep on re-
acceleration. To further elucidate the threshold parameter values
required for re-acceleration, the late-time behavior of the bubble
front is classified into 4 phases in Fig. 10: robust re-acceleration
(R), transient (T), saturation (S), and intermittent (I). A robust
re-acceleration (R) phase means the bubble re-accelerates and
eventually displays an onset of the chaotic development stage
(e.g. Rep = 20000, A = 0.04 in 2D); in the Transient (T) phase,
a bubble re-accelerates but then decelerates (e.g. Rep = 1000,
A = 0.04 and Rep = 20000, A = 0.6 in 2D); in the saturation
(S) phase, re-acceleration is absent after the linear growth stage
and the bubble front saturates for some time near the theoretical
value from potential theory or fluctuates slightly around it, with
likely eventual decay at very late times (e.g. Rep=100, A = 0.04
and Rep = 8000, A = 0.8 in 2D). Rep = 20000 and 30000 at
A = 0.8 in 2D are considered in the intermittent phase (I) due
to the large intermittent oscillations of FrB above the ‘‘terminal
velocity’’ value, with no clear late time trend.

Fig. 10 summarizes these findings in a phase diagram in A and
Rep space. The figure makes clear how the threshold Rep value for
a re-acceleration increases with increasing A. In 2D RTI, (1) for



8 X. Bian, H. Aluie, D. Zhao et al. / Physica D 403 (2020) 132250

Fig. 8. Time evolutions of bubble (left panel) and spike (right panel) velocities at A = 0.04 and different Rep in 3D RTI. The dashed line shows the potential model
of FrB =

√
1/π . The plots show 3D RTI develop faster and is easier to re-accelerate than its 2D counterpart. Note that, τ here is smaller than the definition used in

Ramaprabhu et al. [35,37] by a factor
√
2π (τ = 6 here corresponds to time ≈ 15 in [35,37]).

Fig. 9. Time evolutions of the bubble (left panel) and spike (right panel) velocities at different A for two Rep in 3D RTI. The dashed line shows the potential
model of FrB =

√
1/π . Note that, τ here is smaller than the definition used in Ramaprabhu et al. [35,37] by a factor

√
2π (τ = 6 here corresponds to time ≈ 15

in [35,37]).

Fig. 10. Re-acceleration A – Rep phase diagram in 2D (left panel) and 3D (right panel) RTI. The late-time behavior of the bubble front is classified into 4 phases:
(1) (R) denotes a robust re-acceleration exists at late times; (2) (T)ransient means the bubble front re-acceleration is temporary and eventually decelerates at late
times; (3) (S)aturation phase indicates that the bubble front saturates near the ‘‘terminal velocity’’ after the linear stage, with possible eventual decay at very long
times; (4) (I)ntermittent phase means the bubble front velocity is characterized by intermittent large amplitude fluctuations without clear long time trend.

Rep ≤ 400, late-time RTI is in the (S)aturated phase. (2) For
1000 ≤ Rep ≤ 6000, late-time RTI is in the (T)ransient phase
at small A ≤ 0.25. Increasing A to larger values, re-acceleration
is completely suppressed and late-time RTI is in the (S)aturated
phase. (3) When 6000 ≤ Rep ≤ 8000, late-time RTI is in the
(R)obust Re-acceleration phase when A is small enough. Increas-
ing A at a constant Rep, late-time RTI changes phase from (R) to
(T) to (S). (4) For Rep ≥ 20000, the speed is highly intermittent
and it is not clear whether or not the bubble will eventually
re-accelerate at A = 0.8.

Due to the limited computing resources, the dependence of
re-acceleration on A and Rep in 3D is less thoroughly investigated
here. Compared to 2D RTI, a robust re-acceleration appears at
smaller Rep and larger A, such as Rep = 1000, A = 0.25 (note
that the case of Rep = 1000, A = 0.6 is considered as (R)obust
Re-acceleration phase here). The (T)ransient and (I)ntermittent
phases from 2D RTI are not observed in 3D simulations.

3.5. Discussion on vortical structures

Following the work of Betti and Sanz [34] and Ramaprabhu
et al. [35,37], we also investigated the role of vorticity in driv-
ing re-acceleration at different Rep and A. The results indicate
a strong correlation between vorticity and re-acceleration, and
show that discrete vortices are mainly generated away from the
initial centerline, at the interface between lighter fluid and spike.
These vortices then propagate towards the bubble tip, resulting in
the bubble re-acceleration, consistent with results from ablative
RTI [34,39,40].

Fig. 11 shows visualizations of dimensionless vorticity at A =

0.04 for Rep = 100, 1000, and 20000 in 2D. We showed above
how at τ = 4, the bubble in the Rep = 20000 case starts to re-
accelerate while that in the Rep = 100 case does not exceed the
‘‘terminal velocity’’ from the potential flow theory (see Fig. 3).
Correspondingly, Fig. 11(h) shows complex vortical motions at



X. Bian, H. Aluie, D. Zhao et al. / Physica D 403 (2020) 132250 9

Fig. 11. Visualizations of 2D dimensionless vorticity ω∗
= (∂zux − ∂xuz )/

√
Ag/λ at A = 0.04 for different Rep = 100 (a–c), 1000 (d–f), and 20000 (g–i). The images

are cropped vertically to save space. The plot shows larger amplitude of vorticity and stronger vortical motions at larger Rep .

Fig. 12. Visualizations of 2D dimensionless vorticity ω∗
= (∂zux − ∂xuz )/

√
Ag/λ at Rep = 20000 for A = 0.04 (a–c), 0.25 (d–f), 0.6 (g–i), 0.8 (j–l). Note the A = 0.04

and 0.25 simulations have an initial interface position at z = 0.5Lz , while the A = 0.6 and 0.8 simulations’ initial interface location is at z = 0.75Lz . The images are
cropped vertically to save space. Note the maximum amplitude of vorticity at higher A is larger.

Rep = 20000, while vortices in the Rep = 100 case are absent and
vorticity intensity is ≈ 10× lower. At τ = 6, Fig. 11(i) indicates
abundant vortices inside the bubble tip at Rep = 20000. As we
show below and discussed in [34,35,37,38], these vortices are
generated at the spike’s interface as it penetrates into the lighter
fluid. When the bubble symmetry (around the vertical axis) is
maintained long enough and the viscosity is small enough so that
the vortices do not dissipate, they then propagate into the bubble
tip. The induced vortical velocity brings in purer (less mixed)
lighter fluid from the interior, which increases the local Atwood
number near the bubble tip, as well as exerts a direct centrifugal
force, resulting in re-acceleration. The strength of the vortices
inside the bubble tip fluctuates in time which, as we shall show
below, correlates very well with the fluctuations in the bubble
speed at late times. At intermediate Rep = 1000, Fig. 11(f) shows
that the vortices are weaker than that in Rep = 20000. Compared
to the Rep = 20000 case, the Rep = 1000 flow shows less robust
vorticity generation and a significant reduction in the strength
and ubiquity of vortices which can propagate into the bubble to
sustain a robust re-acceleration. The bubble velocity at Rep =

1000 eventually decays. For Rep = 100, the bubble velocity does
not reach values larger than the potential flow model because of
the lack of vortices in the bubble tip, as shown in Fig. 11(c).

This phenomenology carries over to 3D single-mode RT where
we have 3D vortex rings instead of 2D vortices generated and
propagated towards the bubble tip (see Fig. 7). These 3D vortex
structures can get amplified due to stretching, thereby exerting
an even stronger effect on bubble re-acceleration. Due to the axial
symmetry, the induced advection due to vortex stretching is in
the vertical direction. This has also been observed in 3D ablative
RTI in [39]. It is also consistent with our findings above where
bubble re-acceleration is more pronounced in 3D than in 2D.

We now investigate why increasing A tends to suppress re-
acceleration. Fig. 12 presents the dimensionless vorticity visu-
alizations for Rep = 20000 at different A. Remember that the
spike velocity approaches free-fall behavior as A → 1, when the
lighter fluid approaches vacuum. Since the spike growth increases
relative to that of the bubble as A increases (at any fixed τ ),
the visualizations in Fig. 12 show that individual vortices have
to travel longer distances before entering the bubble tip region.
Thus, due to the increased spike velocity, the region with largest
shear and, consequently, largest Kelvin–Helmholtz roll-up effect
occurs closer to the spike tip, away from the initial (interface)
centerline and bubble tip. This also correlates with the largest
baroclinic vorticity production, similar to Ref. [45], where the
stratification independent baroclinic torque was shown to dom-
inate vorticity production. For the vortices generated below the
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Fig. 13. Plots illustrating the regions used in calculating vorticity ω0 =

∫
V ρ|ω|

2dV
2
∫
V ρdV ,

where V is the volume inside the bubble tip. k = 2π/lx is the wavenumber. (a)
The gray region is used in Fig. 14, which has a vertical distance of 1/k. (b)
The yellow region is composed of three disjoint regions (near, middle and far
regions). Each region has a vertical distance of 2/(3k). The three disjoint regions
are used in Fig. 15. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

initial centerline to reach the bubble tip region, two conditions
must occur [38]: (a) the vortices need to move in the vertical
direction faster than the bubble tip and (b) they have to preserve
their structure for sufficiently long times.

The first condition can be satisfied if the symmetry around the
(vertical) bubble axis, which is physically required in single-mode
RTI due to momentum conservation, is maintained numerically.
Maintaining the bubble symmetry is important for re-acceleration
since in that case vortices interact coherently (constructive in-
terference) to induce a maximal vertical advective velocity to
self-propagate. Otherwise, in the absence of symmetry, the re-
sultant vertical advection from vortices is not as effective due
to advection in the horizontal direction and possible destructive
interference. Since the mean horizontal velocity is zero, a loss
of symmetry would also imply interactions with other vortices,
further hindering the vertical motions. Our simulations maintain
this symmetry.

The second condition requires that viscosity has to be small
enough so that vortices do not dissipate or weaken enough to be
displaced horizontally by other vortices, as they travel towards
the bubble tip. Therefore, despite an increase in vorticity inten-
sity, at fixed Rep, increasing A reduces the number of vortices
entering the bubble tip, which prevents vorticity from aiding the
bubble growth.

At τ = 4, the bubble starts to re-accelerate for A ≤ 0.25
(see Fig. 5). In contrast, at A ≥ 0.6, the vortex rings need to
travel a longer distance to affect the bubble dynamics, since
the spike develops much faster at large Atwood numbers. For
a fixed Rep, the longer distance traversed by vortices results in
their dissipative attenuation before reaching the bubble tip. As a
consequence, for A ≥ 0.6, Fig. 12(e, k) show that fewer vortices
reach the bubble front. At τ = 6, abundant vortices are present
inside the bubble at A ≤ 0.25 to sustain a robust re-acceleration,
while the vortices at A ≥ 0.6 are less prevalent, which leads to
the intermittent fluctuations in the bubble speed.

To quantify the effect of vortices on bubble re-acceleration,
the spatial average of vorticity behind a bubble tip ω0 (vertical
length 1/k, where k is the wavenumber) is calculated. Here, ω0 =∫
V ρ|ω|

2dV
2
∫
V ρdV , ω = ∇ × u, and V is the volume behind the bubble

tip [39] (the gray region in Fig. 13(a)). The density weighted
vorticity is used following [34,39] since vortices in the heavier
fluid have a larger momentum and exert a larger centrifugal force
on the bubble (density weighting is more important at higher
A). A comparison between the time evolution of ⟨|ω0|

2
⟩λ/(Ag)

and FrB is presented in Fig. 14. The plots indicate a strong cor-
relation between vorticity and re-acceleration. The plateau in
⟨|ω0|

2
⟩λ/(Ag) from τ ≈ 1.5 to 4 corresponds to the potential

stage in the bubble velocity plots. For the A = 0.04 simulations,
⟨|ω0|

2
⟩λ/(Ag) increases rapidly at τ ≈ 4, almost at the same

time instant when the bubble front starts re-accelerating. At later
time, ⟨|ω0|

2
⟩λ/(Ag) increases again at τ ≈ 7 for Rep = 8000 and

τ ≈ 6 for Rep = 20000, correlating with the onset of a second
re-acceleration in the FrB plots. Similarly, for A = 0.6, a positive
correlation between the increase in vorticity and the increase in
the bubble velocity can also be observed.

The time history of ω0 within the three disjoint regions inside
the bubble is shown in Fig. 15. The vertical distance for each
region is 2/(3k), as illustrated in Fig. 13(b). For the A = 0.04,
Rep = 20000 case (left panel in Fig. 15) we can see a similar
evolution of vorticity in the three regions but with a time lag.
For example, the increase in ω0 corresponding to the bubble re-
acceleration at τ ≈ 4 first appears in the ‘far’ region at τ ≈ 3.5,
then in the ‘middle’ region at τ ≈ 4, and finally in the ‘near’
region at τ ≈ 4.2. At A = 0.6, a similar pattern can also be
observed in Fig. 15 (right panel).

The strong correlation between vorticity and bubble velocity
suggests that re-acceleration and deceleration of the bubble front
is determined by vorticity accumulation inside bubble, consistent
with the previous findings [34,37]. Here, we quantitatively show
that the vortices which propel the bubble front are not generated
inside the bubble, but are generated far below the bubble tip.
The vortices then propagate towards the bubble tip. Note that the
vortices need to move faster than the bubble tip, which implies
that the induced vortical velocity should enhance the advection
velocity.

Betti and Sanz [34] (see also [37]) proposed a model to predict
bubble velocities by taking into account the effects of vorticity

FrB =

√
1
3π

+
rd

1 − rd

|ω0|
2

4πkg
, (15)

where rd = ρl/ρh. Note that the above model was derived
for ablative RTI, where ω0 is the vorticity transferred by mass
ablation from spikes to bubbles [34,39,40]. Ramaprabhu et al. [35]
applied this model to classical RTI.

Here, we heuristically modify the model by adding an effi-
ciency factor η = 0.45 to the vorticity term to account for

Fig. 14. Comparison between the spatially-averaged normalized vorticity ⟨|ω0|
2
⟩λ/(Ag) inside the bubble and the bubble velocity FrB for 2D simulations. The plots

show that there is a strong correlation between vorticity and bubble velocity in the nonlinear stage of the RTI growth.
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Fig. 15. Time evolutions of averaged vorticity ω0 within the three disjoint regions inside the bubble from two 2D Rep = 20000 simulations. The regions are explained
in Fig. 13(b). The vertical distance for each region is 2/(3k). The dashed line shows Frb multiplied by a constant C = 10 for better comparison. Left (right) panel
shows A = 0.04 (A = 0.6) results. The results indicate vortices are advected from the bottom towards the bubble tip, and leads to bubble re-acceleration at low
A = 0.04. At high A = 0.6, the vortices are also advected from the bottom towards the bubble and leads to the fluctuations in speed around τ = 6.

Fig. 16. Numerical results of FrB and model predictions for four 2D RTI cases, Rep = 8000 and A = 0.04 (top left), Rep = 20000 and A = 0.04 (top right), Rep = 8000
and A = 0.6 (bottom left), Rep = 20000 and A = 0.6 (bottom right). Note that the prediction is only valid in the nonlinear stage. η = 0.45 in all cases. These results
corroborate the explanation that vorticity plays a primary role in determining bubble growth in the nonlinear stage.

the attenuation of vortices as they travel through the bubble tip
region. The bubble velocity prediction for 2D RTI is,

Frmodel
B =

√
1
3π

+ η
rd

1 − rd

|ω0|
2

4πkg
. (16)

Fig. 16 shows that Frmodel
B from Eq. (16) roughly represents the

actual speed FrB from the simulations. Model Eq. (16) captures the
bubble velocity development after the potential stage (τ ≈ 2)
and predicts the onset of bubble re-acceleration. This agreement
further supports the explanation that vortices inside the bubble
tip are the cause of bubble re-acceleration.

4. Conclusions

In this paper, we carried out a systematic investigation into
the effects of Rep and A on the development of single-mode
RTI in both 2D and 3D. Our simulations used fully compressible
dynamics of a single fluid with background temperature variation
and uniform background density. This configuration does not
present the instability suppression due to background stratifica-
tion seen in other studies. The main conclusions are summarized
as follows:

1. In 2D RTI, above a threshold Rep value, the bubble re-
accelerates to speeds that are larger than the ‘‘terminal velocity’’
predicted in potential flow models. For these high Rep values,
such a speed enhancement is persistent and the bubble does
not decelerate at later times as previously suggested [37]. We
also observe asymmetric late-time growth in height and speed
between bubbles and spikes at low Awhen Rep is sufficiently high.

2. Increasing A while keeping Rep fixed suppresses the bubble
front development. This is in part due to a reduction in secondary
instabilities and vortex generation [35]. However, more impor-
tantly, it is because the sites of vortex generation around the
sinking spike drift further away from the bubble tip at higher A,
requiring vortices to travel longer distances before entering the
bubble tip region. For a fixed Rep, this leads to the dissipative
attenuation of vortices as they travel. The phase diagram in Fig. 10
suggests that if Rep is sufficiently large, it can counteract the effect
of increasing A, even in the A → 1 limit relevant for ICF.

3. The effects of A and Rep on RTI are qualitatively similar in 2D
and 3D. However, 3D bubbles are easier to re-accelerate, having
a lower Rep threshold for any A.

4. Analysis of vorticity dynamics shows a clear correlation
between vortices inside the bubble tip region and re-acceleration.
These vortices are generated around the spike interface as it
penetrates into the lighter fluid. We showed how these vortices
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then propagate towards the bubble tip, eventually causing its
re-acceleration. We heuristically modified the Betti–Sanz model
[34] for bubble velocity by introducing a vorticity efficiency factor
η = 0.45 to account for the attenuation of vortices as they travel
through the bubble tip region.

We would like to emphasize the significance of maintaining
symmetry, which lies in its role as an indicator of momentum
conservation. While single-mode RTI rarely occurs in practical
applications such as ICF, momentum conservation does hold in
those more complex systems. In those applications, perturbations
are multi-mode and, therefore, momentum conservation is not
reflected as the simple symmetry arising in single-modes. Yet,
symmetry is important in single-mode RTI because it marks the
fidelity of the simulation. If a fundamental conservation law is
violated, one must be (at the very least) skeptical of conclusions
drawn from such simulations. This should also raise questions
about multi-mode RTI using those codes, because if the simula-
tions violate momentum conservation for single-mode RTI, they
are probably also violating it in multi-mode RTI. In this sense,
single-mode simulations offer an important benchmark.

We note that further studies are still needed to investigate the
late-time behavior of RTI, including higher-resolution simulations
capable of reaching higher Rep and run for longer times to better
characterize bubble evolution as A → 1. The latter limit is of
particular relevance to ICF, where the extent of bubble growth
and penetration into the heavy fluid play a critical role in mixing
ablator material into the fuel, with potentially severely adverse
effects on the target performance. This study focuses on single-
mode RTI, which is a building block for multi-mode RTI. The next
step is the study of the effects of Rep and A on the mixing layer
development in multi-mode RTI with practical configurations
relevant to ICF.
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Appendix A. Validation of simulations with filtering

The simulations in this work are performed with a sixth-order
filter described in [53], which allows us to conduct higher Rep
simulations and for longer times at any given grid resolution.
We will now present a comparison with DNS, which rely on the
same code but without filtering. The simulations using filtering
show very good agreement with DNS. Specifically, results on the

Fig. A.1. Comparison of the density field between DNS and simulations with
filtering in 2D RTI. (a) and (b) simulate RTI at Rep = 1100 and A = 0.8 at τ = 6.
(a) is a DNS on a 256 × 2048 grid, and (b) uses filtering on a 128 × 1024 grid.
(c) and (d) simulate RTI at Rep = 8000, A = 0.04 at τ = 4. (c) is a DNS on
a 512 × 4096 grid, and (d) uses filtering on a 256 × 2048 grid. Note that the
images are cropped in the vertical to save space (domain aspect ratio is 8).

Fig. A.2. Comparison of the density field between DNS and simulations with
filtering in 3D RTI at Rep = 800, A = 0.25, at τ = 2.5. (a) is a DNS on a
128×128×256 grid, and (b) uses filtering on a 64×64×128 grid. The maximum
relative difference ( DNS−filtering

filtering ) is 0.29%. Differences in the color rendering is
due to the DNS grid being finer with a higher grid-point density, which leads
to slightly darker colors despite the pointwise numerical values being almost
identical. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

bubble velocity, which is the main focus of this study, are almost
indistinguishable from those obtained from DNS.

The sixth-order filter [53] acts to remove the smallest scales
near the grid-scale. Unlike the incompressible RTI formulation
[38,54,58,60], the fully compressible dynamics used here intro-
duce much more stringent numerical requirements, which makes
DNS very expensive. For example, to simulate RTI at Rep = 20000
and A = 0.04, a DNS that uses a 512 × 4096 grid can run until
τ ≈ 4.1 before becoming numerically unstable, whereas using
a 1024 × 8192 grid can run until τ ≈ 4.2. Therefore, the gain
from doubling the grid resolution in DNS mode is merely ∆τ ≈

0.1, making the numerical cost prohibitive. A 1024 × 8192-grid
simulation integrated till the spike reaches the wall consumes
≈ 0.3 million CPU hours, implying that conducting DNS for all
flows analyzed here is not feasible with the available computing
resources.

The main effect of filtering is to regularize the anomalously
large ∇ · u values. These appear in a few locations at the in-
terface between heavy and light fluids when RTI develops into
the deep nonlinear phase. In our simulations, even though the
Mach number Ma is small (e.g. maximum Ma(x) ≈ 0.1 at τ = 4
for the A = 0.04 Rep = 8000 simulation), the acoustic waves
generated by the piston-like motions of the bubble and spike
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Fig. A.3. Comparison of the density field between DNS and simulations with
filtering in 3D RTI at Rep = 450, A = 0.8, at τ = 2.5. (a) is a DNS on a
128×128×256 grid, and (b) uses filtering on a 64×64×128 grid. The maximum
relative difference ( DNS−filtering

filtering ) is 4.78%. Differences in the color rendering is
due to the DNS grid being finer with a higher grid-point density, which leads
to slightly darker colors despite the pointwise numerical values being almost
identical. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. A.4. Comparison of dilatation ∇ · u and vorticity ω between DNS and
simulations with filtering in 2D RTI at Rep = 8000, A = 0.04, at τ = 4. (a, d) are
DNS on a 512 × 4096-grid. (b, e) use filtering on a coarser 256 × 2048-grid.
(c, f) use filtering on a 512 × 4096-grid. Images are cropped vertically to save
space (domain aspect ratio is 8).

can still coalesce into shock waves [49], significantly increasing
the dilatation ∇ · u. While the role of these shock waves can
become important at larger Mach numbers [49], at low Mach
numbers, they are essentially decoupled from the rest of the flow,
so that filtering them is unlikely to affect the results. To verify
this assertion, the filtering results are validated here against DNS
at different A and Rep values. The simulations show no significant
differences for both pointwise and spatially averaged quantities.

Figs. A.1–A.3 compare the density field in both 2D and 3D at
different A and Rep. The filtering results are performed at lower
grid resolutions than DNS. The plots from DNS and simulations
with filtering show almost identical pointwise values.

Fig. A.4 shows a pointwise comparison of ∇ · u and ω. When
using the same grid resolution (512 × 4096), DNS and simulations
with filtering yield almost identical ∇ · u and ω fields. However,
a close inspection of Fig. A.4(a),(c) shows how filtering reduces
∇ · u when compared to DNS. Lower-resolution (256 × 2048)
simulations with filtering still yield ω that is indistinguishable
from that of DNS, but ∇ · u is noticeably larger. We attribute
the larger ∇ · u values on a coarser grid (but the same Rep)
to an insufficient resolution to accurately evolve the dilatation
field. Without filtering, ∇ · u can become very large in an under-
resolved simulation leading to numerical instabilities. Filtering
keeps the values of ∇ · u bounded, without affecting other as-
pects of the RTI dynamics. Again, this is consistent with the low
Mach numbers regimes attained in the simulations, for which the
shocklets [49] become decoupled from the rest of the flow. More
detailed discussions of filtering can be found in [53].

In addition to the pointwise comparison of visualizations, a
comparison of several quantities as a function of time is pre-
sented in Fig. A.5. These are the bubble velocity FrB(τ ), kinetic
energy K (τ ) =

∫
V ρ|u|

2/2 dV , released potential energy δPE(τ ) =∫
V [ρ(x, 0) − ρ(x, τ )] g z dV , enstrophy Ω(τ ) =

∫
V |ω|

2dV , and
change in internal energy δIE(τ ) =

∫
V [ρe(x, τ ) − ρe(x, 0)] dV .

The comparison between DNS and filtered simulations shows an
almost identical evolution for four out of the five quantities. Small
differences are discernible in the evolution of δIE, but even these
are miniscule relative to the magnitude. The small differences
indicate that filtering yields slightly smaller δIE compared to DNS
due to removal of the energy dissipated by shocklets.

Fig. A.5. Comparison of bubble velocity FrB (top left), enstrophy Ω (top right), kinetic energy K (bottom left), release of potential energy δPE (bottom middle), and
change in internal energy δIE (bottom right) between DNS and filtering results for 2D RTI. RTI is simulated at A = 0.04, Rep = 8000 using DNS on a 512 × 4096 grid,
and filtering on 256 × 2048 and 512 × 4096 grids. We also show RTI at A = 0.8, Rep = 1100 using DNS on a 256 × 2048-grid and filtering on a 128 × 1024-grid.
Note that the plots of K , δP , and Ω for A = 0.04 are multiplied by 5.
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Table B.1
2D simulation parameters. I.Loc. means the initial interface location. Runs 1–3
are DNS. All others use filtering (see Appendix A).
Run Rep Grid Size Gr∆ A I.Loc.

1 100 128 × 1024 0.0099 0.04 Lz/2
2 210 128 × 1024 0.044 0.04 Lz/2
3 400 128 × 1024 0.16 0.04 Lz/2
4 1000 128 × 1024 0.99 0.04 Lz/2
5 1500 256 × 2048 0.28 0.04 Lz/2
6 2000 256 × 2048 0.50 0.04 Lz/2
7 4000 512 × 4096 0.25 0.04 Lz/2
8 6000 512 × 4096 0.56 0.04 Lz/2
9 8000 512 × 4096 0.99 0.04 Lz/2
10 20000 1024 × 8192 0.77 0.04 Lz/2
11 1000 128 × 1024 1.19 0.25 Lz/2
12 1500 256 × 2048 0.33 0.25 Lz/2
13 2000 256 × 2048 0.60 0.25 Lz/2
14 4000 512 × 4096 0.30 0.25 Lz/2
15 6000 512 × 4096 0.67 0.25 Lz/2
16 8000 512 × 4096 1.19 0.25 Lz/2
17 15000 512 × 4096 4.19 0.25 Lz/2
18 20000 512 × 4096 7.45 0.25 Lz/2
19 4000 512 × 4096 0.32 0.35 5Lz/8
20 8000 512 × 4096 1.29 0.35 5Lz/8
21 10000 512 × 4096 2.01 0.35 5Lz/8
22 15000 512 × 4096 4.53 0.35 5Lz/8
23 20000 512 × 4096 8.05 0.35 5Lz/8
24 4000 512 × 4096 0.35 0.45 5Lz/8
25 6000 512 × 4096 0.78 0.45 5Lz/8
26 8000 512 × 4096 1.38 0.45 5Lz/8
27 15000 512 × 4096 4.86 0.45 5Lz/8
28 20000 512 × 4096 8.64 0.45 5Lz/8
29 20000 512 × 4096 9.06 0.52 3Lz/4
30 2000 256 × 2048 0.76 0.6 3Lz/4
31 4000 512 × 4096 0.38 0.6 3Lz/4
32 6000 512 × 4096 0.85 0.6 3Lz/4
33 8000 512 × 4096 1.52 0.6 3Lz/4
34 20000 512 × 4096 9.54 0.6 3Lz/4
35 2000 256 × 2048 0.86 0.8 3Lz/4
36 4000 512 × 4096 0.43 0.8 3Lz/4
37 6000 512 × 4096 0.97 0.8 3Lz/4
38 8000 512 × 4096 1.71 0.8 3Lz/4
39 20000 512 × 4096 10.73 0.8 3Lz/4
40 30000 1024 × 8192 3.02 0.8 3Lz/4

Table B.2
3D simulation parameters. I.Loc. means the initial interface location. Runs 41–43
are DNS. All others use filtering (see Appendix A).
Run Rep Grid Size Gr∆ A I.Loc.

41 100 128 × 128 × 1024 0.0099 0.04 Lz/2
42 400 128 × 128 × 1024 0.16 0.04 Lz/2
43 1000 128 × 128 × 1024 0.99 0.04 Lz/2
44 8000 256 × 256 × 2048 7.93 0.04 Lz/2
45 1000 128 × 128 × 1024 1.19 0.25 Lz/2
46 1000 128 × 128 × 1024 1.53 0.6 3Lz/4
47 1000 128 × 128 × 1024 1.72 0.8 3Lz/4
48 8000 256 × 256 × 2048 13.73 0.8 3Lz/4

In summary, simulations with filtering seem to yield results
that are almost identical to DNS at higher resolutions. This is
especially the case for the bubble velocity, the focus of the present
paper.

Appendix B. Simulation parameters

All simulation parameters in the main document are summa-
rized in Tables B.1 and B.2.
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