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a b s t r a c t 

A new subgrid-scale (SGS) model for turbulent velocity fluctuations is proposed for large-eddy simula- 

tions (LES) of dispersed multi-phase flows. The modeled velocity contains scales smaller than the LES 

grid resolution, thereby enabling the prediction of small-scale phenomena such as the preferential con- 

centration of particles in high-strain regions. The construction of the spectrally enriched velocity field in 

physical space is made dynamically, and is based on (1) modeling the smallest resolved eddies of sizes 

comparable to the LES grid size via approximate deconvolution, and (2) reconstructing the SGS fluctua- 

tions via non-linear generation of small-scale turbulence. The model does not contain tunable parame- 

ters, can be deployed in non-uniform grids, and is applicable to inhomogeneous flows subject to arbitrary 

boundary conditions. The performance of the model is assessed in LES of isotropic turbulence laden with 

inertial particles, where improved agreement with direct numerical simulation results is obtained for the 

statistics of preferential concentration. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Particle-laden turbulence is ubiquitous in engineering and en-

vironmental flows. A particular feature of these types of flows is

the presence of particle clouds that result from the tendency of

inertial particles to preferentially sample specific regions of the

turbulent flow field ( Lazaro and Lasheras, 1989; Balachandar and

Eaton, 2012; Monchaux et al., 2010; 2012; Esmaily-Moghadam and

Mani, 2016; Baker et al., 2017 ). The intensity and spectral proper-

ties of these clouds are central to a number of physical processes.

These include momentum and thermal inter-phase coupling with

the turbulent environment ( Ferrante and Elghobashi, 2003; Frankel

et al., 2016; Richter et al., 2016; Pouransari and Mani, 2017; 2018;

Horwitz and Mani, 2018; Balachandar et al., 2019 ), dispersion due

to electric forces ( Renzo and Urzay, 2018; Yao and Capecelatro,

2018 ), and thermal coupling with an external radiative heat source

( Rahmani et al., 2015; Villafañe et al., 2017; Jofre et al., 2017 ). It is

therefore of relevance in computational predictions of these phe-

nomena to resolve or model the characteristic scales associated

with the resulting inhomogeneities in the spatial distribution of

particles caused by these clouds. 
∗ Corresponding author. 

E-mail address: bassenne@stanford.edu (M. Bassenne). 
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The cost of resolving all flow length scales down to the Kol-

ogorov scales via Direct Numerical Simulations (DNS) often

ecomes prohibitive for industrial- and environmental-scaled

ystems. An alternative approach consists of employing LES by

ntegrating the low-pass-filtered Navier–Stokes equations 

∂ u i 

∂x i 
= 0 , (1)

∂ u i 

∂t 
+ u j 

∂ u i 

∂x j 
= − 1 

ρ

∂ p 

∂x i 
+ ν

∂ 2 u i 

∂ x j ∂ x j 
− ∂τi j 

∂x j 
, (2)

here the overlined quantities ( ·) correspond to large-scale por-

ions of the corresponding fields. In this formulation, t is the

ime coordinate, x i are spatial coordinates, u i are flow velocity

omponents, p is the hydrodynamic pressure, ρ is the density, and

is the kinematic viscosity. The symbol τi j = u i u j − u i u j denotes

he unclosed SGS stress tensor, which, in this study, is closed using

raditional models for single-phase flows. More importantly, and

ince the particles are transported by the equation of motion 

du p,i 

dt 
= 

u i − u p,i 

t a 
, (3)

s to consider a closure for the full-scale flow velocity u i to which

he particles are subjected. In the notation, x p,i is the position of

he particle, u p,i is its velocity, and t a = (2 / 9)(ρp /ρ)(a 2 /ν) is the

https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2019.04.025&domain=pdf
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v  
haracteristic acceleration time, with ρp and a the particle density

nd radius, respectively. In writing Eq. (3) , it is has been assumed

hat the particle radius is much smaller than the Kolmogorov

ength scale, that the particle density is much larger than that of

he carrier fluid, and that the particle Reynolds number computed

sing the slip velocity as characteristic velocity is much smaller

han unity ( Maxey and Riley, 1983 ). 

An accurate time integration of Eq. (3) requires the full-scale

arrier-phase velocity u i rather than the filtered one u i . Inaccu-

ate predictions of some of the dispersed-phase statistics are typi-

ally observed when this closure problem is ignored and u i only is

mployed for the integration of Eq. (3) , or equivalently, when the

quation 

du p,i 

dt 
= 

u i − u p,i 

t a 
(4) 

s solved instead of Eq. (3) ( Marchioli, 2017; Chen and Jin, 2017 ).

he magnitude of the inaccuracies made in the predictions is how-

ver dependent on the characteristic dimensionless parameters of

he problem, and most notably, on the SGS Stokes number St SGS ,

hich represents the ratio of the characteristic particle accelera-

ion time to the turnover time of the eddies whose size is equal

o the grid size, as described in Urzay et al. (2014) . Among the

ispersed-phase statistics degraded by neglecting the closure prob-

em described above [i.e., by integrating Eq. (4) in place of Eq. (3) ]

s preferential concentration, whose intensity and associated scales

ave been shown to be inaccurately predicted ( Park et al., 2017;

015 ). 

Most studied SGS models consist of approximate-deconvolution

r Lagrangian stochastic models ( Minier, 2015; Mazzitelli et al.,

014; Marchioli, 2017; Shotorban and Mashayek, 2006; Johnson

nd Meneveau, 2018; Rani et al., 2014; Pozorski and Apte, 2009 ),

r a combination of the two ( Michalek et al., 2013 ). A class of less

nvestigated SGS models are the spectrally enriched ones, which

re typically based on kinematic simulation ( Ray and Collins,

014; Murray et al., 2016; Zhou et al., 2018; Pozorski and Rosa,

019 ), fractal interpolation ( Marchioli et al., 20 08a; 20 08b; Akin-

abi et al., 2018 ) or spectrally-optimized interpolation ( Gobert and

anhart, 2011 ). The main drawbacks associated with this class of

odels are their reliance on Fourier basis functions with infinite

upport in physical space, and on tunable parameters whose values

utside of the homogeneous turbulence regime are not straightfor-

ard to justify theoretically. In addition, it is challenging to gener-

te small-scale turbulence structures that display the correct de-

ree of spatiotemporal correlations ( Jiménez et al., 1993; Bürger

t al., 2013; He et al., 2017; Ghate and Lele, 2017 ), and to which

he particles are sensitive during their flight and accumulation into

louds. The model presented in this paper circumvents some of

hese limitations. 

In this paper, an SGS model, termed spectrally enriched differ-

ntial filter model (SDF), is proposed that is formulated in physical

pace for the full-scale carrier-phase velocity u i to be used in

he integration of the equation of particle motion (3) in LES of

article-laden turbulence. This investigation builds on some of our

revious work ( Urzay et al., 2014; Park et al., 2017; 2015; Bassenne

t al., 2015; 2017b; 2017a; 2018b ) by proposing a SGS model

ased on differential filters that incorporates a spectrally-enriched

arrier-phase velocity u i , which contains scales smaller than the

ES grid resolution, thereby enabling the calculation of small-scale

henomena such as preferential concentration of particles. The

odel is dynamic, in that it does not contain tunable parameters,

t can be deployed in non-uniform grids, and is applicable to

nhomogeneous flows subject to arbitrary boundary conditions

 Bassenne et al., 2018a ). 

The remainder of this paper is organized as follows. The SGS

odel formulation is described in Section 2 . Results for the
arrier- and dispersed-phase statistics obtained from LES with

nd without the SGS model, and their comparisons with DNS, are

rovided in Section 3 . Lastly, concluding remarks and suggestions

or future work are provided in Section 4 . 

. Description of the SDF model 

This section describes the SDF model proposed in the present

ork. Consider the velocity field u (2�) 
i 

described by its nodal val-

es on a grid with characteristic spacing 2 �. This velocity and this

rid resolution are equivalent, respectively, to the LES velocity field

 i and to the LES grid resolution. Using these quantities, Fig. 1

hows the three-step (I, II, III) SDF model algorithm employed to

egenerate the velocity field on a finer grid. 

The first step of the SDF model algorithm (step I in Fig. 1 )

akes use of the dynamic approximate-deconvolution differen-

ial filter (DF) model developed in Park et al. (2017, 2015) and

eads to a velocity field u (2�) 
i, AD 

still defined on the original grid.

ection 2.1 is devoted to explaining this procedure. 

The second step (II in Fig. 1 ) of the SDF model is described

n Section 2.2 and is composed of the following substages: (i) in-

erpolation, which leads to a velocity field u (�) 
i, ADI 

defined on the

ner grid, (ii) spectral enrichment, which provides a velocity field

 

(�) 
i, SGS 

furnished with fine scales, and (iii) approximate deconvolu-

ion, which renders a velocity field u (�) 
i, AD 

also defined on the finer

rid but energized near the cutoff. These three substages are ap-

lied once for a single-level reconstruction that corresponds to re-

ning the grid by a factor of two in each direction. This second

tep can be applied recursively to obtain higher levels of refine-

ent, as depicted in Fig. 1 . 

Lastly, since the velocity field u (�) 
i, AD 

is generally not divergence-

ree, the final step of the SGS model algorithm (step III in Fig. 1 )

onsists of extracting the solenoidal portion of u (�) 
i, AD 

, which results

n the full-scale modeled velocity field u i employed for integrating

he equation of motion of the particles (3) . 

.1. Step I: dynamic approximate deconvolution 

Given u (2�) 
i 

, an approximately-deconvolved velocity field u (2�) 
i, AD 

s computed in the following way. To benefit from a filtering ker-

el that is easily applicable to complex geometries, the dynamic

ifferential-filter approximate-deconvolution model in Park et al.

2017, 2015) is used in the present study, which provides the ex-

ression 

 

(2�) 
i, AD 

= u 

(2�) 
i 

− ∂ 

∂x j 

{
[ b (2�) ] 2 

∂u 

(2�) 
i 

∂x j 

}
. (5) 

he parameter b (2 �) scales with the local filter-width size and is

ynamically computed by solving a simple quadratic equation us-

ng the procedure based on SGS kinetic-energy matching described

n Park et al. (2017, 2015) . The parameter b (2 �) is non-uniform

n space along non-homogeneous coordinates. When b (2 �) is uni-

orm, as in the present study, the deconvolved velocity u (2�) 
i, AD 

is

ivergence-free. In comparison with the input velocity u (2�) 
i 

, the

pectral kinetic energy of u (2�) 
i, AD 

near the grid cutoff wavenumber

s enhanced, yet the resulting flow does not contain scales smaller

han the grid cutoff. 

.2. Step II: interpolation, spectral enrichment, and approximate 

econvolution 

The SDF model supplements the approximately-deconvolved

elocity u (2�) 
i, AD 

with subgrid scales as follows. The velocity field
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Fig. 1. Schematic diagram of the steps I, II, and III involved in the SDF model algorithm. The diagram assumes an input LES velocity u i = u (2�) 
i 

represented on a grid with 

characteristic resolution 2 �, and provides a full-scale modeled velocity u i defined on a finer grid. 
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u (�) 
i, ADI 

is obtained by interpolating u (2�) 
i, AD 

onto the finer grid. This in-

terpolation step does not lead to small scales that have any signifi-

cant energy. However, it raises numerical challenges that are worth

discussing. In particular, the interpolating kernels generally lead to

artificial smoothing of the resolved velocity fluctuations that hin-

der the conservation of kinetic energy. The latter is nonetheless a

quantity that plays a critical role in subsequent steps of the dy-

namic modeling approach outlined below. This issue is more se-

vere in three-dimensional staggered grids where a refinement by a

factor of two in each direction implies that none of the face cen-

ters of the original grid coincide with the face centers of the fine

one. In this study, this issue is mitigated by using fourth-order La-

grange interpolation onto a collocated mesh in order to minimize

the shift in variable location carried along in a staggered mesh.

Note however that the full-scale modeled velocity u i is requested

on a staggered grid to facilitate the divergence-free projection. As

a result, the velocity is interpolated onto a staggered grid only dur-

ing the final refinement level. 

The interpolated velocity u (�) 
i, ADI 

has scales ranging from the in-

tegral scale to the LES cutoff 2 �, and does not contain any signif-

icant SGS motion in scales smaller than that. In contrast, the en-

ergy of the spectrally enriched velocity u (�) 
i, SGS 

is mostly populated

in the subgrid scales ranging from � to 2 �. As a consequence,

u (�) 
i, SGS 

bears the regenerated scales by spectral enrichment and re-

quires modeling. In this study, the proposed model for u (�) 
i, SGS 

is 

u 

(�) 
i, SGS 

= 

√ 

2 K 

D i √ 

D j D j 

. (6)

Expression (6) is composed of two multiplicative terms that

involve the square root of the local SGS kinetic energy K =
u (�) 

i, SGS 
u (�) 

i, SGS 
/ 2 based on the SGS velocity, and the normalized vector

D i / 
√ 

D j D j that describes the relative magnitude of each velocity

component, with D i being an estimate of the local instantaneous

growth-rate vector. The computation of K and D i is explained be-

low. 

The growth-rate vector of the SGS motion is modeled as 

D i = N i − ˜ N i , (7)

where N i is given by 

N i = 

[
u 

(�) 
j, ADI 

− ˜ 

u 

(�) 
j, ADI 

]
∂u 

(�) 
i, ADI 

∂x j 
, (8)

and 

˜ (·) denotes a spatial filter with characteristic width 4 � (i.e.,

twice as coarse as the LES grid). In Eq. (7) , ˜ N i is subtracted from

N i to minimize the modification of the resolved portion of N i .

The model form for the SGS velocity u (�) 
i, SGS 

obtained by combin-

ing Eqs. (6) - (8) resembles the physical mechanism of generation
f small scales by convection of large scales in turbulent flows.

owever, it models neither the pressure and viscosity effects on

he generation or suppression of small scales, nor the temporal

ynamics inherent to the generation process. Instead, the present

odel assumes that the subgrid scales are instantaneously gener-

ted by one round of interactions among the resolved scales. Al-

hough the model is similar to the velocity-estimation model for

he SGS stress tensor in Domaradzki and Loh (1999) , the present

ork reformulates it in the form given by Eq. (6) , employs a dy-

amic approximate-deconvolution scheme, and also provides a dy-

amic procedure for the computation of the prefactor 
√ 

2 K , as de-

cribed below. 

The local SGS kinetic energy K = u (�) 
i, SGS 

u (�) 
i, SGS 

/ 2 is estimated as-

uming that it is proportional to the kinetic energy of the smallest

esolved scales. This assumption resembles local self-similarity and

eads to 

 = K 1 , 2 = CK 2 , 4 , (9)

here C is a proportionality coefficient that is dynamically com-

uted as 

 = 〈 K 2 , 4 〉 / 〈 K 4 , 8 〉 . (10)

n Eq. (10) , the angle brackets denote averaging along homoge-

eous directions. If the latter are not present in a particular flow

onfiguration, the angle brackets are substituted by a series of fil-

ering operations to regularize the dynamic coefficient, as tradi-

ionally performed in LES dynamic procedures. In the above for-

ulation, K m,n denotes the kinetic energy of eddies whose sizes

ange from m � to n �, namely 

 2 , 4 = 

(
u 

(�) 
i, ADI 

− ˜ 

u 

(�) 
i, ADI 

)(
u 

(�) 
i, ADI 

− ˜ 

u 

(�) 
i, ADI 

)
/ 2 (11)

nd 

 4 , 8 = 

(
˜ 

u 

(�) 
i, ADI 

− ̂ 

u 

(�) 
i, ADI 

)(
˜ 

u 

(�) 
i, ADI 

− ̂ 

u 

(�) 
i, ADI 

)
/ 2 , (12)

here ̂ (·) denotes a spatial filter with characteristic width 8 �. 

The motivation for the above dynamic procedure is best ex-

lained by making use of a power-like law for the kinetic-energy

pectrum, E k (κ) ∼ κ−β, where κ is the wavenumber and β is an

xponent. It directly follows from this assumption that the ratio

 m ,2 m 

/ K 2 m ,4 m 

is equal to a constant C independent of m . Addition-

lly, under the assumption of spectrally-sharp cutoff filters for the

perators ̂ (·) and 

˜ (·) in Eqs. (11) and (12) , the ratio K m, 2 m 

/K 2 m, 4 m 

=
 

1 −β is obtained. Note that β can be imposed, for instance, us-

ng Kolmogorov’s scaling β = 5 / 3 , thereby leading to a theoreti-

al value of the parameter constant C = 0 . 63 . Instead, the present

odel does not explicitly require any value of β since the formula-

ion uses a dynamic computation of C based on cascade energetics

f the resolved scales, as in Eq. (10) . 
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The scale-similarity assumption implied by Eq. (9) regarding

he ratio of kinetic energies being independent of the specific

avenumber band becomes increasingly more unjustified near and

ithin the viscous range, where the kinetic-energy spectrum no

onger varies as a power law but rather does so exponentially. The

igher the Reynolds number, the longer the inertial range is and

he larger the number of reconstruction steps are that can be per-

ormed with the SDF model without deleterious incursions into

he unmodeled viscous subrange. Similarly, the scale-similarity as-

umption may become unjustified at the first reconstruction level

nless the Reynolds number is sufficiently large and the grid cutoff

f the base LES is far away from the integral scales. This can be un-

erstood by noticing that the first reconstruction level requires in-

ormation of the kinetic energy up to scales four times larger than

he grid cutoff of the base LES. 

After the spectral enrichment, the final substage of step II con-

ists of approximately deconvolving the sum of the interpolated

elocity field u (�) 
i, ADI 

and spectrally enriched fluctuation velocity

 

(�) 
i, SGS 

using the differential filter 

 

(�) 
i, AD 

= 

(
u 

(�) 
i, ADI 

+ u 

(�) 
i, SGS 

)
− ∂ 

∂x j 

{[
b (�) 

]2 ∂ 

∂x j 

(
u 

(�) 
i, ADI 

+ u 

(�) 
i, SGS 

)}
. (13) 

n Eq. (13) , b ( �) is chosen such that b (�) = b (2�) / 2 in order to

ccount for the doubled grid resolution, and to keep constant

he deconvolution filter width relative to the grid resolution [i.e.,

 

(�) / � = b (2�) / (2�) ]. This substep is intended to correct for the

umerical errors caused at high wavenumbers by the discrete op-

rators employed in the spectral-enrichment step. 

As depicted in Fig. 1 , the aforementioned three substages (i.e.,

nterpolation, spectral enrichment, and approximate deconvolu-

ion) can be applied recursively for successive refinement levels,

eading to increasingly finer-scale velocity fields. 

.3. Step III: divergence-free projection 

After recursive application of step II, the final output velocity

 

(�) 
i, AD 

is forced to be divergence-free using a classic Hemholtz de-

omposition. In this way, a Poisson equation 

∂φ

∂ x j ∂ x j 
= 

∂u 

(�) 
i, AD 

∂x i 
(14) 

s solved for the potential φ of the irrotational portion of the ve-

ocity field u (�) 
i, AD 

. The solenoidal portion of u (�) 
i, AD 

is therefore given

y 

 i = u 

(�) 
i, AD 

− ∂φ

∂x i 
. (15) 

he resulting incompressible velocity field u i is used as a model

or the full-scale flow velocity in integrating the equation of mo-

ion of the particles (3) . Generally, the computational cost of the

odel is mostly limited by this step, particularly when the flow

onfiguration does not have periodic directions, since it requires

he resolution of a linear system of equations on a grid finer than

he original LES grid. 

.4. Pathways for further improvement of the SDF model 

Three aspects are worth pointing out with regard to the formu-

ation described above. They pertain to possible shortfalls of the

odel that could motivate future work. 

In the SDF model, the motion of the small scales is generated at

ach reconstruction level. By doing so, however, the motion of the

arge scales is modified as well. This is expected from the physical-

pace formulation of the SDF model, which relies on spectrally

on-compact numerical operators. Note that this lack of spectral
ompactness contributes to generate variations in the dynamic co-

fficient C as the grid is refined. 

The subgrid scales regenerated by the SDF model above are

emporally correlated in time with the same correlation time as

he fluctuations corresponding to the near-cutoff eddies. This is not

 realistic assumption, in that the small scales should decorrelate

aster, and it may have consequences on the persistence time of

he particle clouds that should be interrogated in future work. 

The description of the SDF model provided above (see schemat-

cs in Fig. 1 ) can be modified if significant computational cost

avings are pursued. In its present form, the cost of the SDF model

s of the same order as the cost of a traditional LES simulation

i.e., without SGS model for the velocity) at the refined grid

orresponding to the particular reconstruction level. For instance,

ne potential path for improving the computational cost consists

f non-uniformly deploying the SDF model in space, in a way that

he number of refinement levels employed in the algorithm would

e allowed to vary spatially and would be dynamically computed.

imilarly, the computational overhead could be greatly decreased

y spectral enrichment formulations that would analytically incor-

orate the divergence-free condition on the modeled field, rather

han enforcing it through the inversion of Eq. (14) . Existing noise-

educing linear filters or approximate Poisson solvers replacing

he traditional resolution of Eq. (14) would also be of interest for

ccelerating the step III in the present algorithm ( Schiavazzi et al.,

014 ). These computational aspects are worthy of future research. 

. Model performance 

In this section, results obtained from the application of the SDF

odel to one-way coupled, homogeneous-isotropic particle-laden

urbulence are described. The focus of the analysis is on the im-

act of the SDF model on preferential-concentration statistics in

egimes where the small-scale eddies play a critical role in pre-

icting the accurate spatial distribution of particles. 

.1. Computational set-up 

The DNS reference simulations employed in the analysis are ob-

ained by solving the Navier–Stokes equations in a triply-periodic

ubic domain using a finite-volume solver that employs second-

rder accurate in space and fourth-order accurate in time nu-

erics, as described in Esmaily-Moghadam and Mani (2016) and

smaily et al. (2018) . The constant-energy linear forcing proposed

n Bassenne et al. (2016) is used in the momentum equation in

rder to sustain the turbulence and achieve statistical stationar-

ty. The Reynolds number based on the Taylor microscale is Re λ =
5 . The DNS employs 256 3 grid points that are equivalent to a

rid resolution κmax � k = 1 . 6 , with κmax = π/ � being the largest

avenumber resolved by the grid. The Kolmogorov length is � k =
(ν3 /ε) 1 / 4 , where ν is the kinematic viscosity and ε is the mean

olecular dissipation. The integral length is equal to � = u 3 � /ε

here u � is the root mean square large-scale velocity u � = 

√ 

u i u i / 3 .

The analysis includes comparisons of DNS with LES obtained by

olving the filtered Navier–Stokes Eqs. (1) and (2) . The SGS stress

ensor is modeled in LES using the dynamic Smagorinsky model

 Germano et al., 1991 ), where the dynamic coefficient is calculated

sing the least-squares approach of Lilly (1992) . The LES employs

2 3 grid points with a grid resolution κmax � k = 0 . 2 . In order to ac-

ount for the unresolved portion of the kinetic energy that is not

aptured in LES, the value of the resolved kinetic energy injected

n LES is set to 85% of the corresponding DNS kinetic energy. This

esolved kinetic energy is obtained by filtering the DNS with a box

lter that has a filter width equal to the LES grid spacing. All spa-

ial filters are chosen to be box filters numerically implemented

ith a fourth-order Simpson rule for quadrature. 
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Fig. 2. Time history of the spatially-uniform dynamic coefficients (a) b and (b) C of the SDF model at different levels of refinement r , where the grid is refined by a factor 

2 r in each direction relative to the LES grid. 
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A large number of particles N p = 5 × 256 3 are randomly seeded

once the motion of the carrier phase has reached a statistically

steady state. The value of N p is chosen to enable a physically

meaningful interpretation of the number-density spectra aris-

ing from the computation of the Eulerian number-density field

based on a nearest-neighbor counting method, as discussed in

Bassenne et al. (2017b) . Data collection starts after a time suffi-

ciently long compared to the characteristic particle acceleration

time and to the time required for preferential-concentration

statistics to become stationary ( Jin et al., 2010 ). Specifically,

time-averaged statistics are computed from 19 snapshots recorded

during 13 t � , with t � = �/u � the integral time calculated using

the associated integral length � and fluctuation velocity u � . All

Eulerian flow velocity fields appearing in the particle equations of

motion are interpolated to the particle position using second-order

Lagrange interpolation. 

At every substep of the time-advancement scheme, the full-

scale velocity u i in Eq. (3) is set equal to (a) the DNS veloc-

ity (denoted as DNS in the set of results presented below), (b)

the resolved velocity u i without any SGS model (denoted as LES),

(c) the resolved velocity u i supplemented with a differential-filter

approximate-deconvolution-modeled turbulent fluctuation velocity

on the LES grid as described in Park et al. (2017, 2015) (denoted

as LES-DF), and (d) the full-scale modeled velocity obtained from

the SDF model as described in Section 2.2 . In the latter, the levels

of reconstruction are varied from a single one (LES-SDF 1), to two

(LES-SDF 2) and three (LES-SDF 3), which correspond to recovering

a velocity field on grids with 64 3 , 128 3 or 256 3 cells, respectively.

Therefore, the third reconstruction level (LES-SDF 3) leads to a full-

scale modeled velocity field that is defined on the same grid as the

DNS. 

The relevant dimensionless parameter to consider is the Stokes

number 

St k = t a /t k , (16)

with t k = � 2 
k 
/ν the Kolmogorov turnover time. The results pre-

sented below correspond to values of St k ranging from 1/4 to 8.

Note that the time step utilized in these simulations is �t = 0 . 03 t k 
in all cases, which, in the most stringent case St k = 1 / 4 , represents

a time step of �t = 0 . 12 t a relative to the characteristic particle ac-

celeration time. 

3.2. Carrier-phase statistics 

In the type of flows studied here, the dynamic procedures

described in Section 2 yield uniform and statistically steady values

for the model parameters b and C. Their time histories are re-

ported in Fig. 2 for illustration. The parameter b shown in Fig. 2 (a)

is equal to 0.40 in average, which is consistent with the value
eported in Park et al. (2017, 2015) . This resulting mean value of

 corresponds to a differential filter that has the same second

oment as a spherical top-hat filter of radius 1.3 times the LES

rid resolution, thereby suggesting that the dynamic procedure

ields a realistic value of the effective filter width. Similarly, the

redicted time-averaged values of the dynamic coefficient C shown

n Fig. 2 (b) are 0.42, 0.17 and 0.046 for the first, second and third

evels of reconstruction, respectively. Note that, as the number

f reconstruction levels increases, C deviates from the theoretical

alue 0.63 estimated from the Kolmogorov scaling. This departure

ccurs because the dynamic procedure becomes increasingly

iased by modeling and numerical errors as the reconstruction

evel increases, because the filters involved in computing (11) and

12) are not spectrally sharp, and because the wavenumber extent

f the inertial subrange is rather limited in these simulations. 

It is instructive to analyze the qualitative properties of the ve-

ocity field u i obtained from the SDF model in comparison to the

riginal LES velocity field u i . For instance, the instantaneous cross

ections of the velocity component u 1 are shown in Fig. 3 , where

he DNS contours contain small-scale features that are absent in

he much coarser baseline LES contours. The earlier differential-

lter approximate deconvolution model leads to amplification of

he fluctuations at small resolved scales on the LES grid, with

he large scales remaining mostly unchanged. The lack of spec-

ral enrichment in the differential-filter approximate-deconvolution

odel results in contours of u 1 that do not encompass flow struc-

ures smaller than those already observed in the LES. This fea-

ure has been reported earlier as the main intrinsic limitation of

he model in Park et al. (2017, 2015) , and it also pervades non-

pectrally enriched SGS models at large. In contrast, the contours

btained from the SDF model incorporate smaller-scale turbulent

uctuations, as shown in Fig. 3 (d-f). These fluctuations are de-

loyed by the SDF model in a way that correlates well with loca-

ions of non-zero velocity gradients in the unmodeled LES field, in

ccord with Eqs. (8) and (9) . Although the dynamic coefficients are

patially uniform, the kinetic energy locally injected in the subgrid-

cales is proportional to the local kinetic energy at larger scales,

s shown in Eq. (9) . As the number of reconstruction levels in-

reases from one to three, the modeled velocity becomes increas-

ngly more populated at high wavenumbers. 

The qualitative observations made above are similarly quanti-

ed in the spectra of kinetic energy and enstrophy of the carrier

hase, which are shown in Fig. 4 . While all spectra coincide at

ow wavenumbers, substantial differences are observed at inter-

ediate scales near the LES grid cutoff and in the subgrid scales.

n particular, the SDF model increasingly regenerates the spectral

nergy beyond the cutoff wavenumber with increasing number

f reconstruction levels. Nonetheless, spurious oscillations are

bserved in the resulting spectra at evenly spaced wavenumbers.
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Fig. 3. Instantaneous mid-plane cross sections of the x 1 component of the carrier-phase velocity normalized with the characteristic large-scale velocity u � in the DNS case. 

The panel includes (a) DNS on a 256 3 grid and (b) LES on a 32 3 grid. The rest of the panels include the modeled x 1 component of the carrier-phase velocity for (c) the 

differential-filter approximate-deconvolution model in Park et al. (2017, 2015) on a 32 3 grid, and (d-f) the SDF model on a (2 r × 32) 3 grid corresponding to the reconstruction 

levels r = 1 , 2 , 3 . The extrema of the color maps are chosen to represent the 2.5% and 97.5% percentiles of the velocity contours. 

Fig. 4. Carrier-phase ensemble-averaged Fourier spectra of (a) kinetic energy and (b) enstrophy. The figure also includes (c) instantaneous mid-plane cross sections of the 

x 1 component of the carrier-phase vorticity normalized with 1/ t k for the DNS, LES, LES-DF and LES-SDF 3 cases. The extrema of the color maps are chosen to represent the 

2.5% and 97.5% percentiles of the vorticity contours. (d) shows ensemble-averaged PDF of the second invariant of the velocity gradient tensor Q . In panels (a), (b), and (d), 

the different curves correspond to DNS (256 3 ), LES (32 3 ), LES-DF (32 3 ), LES-SDF 1 (64 3 ), LES-SDF 2 (128 3 ) and LES-SDF 3 (256 3 ) [see legend in panel (a) for line types]. 
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These oscillations are caused by numerical errors made in step

II of the SDF model algorithm and are related to the recursive

dyadic-based reconstruction of the velocity. This phenomenon

can be best understood by considering a hypothetical simpler

choice of the interpolating kernel such as a second-order Lagrange

interpolation. With that choice, since the interpolant is linear,

the Laplacian of the interpolated field u (�) 
i, ADI 

would be zero at

grid points on the fine grid that are not present on the original

coarse grid. If, additionally, the spectral enrichment would pro-

duce a zero-valued dynamic coefficient C, the Laplacian of u (�) 
i, SGS 

would also be zero at those points. As a result, the final substage

of approximate deconvolution in step II would generate a zero

fluctuating velocity only in that subset of points, which would be

evenly spaced in the case of a Cartesian grid, and which would

result in spurious oscillations in the spectra at evenly spaced

wavenumbers. In the current computational set-up, however, the

SDF model implementation uses fourth-order Lagrange interpo-

lation instead of second-order, although it also generates small

values of the velocity Laplacian at the aforementioned points.

Similarly, the dynamic coefficient C is not strictly zero, but it ap-

proaches increasingly smaller values as the reconstruction level is

increased. 

One relevant carrier-phase statistics to analyze in relation to

preferential concentration pertains to the velocity gradients. The

vortex centrifugation mechanism is consensually accepted for par-

ticles at small Stokes numbers ( Balachandar and Eaton, 2012 ).

Specifically, the particles accumulate preferentially in interstitial

zones where the strain rate is large after being centrifuged from

the intense small vortices, in accordance with previous analy-

ses ( Maxey, 1987; Squires and Eaton, 1991; Wang and Maxey,
Fig. 5. Ensemble-averaged radial distribution functions (RDFs) for (a) St k = 0 . 25 , (b) St

correspond to DNS (256 3 ), LES (32 3 ), LES-DF (32 3 ), LES-SDF 1 (64 3 ), LES-SDF 2 (128 3 ) and

equal to 16 � k . 
993 ). The instantaneous cross sections of the carrier-phase vor-

icity component ω 1 = ∂ u 3 /∂ x 2 − ∂ u 2 /∂ x 3 are shown in Fig. 4 (c).

n particular, both DNS and LES-SDF contours contain a large num-

er of fine-grained vortical features that are absent in the much

oarser LES, including the simulations with the differential-filter

pproximate-deconvolution model in Park et al. (2017, 2015) . De-

pite the relevance of the vorticity, note that a number of authors

ave proposed alternative explanations for the clustering of par-

icles at large Stokes numbers, including the sweep-stick mecha-

ism described in Chen et al. (2006) , Goto and Vassilicos (2006) ,

oto and Vassilicos (2008) , Coleman and Vassilicos (2009) and

ragg et al. (2015) , in which particles are assumed to stick to zero-

cceleration fluid points that are observed to cluster in turbulent

ows. The assessment of the sweep-stick mechanism within the

ontext of the present modeling strategy is a subject worthy of fu-

ure work. 

The enhanced range of scales obtained by the SDF model is

lso illustrated by the PDF of the second invariant of the velocity-

radient tensor Q = (1 / 2)(�i j �i j − S i j S i j ) shown in Fig. 4 (d),

here �ij and S ij are the rotation and strain-rate tensors, respec-

ively. The prediction of the statistics of Q is particularly relevant

or the purposes of this study, since, in preferentially-concentrated

egimes, particles tend to accumulate in straining regions (i.e.,

 < 0) and are centrifuged away from vortical regions (i.e., Q > 0)

 Robinson, 1956; Maxey, 1987 ). However, as observed in Fig. 4 (c),

he baseline LES tends to heavily underpredict vortical intermit-

ency, and as a result, leads to exceedingly narrow PDFs of Q when

ompared to DNS, as shown in Fig. 4 (d). The utilization of the

ifferential-filter approximate-deconvolution model in Park et al.

2017, 2015) partially palliates this problem. In contrast, improved
 k = 0 . 5 , (c) St k = 1 , (d) St k = 2 , (e) St k = 4 , and (f) St k = 8 . The different curves 

 LES-SDF 3 (256 3 ) [see legend in panel (a) for line types]. The LES grid resolution is 
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Fig. 6. Ensemble-averaged number-density Fourier spectra for (a) St k = 0 . 25 , (b) St k = 0 . 5 , (c) St k = 1 , (d) St k = 2 , (e) St k = 4 , and (f) St k = 8 . The different curves correspond 

to DNS (256 3 ), LES (32 3 ), LES-DF (32 3 ), LES-SDF 1 (64 3 ), LES-SDF 2 (128 3 ) and LES-SDF 3 (256 3 ) [see legend in panel (a) for line types]. The LES wavenumber cutoff is located 

at κ� k = 0 . 2 . 
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redictions are obtained using the SDF model with two reconstruc-

ion levels. 

Note that the curve corresponding to the third reconstruction

evel (LES-SDF 3) overpredicts the tails of the PDF of Q . This obser-

ation, along with the overprediction of the spectra in Fig. 4 (a,b),

ndicate that a viscous subrange would need to be introduced in

he model SDF model in order to avoid such excessive deployment

f energy in the third reconstruction level. 

.3. Dispersed-phase statistics 

This section focuses on the performance of the SDF models

escribed in Section 2 in predicting the intensity and scales as-

ociated with preferential concentration. For this purpose, two-

oint statistics are analyzed and interpreted below that consist of

he radial distribution function (RDF), which quantifies the likeli-

ood that a given pair of particles is separated by a certain radial

istance (e.g., see Ray and Collins, 2011 for further details), and

he energy spectrum of the particle number-density fluctuations,

hich characterizes the energy of the fluctuations per wavenum-

er. 

The comparisons between RDF’s obtained from DNS and LES

n Fig. 5 show that the baseline LES heavily underpredicts par-

icle clustering when the Stokes number is smaller than unity,

hile an equally large overprediction occurs in the opposite limit

f large Stokes numbers. This observation is consistent with re-

ults obtained from a-priori filtered-DNS studies of the effect of

mall scales on particles motion, highlighting the opposite physi-

al mechanisms by which small-scale fluctuations disperse or anti-

isperse the particles ( Minier, 2015; Ray and Collins, 2011 ). This
oses a challenge for SGS models attempting to predict preferen-

ial concentration, in that they should be able to counteract the LES

ismatches by steering the particles in a fundamentally different

ay on each side of the approach to the St k ∼ 1 limit. Specifically,

t small Stokes numbers, the SGS-modeled velocity should cluster

r anti-disperse the particles. Conversely, at large Stokes numbers,

he SGS-modeled velocity should disperse the particles. 

Remarkably, the SDF model proposed here reproduces both

he anti-dispersion and dispersion trends required for St k < 1 and

t k > 1 regimes, respectively, and it greatly improves the predic-

ions of the earlier differential-filter approximate-deconvolution

odel proposed in Park et al. (2017, 2015) . An increasing agree-

ent between the SDF model and the DNS is observed as the

umber of reconstruction levels increases from one to three, with

xception of the unity Stokes-number case, in which an increase in

he reconstruction level has no effect on the solution. On the con-

rary, the utilization of the SDF model at St k ∼ 1 worsens the pre-

ictions, whereas the differential-filter approximate-deconvolution 

odel reproduces well the RDF in DNS, yet the scales associated

ith the predicted particle clouds are erroneous, as described in

ark et al. (2015) . As the Stokes number becomes increasingly

arge, diminishing returns are obtained by deploying additional

evels of reconstruction in SDF model, since the particles become

ncreasingly inertial with respect to the subgrid scales ( Urzay et al.,

014 ). 

In order to address the performance of the SDF model in pre-

icting the scales and fluctuation intensity associated with the par-

icle concentration field, Fig. 6 shows the energy spectra of the

article number-density fluctuations E n . Physical interpretations of

he variations of this metric with the Stokes number are provided
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Fig. 7. Ensemble-averaged mean of the second invariant of the carrier-phase 

velocity-gradient tensor Q sampled by the particles as a function of the Stokes 

number. The different curves correspond to DNS (256 3 ), LES (32 3 ), LES-DF (32 3 ), 

LES-SDF 1 (64 3 ), LES-SDF 2 (128 3 ) and LES-SDF 3 (256 3 ). 
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elsewhere ( Park et al., 2017; Jin et al., 2010 ). It suffices to mention

here that the spectra peak occurs in the subgrid scales at St k ≤ 1.

As a result, and in the absence of appropriate spectral support, the

baseline LES results lead to significant disagreements with DNS in

predicting E n . This discrepancy is manifested as artificially larger

particle clouds in LES relative to those observed in DNS. On the

other hand, the spectra peak occurs at resolved wavenumbers at

St k > 1, but the maximum value of E n is erroneous. In the LES, this

renders artificially elongated clouds where the particles accumu-

late with an unrealistic intensity. 

Significant improvements in the prediction of E n are observed

when the SDF model is employed. For instance, at St < 1, both LES
k 

Fig. 8. Instantaneous spatial distribution of particles (dots) within a slice of thickness � k f

(e) LES-SDF 2 (128 3 ), and (f) LES-SDF 1 (64 3 ). The LES grid resolution is 0.15 � . 
nd the differential-filter approximate-deconvolution model mis-

alculate the location of the spectrum peak, which is artificially

hifted toward larger scales as a result of the inaccessibility of LES

o subgrid wavenumbers. In contrast, the SDF model improves the

rediction of the spectra at scales smaller than the original LES

rid while capturing increasingly more accurately the shift in the

eak location and the peak magnitude as the level of reconstruc-

ion is increased, as shown for instance in Fig. 6 (a). At St k > 1, the

DF model also improves the prediction of the spectrum peak and

ecreases the level of preferential concentration while maintaining

he correct scales of the particle clouds. 

Joint statistics corresponding to the mean values of Q sampled

y the particles are provided in Fig. 7 . Whereas the spatial mean of

 vanishes because of the flow incompressibility, the mean value

f Q sampled by the particles attains negative values because of

he tendency of the particles to accumulate in straining regions.

s shown in Fig. 7 , the SDF model improves the predictions of this

uantity over the entire range of Stokes numbers tested here. This

uggests that the regenerated values of Q observed in Fig. 4 lead

o subgrid-scale flows that interact with particles in a reasonable

anner. 

These considerations are ratified by visualizing the spatial dis-

ribution of particles in Figs. 8 and 9 . Specifically, the visualiza-

ions suggest that, as the number of reconstruction level is in-

reased, the SDF model increasingly improves the performance

ith respect to the baseline LES and to the earlier differential-filter

pproximate-deconvolution model proposed in Park et al. (2017,

015) . The associated benefits are better predictions of the overall

tructure of the preferentially concentrated clouds of particles and

heir associated spatial scales. However, despite these improve-

ents, the prediction of the range of near-unity Stokes numbers

ontinues to be a unsolved challenge that is worthy of future work.
or St k = 0 . 5 for (a) DNS (256 3 ), (b) LES (32 3 ), (c) LES-DF (32 3 ), (d) LES-SDF 3 (256 3 ), 
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Fig. 9. Instantaneous spatial distribution of particles (dots) within a slice of thickness � k for St k = 8 for (a) DNS (256 3 ), (b) LES (32 3 ), (c) LES-DF (32 3 ), (d) LES-SDF 3 (256 3 ), 

(e) LES-SDF 2 (128 3 ), and (f) LES-SDF 1 (64 3 ). The LES grid resolution is 0.15 � . 
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. Conclusions 

In this study, an SGS model for LES of particle-laden tur-

ulence formulated in physical space is proposed, which con-

tructs a spectrally enriched velocity field on a grid finer than

he original LES grid without requiring to solve the Navier–Stokes

quations on that fine grid. The model extends the dynamic

ifferential-filter approximate-deconvolution model in Park et al.

2017, 2015) by using a dynamic reformulation of the spectrally-

nriched velocity-estimation model proposed in Domaradzki and

oh (1999) . The regeneration of small scales in the present model

s based on non-linear, convective interactions between resolved

ddies. The performance of the proposed model is assessed in

omogeneous-isotropic turbulence laden with a dilute suspension

f inertial point particles. In most cases, the prediction of prefer-

ntial concentration is improved relative to LES without any model

or the SGS velocity, and to the differential-filter approximate-

econvolution model proposed in Park et al. (2017, 2015) . 

In the present work, the modeled SGS velocity is solely used

or integrating the particle equation of motion (3) . The utilization

f the SDF-modeled velocity with the objective of computing the

nclosed SGS stress in Eq. (2) is worth investigating. Similarly, the

tilization of the present model locally on a cell-by-cell basis, by

econstructing a spectrally enriched velocity field in physical space

nly in spatial regions characterized, for instance, by high concen-

ration of particles, is also an interesting endeavor for reducing the

omputational cost ( Bassenne et al., 2017b ). In complex geometries,

here the grid may no longer be Cartesian, and consequently, its

lements may not be cubes or rectangular cuboids, the straightfor-

ard grid-refinement process followed in this study becomes in-

ppropriate and requires modification. Lastly, it would be of some

nterest to study the applicability of this model beyond problems

elated to particle-laden turbulence. An example of recent work

hat has employed this model includes, for instance, the corruga-
ion and breakup of liquid-gas interfaces due to unresolved turbu-

ent velocity fluctuations ( Herrmann et al., 2018 ). 
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