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Dynamic spectrally-enriched LES subgrid-scale
modeling for preferential concentration

of inertial particles in turbulence

By M. Bassenne, M. Esmaily, D. Livescu†,
P. Moin AND J. Urzay

1. Motivation and objectives

Large-eddy simulations (LES) of incompressible turbulence consist of integrating the
low-pass-filtered Navier-Stokes equations
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= 0, (1.1)
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which represent the conservation of mass and momentum, respectively. In this formula-
tion, t is the time coordinate, xi are spatial coordinates, ui are velocity components,
p is the hydrodynamic pressure, ρ is the density, ν is the kinematic viscosity, and
τij = uiuj − uiuj is the subgrid-scale (SGS) stress tensor. The latter is unclosed and
requires modeling since the full-scale velocity ui, which is the one that bears the full
range of spatiotemporal scales in the turbulent flow, cannot be directly obtained from
Eqs. (1.1) and (1.2), but requires the costly integration of the unfiltered Navier-Stokes
conservation equations.
While Eqs. (1.1) and (1.2) refer to the carrier phase, in particle-laden turbulence an

additional set of equations is required to describe the motion of the dispersed phase. In
Lagrangian descriptions of the dispersed phase, the trajectory equation

dxp,i

dt
= up,i (1.3)

is integrated simultaneously with the equation of motion

dup,i

dt
=

ui − up,i

ta
(1.4)

for every particle. Specifically, Eqs. (1.3) and (1.4) describe the rate of change of the
components of the particle position xp,i and particle velocity up,i along the particle tra-
jectory. In the notation, ta = (2/9)(ρp/ρ)(a

2/ν) represents the characteristic acceleration
time of the particle, with ρp and a the particle density and radius, respectively. In writing
Eq. (1.4), it is has been assumed that the particle radius is much smaller than the Kol-
mogorov length scale, that the particle density is much larger than that of the carrier fluid,
and that the particle Reynolds number computed using the slip velocity as characteristic
velocity is much smaller than unity (Maxey & Riley 1983). Inter-phase coupling terms
arising in the momentum conservation equation (1.2) are neglected here by assuming that

† Los Alamos National Laboratory, Los Alamos NM



4 Bassenne et al.

the mass of the dispersed phase is negligible compared to the mass of the carrier phase,
or equivalently, that the characteristic mass-loading ratio α = (4/3)πρpn0a

3/ρ ≪ 1 is a
small parameter, with n0 the mean number density of particles.
Of particular interest is the equation of particle motion (1.4), which highlights the

closure problem that emerges in LES of particle-laden turbulence. This can be understood
by noticing that an appropriate time integration of Eq. (1.4) would require the full-
scale carrier-phase velocity ui – rather than the filtered one ui – in order to describe
the exact trajectories of the particles. Inaccurate predictions of some of the dispersed-
phase statistics are typically observed when this closure problem is ignored and just ui is
employed for the integration of Eq. (1.4) (Marchioli 2017). The weight of the inaccuracies
incurred in the predictions is however dependent on the characteristic dimensionless
parameters of the problem, and most notably, on the SGS Stokes number StSGS in one-
way coupled flows, and on the ratio α/StSGS in two-way coupled flows, as described in
Urzay et al. (2014).
Among the dispersed-phase statistics degraded by neglecting the closure problem de-

scribed above, the inaccurate prediction of the intensity and scales associated with pref-
erential concentration and particle acceleration have been clearly illustrated in Park et al.
(2017). In particular, the lack of spatiotemporal resolution in LES artificially narrows
the amplitude of the particle accelerations and erroneously distributes the particles in
the flow field to the extent of misrepresenting the well-known effect of preferential con-
centration whereby the particles tend to accumulate in flow regions where the strain
rate is large (Robinson 1956; Squires & Eaton 1991). Since the inter-phase coupling of
momentum that appears in Eq. (1.2) in non-diluted regimes has the form of an effective
number density multiplied by the particle acceleration (Ferrante & Elghobashi 2003), it
is expected that these discrepancies would directly translate into mistaken predictions of
turbulence modulation.
The objective of this report is to formulate a new SGS model in physical space for

the carrier-phase velocity ui to be used in the integration of the equation of particle
motion (1.4) in LES of particle-laden turbulence. This investigation builds on some of
our previous work (Urzay et al. 2014; Park et al. 2015, 2017; Bassenne et al. 2015,
2017) by proposing a new SGS model based on differential filters that incorporates an
spectrally-enriched carrier-phase velocity ui, which contains scales smaller than the LES
grid resolution, thereby enabling the calculation of small-scale phenomena such as the
preferential concentration of particles. The new model is dynamic, in that it does not
contain tunable parameters, it can be deployed in non-uniform grids, and is applicable
to inhomogeneous flows subject to arbitrary boundary conditions.
The remainder of this report is organized as follows. A short review of the different

classes of SGS models for particle-laden turbulence is presented in Section 2. In Section 3,
the new SGS model formulation is described. Results for the carrier- and dispersed-phase
statistics obtained in homogeneous-isotropic turbulence are analyzed in Section 4. Lastly,
concluding remarks and suggestions for future work are provided in Section 5.

2. A short survey of SGS models for the motion of inertial particles in
turbulence

The SGS modeling endeavor in the present context consists of avoiding to solve the
full-scale velocity ui via costly direct numerical simulations (DNS), which would require
prohibitively small control volumes as schematically represented in Figure 1(a). Existing
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Figure 1. Schematics of different computational grids employed in Lagrangian point-particle
(PP) numerical simulations of particle-laden turbulence, where the scale of the particle is not
resolved by the grid. (a) Direct numerical simulation (DNS) grid that resolves all flow length
scales. (b) Large-eddy simulation (LES) grid that resolves fluctuations larger than a filter width.
Non-spectrally-enriched SGS models are obtained on the same grid as (b) and do not bear any
smaller scales. (c) LES grid (red color online) and refined grid (blue color online) for point–
particle spectrally-enriched LES (PP-sLES). The refined grid in (c) uniformly supports smaller
scales resulting from the SGS model. (d) Alternative grid for wavelet-based point-particle co-
herent cluster simulation (PP-CCS) whose control volumes are adapted to particle clusters and
resolve all relevant flow length scales around them, while the control volumes away from the
clusters remain coarse [see Bassenne et al. (2017) for details on the grid-adaptation algorithm].

SGS models for the full-scale velocity ui can be grouped into two main categories: non-
spectrally-enriched point-particle LES models (PP-LES), and spectrally-enriched point-
particle LES models (PP-sLES). These are described in Sections 2.1 and 2.2, respectively.
Alternatively, Section 2.3 proposes an unexploited approach, namely the point-particle
coherent cluster simulation (PP-CCS) based on wavelets. Note that spectral enrichment
is primarily used in this report in the sense of augmenting the range of spatial scales, or
equivalently, the range of non-zero spectral modes of the velocity field.

2.1. Non-spectrally-enriched point-particle LES models (PP-LES)

Oftentimes, SGS models employed in particle-laden turbulence are not spectrally en-
riched. This category includes approximate-deconvolution models where an approximate
inverse filtering is applied to ui in order to generate a model for ui (Park et al. 2015,
2017). However, these models do not recover scales smaller than the LES grid size, and
consequently, the spectral content of the modeled velocity ui has the same wavenumber
support as the resolved velocity ui, as illustrated in Figure 1(b). A thorough review of
approximate-deconvolution models is available in Marchioli (2017). The main limitation
of this class of models results from the lack of true reconstruction of SGS motion, whose
pernicious effects are particularly noticeable when the interaction of particles with the
subgrid scales of turbulence play a central role in the dispersed-phase dynamics. As a
result, non-spectrally-enriched point-particle LES models are unable to appropriately
capture the size of particle clusters in regimes where preferential concentration is impor-
tant. In two-way coupled flows, this mismatch is most likely important in SGS-loaded
conditions, which are characterized by α = O(1) and StSGS ≪ 1 and where the inter-phase
coupling occurs predominantly in the subgrid scales (Urzay et al. 2014).
Lagrangian stochastic models partly belong to this category of models and partly to the

category of spectrally-enriched models outlined in the next subsection. In these models,
the Lagrangian time trace of the local Eulerian flow velocity seen by the particles is
spectrally enriched in the time domain – rather than in the space domain – by superposing
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random variations to the local value of ui at the particle position. These, in turn, widen
the range of accelerations that the particles can be subjected to in a way similar to
that observed in DNS, but are generally unable to recover two-point statistics that are
necessary to recover preferential-concentration effects and relative dispersion (Minier
2015). Recent modifications of Lagrangian stochastic models, albeit for tracer particles,
have been proposed that aim at palliating some of these shortcomings by correlating the
random processes in space (Mazzitelli et al. 2014).

2.2. Spectrally-enriched point-particle LES models (PP-sLES)

In order to circumvent the limitations associated with the lack of fine-grained spatial
scales in LES, spectrally-enriched SGS models aim at reconstructing the velocity field
on a grid finer that the original LES grid. For instance, a baseline LES grid, along with
a reconstructed one to support the enriched scales, are sketched in Figure 1(c). One
desirable characteristic that these models should have is the capability of regenerating
an spectrally-enriched velocity on the finer grid at a computational cost smaller than that
of directly solving Eq. (1.2) on that same grid. Additionally, the challenge of modeling
an spectrally-enriched velocity field that resembles turbulence is not free of physical and
numerical challenges. In particular, a model of interest for engineering analysis would
require to broaden its foundations beyond turbulence theories restricted to idealized
scenarios, or beyond numerical schemes only defined on canonical Cartesian uniform
grids. Despite these challenges, these are perhaps the most promising models for capturing
the full range of eddy scales necessary for preferential concentration to develop in the
class of turbulent flows studied here.
SGS models that fall into this category are much less frequently reported in the lit-

erature in comparison with approximate-deconvolution or Lagrangian stochastic models
(Marchioli 2017). Spectrally-enriched models are typically based on kinematic simulation
(Ray & Collins 2014; Murray et al. 2016), fractal interpolation (Marchioli et al. 2008a,b)
or spectrally-optimized interpolation (Gobert & Manhart 2011). The main difficulties
associated with this class of models are the reliance on homogeneous turbulence theory
and on tunable parameters whose values outside of the homogeneous turbulence regime
are not straightforward to justify theoretically, and the difficulty of generating small-
scale turbulence structures that display the correct degree of spatiotemporal correlations
(Jiménez et al. 1993; Bürger et al. 2013; He et al. 2017) to which the particles may as well
be sensitive during their flight and accumulation into clouds. The new model presented
in this report circumvents some of these limitations.

2.3. Point-particle coherent cluster simulation (PP-CCS)

An alternative to the traditional LES approaches described above may involve a dynamic
refinement of the grid around clusters of particles in a way that precludes or minimizes
the need for a SGS model [see Figure 1(d)], as opposed to uniformly coarsening the grid
irrespective of the spatial distribution of the dispersed phase. This method, referred here
as coherent-cluster simulation (CCS), borrows its philosophy from the extensive body of
research on coherent-vorticity extraction and simulation for single-phase turbulence, a
methodology that relies on the ability of wavelets to efficiently identify turbulent struc-
tures (Schneider & Vasilyev 2010). In a recent work, Bassenne et al. (2017) found that
wavelets also form an appropriate basis for extracting particle clusters, and that they can
be used as a grid-adaptation tool to refine the grid around the clusters. Future research
on the translation of this result into an SGS model for particle-laden turbulence may be
of interest for establishing the viability of this approach.
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3. Description of the spectrally-enriched differential filter (SDF) model

This section describes the spectrally-enriched differential filter (SDF) model proposed
in the present work. The SDF model does not have tunable parameters, and is applicable
to non-homogeneous flows and non-uniform, non-periodic grids. A single-level recon-
struction that corresponds to a grid refinement by a factor of two in each direction is
described below. However, the model can be applied recursively to obtain higher levels of
refinement. At each reconstruction level, the input velocity to the spectral enrichment al-
gorithm is the modeled velocity obtained from the previous level. The first reconstruction
level uses the LES velocity ui as input.

Consider the LES field ui = u
(2∆)
i described by its nodal values on a grid with local

characteristic spacing (2∆). In general, ∆ is an effective grid spacing that may be ex-
pressed as a function of its corresponding values per direction as ∆ = (∆1∆2∆3)

1/3. The

SDF-modeled velocity u
(∆)
i , defined on a grid refined by a factor of 2 in all directions, is

written as

u
(∆)
i = u

(∆)
i,ADI + u

(∆)
i,SGS. (3.1)

In this formulation, the velocity field u
(∆)
i,ADI has scales that mostly range from the inte-

gral scale to the LES cutoff 2∆. Compared to the resolved velocity u
(2∆)
i , the spectral

energy of u
(∆)
i,ADI near the LES cutoff is enhanced by an approximate deconvolution. Con-

versely, the spectral energy of the velocity field u
(∆)
i,SGS is mostly populated in the subgrid

scales ranging from ∆ to 2∆. As a result, u
(∆)
i,SGS bears the regenerated scales by spectral

enrichment and requires non-trivial modeling. A methodology for computing u
(∆)
i,ADI and

u
(∆)
i,SGS is described below.

3.1. Computation of u
(∆)
i,ADI

The velocity field u
(∆)
i,ADI originates from an approximately-deconvolved field interpo-

lated on a finer grid. Correspondingly, it is obtained by first applying an approximate-

deconvolution model to u
(2∆)
i on the LES grid and then interpolating the result onto the

finer grid.

3.1.1. Approximate deconvolution on the LES grid

Given the LES field u
(2∆)
i , an approximately-deconvolved velocity field u

(2∆)
i,AD is com-

puted in the following way. To benefit from a filtering kernel that is easily applicable to
complex geometries and grids, the dynamic differential filter (DF) model of Park et al.
(2015, 2017) is used in the present study, which provides the expression

u
(2∆)
i,AD = u

(2∆)
i,AD − ∂

∂xj

(
b2

∂

∂xj
u
(2∆)
i,AD

)
, (3.2)

where u
(2∆)
i,AD = u

(2∆)
i . The parameter b is related to the local filter-width size and is

dynamically computed using the procedure based on SGS kinetic energy matching de-
scribed in Park et al. (2017). When the model is recursively applied, the model parameter
b is not recomputed. Instead, the dimensionless parameter b/(2∆) is kept constant across
the reconstruction levels.
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3.1.2. Interpolation onto the finer grid

The approximately-deconvolved velocity u
(2∆)
i,AD is interpolated onto the finer grid to

obtain u
(∆)
i,ADI. This step does not intentionally regenerate small scales with significant

energy but nonetheless raises some numerical challenges that are worth discussing. First,
note that low-order interpolating kernels behave as spatial filters. As a result, their uti-
lization leads to artificial smoothing of the resolved velocity fluctuations that hinder the
conservation of kinetic energy, which represents a quantity that plays a critical role in
subsequent steps of the modeling approach outlined below. This issue is more severe in
three-dimensional staggered grids where a refinement of the control volumes by a factor
of 2 in each direction implies that none of the nodes of the original grid coincide with
the nodes of the fine grid. The trilinear interpolation used in this work is observed to
decrease the kinetic energy by 20% (see Section 4.1 for more details on the computational
set-up). In this report, this issue is partly mitigated by adding an extra deconvolution
step after interpolation in order to cancel the decrease in kinetic energy. This extra de-
convolution step uses the DF model (3.2) described above, where the value of b/(2∆) is
chosen to be 0.82. This particular value is theoretically derived to enforce the condition
that the spectral transfer function of a one-dimensional midpoint trilinear interpolation
kernel matches the spectral transfer function of the differential filter at the dimensionless
wavenumber π/4.

3.2. Computation of u
(∆)
i,SGS

The interpolated velocity u
(∆)
i,ADI does not entail any significant SGS motion. The latter

is diverted to u
(∆)
i,SGS by using the model expression

u
(∆)
i,SGS =

√
2K ×

(
Di/

√
DjDj

)
. (3.3)

This model is composed of two multiplicative terms that involve the square root of the

local kinetic energy K = u
(∆)
i,SGSu

(∆)
i,SGS/2 based on the SGS velocity, and the normalized

vector Di/
√
DjDj that models the structure of the SGS motion and relative magnitude

of each velocity component, with Di the local instantaneous growth-rate vector. The
treatment of these two components is described in what follows.

3.2.1. Computation of Di

The growth-rate vector of the subgrid scale motion is modeled as

Di = Ni − Ñi, (3.4)

where Ni is given by

Ni =

[
u
(∆)
j,ADI −

˜
u
(∆)
j,ADI

]
∂u

(∆)
i,ADI

∂xj
(3.5)

and (̃·) denotes a spatial filter with characteristic width 4∆ (i.e., twice as coarse as

the LES grid). In Eq. (3.4), Ñi is subtracted from Ni to avoid the modification of the

resolved portion ofNi. The model form for the SGS velocity u
(∆)
i,SGS obtained by combining

Eqs. (3.3)-(3.5) may reminisce the physical mechanism of generation of small scales by
convection of large scales in turbulent flows. However, it models neither the pressure and
viscosity effects on the generation or suppression of small scales, nor the time dynamics
inherent to the generation process. Instead, the present model assumes that the subgrid
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scales are instantaneously generated by one round of interactions among the resolved
scales. Although the model is similar to the velocity estimation model of Domaradzki
& Loh (1999) for the SGS stress, the present work reformulates it in the form given by
Eq. (3.3), uses a different approximate-deconvolution scheme, and establishes dynamic
procedures for the computation of the parameters involved in the model, including the
prefactor

√
2K in Eq. (3.3), as described below.

3.2.2. Dynamic computation of K

The local kinetic energy K = u
(∆)
i,SGSu

(∆)
i,SGS/2 based on the SGS velocity is estimated

assuming that the kinetic energy of the small scales is proportional to that of the smallest
resolved scales. This assumption resembles local self-similarity and leads to

K = K1,2 = CK2,4, (3.6)

where C is a proportionality constant that is dynamically computed as

C = 〈K2,4〉/〈K4,8〉. (3.7)

In Eq. (3.7), the angle brackets denote averaging along homogeneous directions. If the
latter are not present in a particular flow configuration, the angle brackets are substituted
by a series of filtering operations to regularize the dynamic constant, as traditionally
performed in LES dynamic procedures. In the above formulation, Km,n denotes the
kinetic energy of eddies whose sizes range from m∆ to n∆, namely

K2,4 =

(
u
(∆)
i,ADI −

˜
u
(∆)
i,ADI

)(
u
(∆)
i,ADI −

˜
u
(∆)
i,ADI

)
/2 (3.8)

and

K4,8 =

(
˜
u
(∆)
i,ADI −

̂
u
(∆)
i,ADI

)(
˜
u
(∆)
i,ADI −

̂
u
(∆)
i,ADI

)
/2, (3.9)

where (̂·) denotes a spatial filter with characteristic width 8∆.
The motivation for the above dynamic procedure is perhaps best explained by making

use of a power-like law for the kinetic-energy spectrum, Ek(κ) ∼ κ−β, where κ is the
wavenumber and β is an exponent. It directly follows from this assumption that the ratio
Km,2m/K2m,4m is equal to a constant C independent of m. A sharp-spectral field yields
a ratio equal to 2−β+1. Note that β can be imposed, for instance, using Kolmogorov’s
scaling β = 5/3, thereby leading to C = 0.63. Instead, the present model does not
explictly require any value of β since the formulation uses a dynamic computation of C,
as in Eq. (3.6). The value of β is indirectly is computed dynamically using the fact that it
does not depend on m, as implied by Eq. (3.6). The scale-similarity assumption regarding
the ratio of kinetic energies being independent of the specific wavenumber band becomes
increasingly more unjustified near and within the viscous range, where the kinetic-energy
spectrum no longer varies as a power law but rather does it exponentially. The larger
the Reynolds number, the longer the inertial range is and the larger the number of
reconstruction steps are that can be performed with the SDF model without incursions
in the viscous range.

4. Numerical results

In this section, results obtained from the application of the SDF model to one-way
coupled, homogeneous-isotropic particle-laden turbulence are described. The focus of the
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analysis is on the impact of the SDF model on preferential-concentration statistics, which
are known to be largely dominated by the small-scale eddies.

4.1. Computational set-up

The filtered conservation equations (1.1)-(1.2) are solved in a triply-periodic cubic do-
main using a finite-difference solver that employs second-order accurate in space and
fourth-order accurate in time numerical schemes. The solver is described in Esmaily-
Moghadam & Mani (2016). Constant-energy linear forcing is applied to the right-hand
side of the momentum equation (1.2) in order to sustain the turbulence and achieve sta-
tistical stationarity (Bassenne et al. 2016). The Reynolds number based on the Taylor
microscale is Reλ = 85. Besides LES, the analysis includes DNS of the unfiltered versions
of the conservation equations (1.1)-(1.2) also at Reλ = 85 for comparisons. The maxi-
mum grid resolutions in DNS and LES are κmaxℓk = 1.5 and κmaxℓk = 0.13, respectively,
with κmax = π/∆ being the largest wavenumber resolved by the grid in each case. The
Kolmogorov length is ℓk = (ν3/ǫ)1/4, where ν is the kinematic viscosity and ǫ is the
mean molecular dissipation. This corresponds to a total number of 2563 and 323 control
volumes for DNS and LES, respectively. The SGS stress tensor is modeled in LES using
the dynamic Smagorinsky model (Germano et al. 1991), where the dynamic constant
is calculated using the least-squares approach of Lilly (1992). The physical parameters
used in these simulations are similar to those in Park et al. (2017). All spatial filters are
chosen to be box filters numerically implemented with a fourth-order Simpson rule for
quadrature.
A large number of particles Np = 5 × 2563 are randomly seeded once the motion of

the carrier phase has reached a statistically steady state. This large number of particles
is chosen to enable a physically meaningful interpretation of the number-density spectra,
as described in Section 4.3 and thoroughly discussed in Bassenne et al. (2017). Data
collection starts after a time sufficiently long compared to the characteristic particle
acceleration time and to the time required for preferential-concentration statistics to
become stationary (Jin et al. 2010). Specifically, time-averaged statistics are computed
from 20 snapshots recorded during 14tℓ, with tℓ = ℓ/uℓ the integral time calculated using
the associated integral length ℓ and fluctuation velocity uℓ. The motion of the particles
is highly dependent on the Stokes number

Stk = ta/tk, (4.1)

whose values span from 2−2 to 23 with a power increment of one, with tk = ℓ2k/ν the
Kolmogorov turnover time.
At every substep of the time-advancement scheme, the full-scale velocity ui in Eq. (1.4)

can be set equal to (a) the DNS velocity (denoted as DNS in the set of results presented
below), (b) the resolved velocity ui (LES), (c) the approximately-deconvolved velocity
obtained from the dynamic DF model (LES-DF) in Park et al. (2015, 2017), or (d) the
SDF-modeled velocity computed from Eq. (3.1) with one (LES-SDF1), two (LES-SDF2)
or three (LES-SDF3) levels of reconstruction. The three alternatives in (d) amount to
recovering a velocity field on a grid with 643, 1283 or 2563 control volumes, respectively.
In the present work, the SDF-modeled velocity is solely used for integrating the particle
equation of motion (1.4). Investigations of the utilization of the SDF-modeled velocity
with the objective of computing the unclosed SGS stress in Eq. (1.2) are deferred to
future work.
In its current form, the SDF model does not preserve the divergence of the original
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Figure 2. Instantaneous mid-plane cross sections of the x1 component of the carrier-phase
vorticity normalized with 1/tk, including DNS on a 2563 grid (upper left panel) and LES on a
323 grid (upper center panel). The rest of the panels include the modeled x1 component of the
carrier-phase vorticity for the DF and SDF models on a grid corresponding to the reconstruction
level. The extrema of the color maps are chosen to represent the 2.5% and 97.5% percentiles of
the vorticity.

LES field. In this report, the divergence-free constraint is imposed on the velocities u
(∆)
i,ADI

and u
(∆)
i,SGS at each reconstruction level. It is worth noting that imposing this constraint

requires solving a Poisson-like linear system of equations on grids finer than the original
LES grid, thereby increasing the overall computational cost of the model. Further work
is required to either explore the conditions under which such corrections may not be
relevant, or to perform modifications in the SDF-model algorithm with the objective of
preserving the divergence-free condition without the need for solving the additional linear
system of equations mentioned above. Note that the DF-modeled velocity field generally
may not render zero divergence in a discrete sense even though the incompressibility
condition is satisfied by the continuous formulation of the model when b is uniform.
However, for consistency in the comparisons between LES-SDF and LES-DF, the zero-
divergence constraint is also imposed on the LES-DF computations.

4.2. Carrier-phase statistics

The dynamic procedures described in Sections 3.1.1 and 3.2.2 yield reasonable values
for the dynamic constants b and C. For instance, b/(2∆) = 0.42 on average, which is
consistent with the value reported in Park et al. (2017). Similarly, the time-averaged
values of C are 0.58, 0.27 and 0.14 for the first, second and third levels of reconstruction,
respectively. These values are of the same order as 0.63, which corresponds to the value
obtained with the assumption of Kolmogorov −5/3 scaling for the kinetic-energy spec-
trum (i.e., see Section 3.2.2). Note however that, as the number of reconstruction levels
increases, C deviates from the value 0.63 estimated from the Kolmogorov scaling. This
occurs because the dynamic procedure becomes increasingly biased by modeling errors
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Figure 3. Carrier-phase ensemble-averaged Fourier spectra of (a) turbulent kinetic energy and
(b) enstrophy. The figure also includes (c) DNS conditional mean of the particle number density
as a function of the normalized second invariant of the carrier-phase velocity-gradient tensor
Q for unity Stokes numbers, and (d) ensemble-averaged PDF of Q. In panels (a), (b) and (d),
the different curves correspond to DNS (2563), LES (323), LES-DF (323), LES-SDF1 (643),
LES-SDF2 (1283) and LES-SDF3 (2563) [see legend in panel (a) for line types].

as the reconstruction level increases, and because the wavenumber extent of the inertial
subrange is rather limited in these simulations.
The instantaneous cross sections of the carrier-phase vorticity component ω1 are shown

in Figure 2. As usual, the DNS contours contain fine-grained vortical features that are
absent in the much coarser LES. Similarly, the LES-DF contours do not encompass
vortical structures smaller than those already observed in the LES as a result of the
lack of spectral enrichment in approximate-deconvolution models. However, the existing
eddies with a size similar to that of the LES grid resolution are amplified in LES-DF
(Park et al. 2017). In contrast, the LES-SDF contours show qualitative evidence that the
SDF model incorporates small vortical structures. As the number of reconstruction levels
increases from one to three, the modeled vorticity becomes increasingly more populated
at high wavenumbers.
A similar effect is quantitatively observed in the spectra of the turbulent kinetic energy

and enstrophy of the carrier phase, which are shown in Figure 3(a,b). While the spectra
in LES and LES-DF have the same support in wavenumber space, the LES-SDF spectra
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have increased support as the number of reconstruction levels is increased since the SDF-
modeled velocity field is defined on a finer grid. An additional observation worth remark-
ing in Figure 3(a,b) is that the LES-SDF1 spectrum lies below the LES-DF one. Further
analysis shows that this is due to the energy loss induced by the interpolation scheme, as
described in Section 3.1.2. The second deconvolution step is not sufficient to compensate
the numerical dissipation induced by the interpolation. Furthermore, the LES-SDF spec-
tra exhibit spurious oscillations caused by the low-order interpolation scheme used in this
study and the dyadic-based reconstruction of the velocity. Future work will involve the
use of higher-order interpolation schemes in order to suppress these spurious oscillations.
A quantity of interest in particle-laden turbulence is the second invariant of the

velocity-gradient tensor Q. In the limit of small Stokes numbers, particles cluster in
straining regions (i.e., Q < 0) and are centrifuged away from vortical regions (i.e., Q > 0)
(Robinson 1956; Maxey 1987; Esmaily-Moghadam & Mani 2016). This is illustrated in
Figure 3(c), which shows the resulting anti-correlation between the conditional mean of
the particle number density and Q in DNS. It is therefore evident that the prediction of
the particle concentration field heavily relies on the prediction of the Q field. However, as
observed in Figure 2, LES tends to underpredict vortical intermittency, and as a result,
leads to exceedingly narrow PDFs of Q when compared to DNS, as shown in Figure 3(d).
In contrast, increasingly improved predictions are obtained by using LES-DF, LES-SDF1,
LES-SDF2 and LES-SDF3. Remarkably, the LES-SDF3, whose modeled velocity is de-
fined on a grid that has the same resolution as the DNS grid, closely reproduces the tails
of the PDF of Q observed in the DNS results.

4.3. Dispersed-phase statistics

Ensemble-averaged radial distribution functions (RDFs), which quantify the likelihood
that a given pair of particles is separated by a certain radial distance [e.g., see Ray &
Collins (2011) for further details], are shown in Figure 4. Comparisons between DNS and
LES results show that LES underpredicts particle clustering when the Stokes number is
smaller than unity, while an overprediction occurs in the opposite limit of large Stokes
numbers. This poses a challenge for SGS models attempting to predict preferential con-
centration, in that they should be able to counteract the LES mismatches by steering
the particles in a different way on each side of the Stk ∼ 1 limit. Specifically, at small
Stokes numbers the SGS-modeled velocity should cluster or anti-disperse the particles.
Conversely, at large Stokes numbers the SGS-modeled velocity should disperse the par-
ticles. Remarkably, the LES-DF and LES-SDF results in Figure 4 show that both the
non-spectrally enriched DF model in Park et al. (2015, 2017) and the spectrally-enriched
DF model proposed here consistently reproduce the anti-dispersion and dispersion trends
required for Stk ≪ 1 and Stk ≫ 1, respectively. Nonetheless, LES-DF does not fully re-
cover the RDFs observed in DNS because of the insufficient level of intermittency in
the velocity gradients. In contrast, the predictions are greatly improved in LES-SDF,
with an increasing agreement being observed as the number of reconstruction levels in-
creases from one to three with exception of the unity Stokes-number case, which remains
under investigation. In all other cases, the order of predictive capability is LES, LES-
DF, LES-SDF1, LES-SDF2, LES-SDF3 and DNS. As the Stokes number is increased,
the advantages of deploying an additional level of reconstruction in the LES-SDF model
becomes less clear, since the particles become increasingly inertial to the small scales
regenerated by the model.
In order to address the performance of the SDF model in predicting the scales and

fluctuation intensity associated with the particle concentration field, Figure 5 shows the
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Figure 4. Ensemble-averaged radial distribution functions (RDFs) for different Stokes
numbers and SGS velocity models.

energy spectra of the particle number-density fluctuations. A description of the physical
meaning of these spectra in DNS, LES and LES-DF for a wide range of Stokes numbers
is provided in Park et al. (2017). While the spectra peak at resolved wavenumbers at
large Stokes numbers, the contrary occurs at small or near-unity Stokes numbers. In the
absence of appropriate spectral support, the LES results lead to important disagreements
with DNS. At large Stokes numbers, the magnitude of the spectrum peak is overpredicted
by LES but its location in the wavenumber axis is well reproduced. Significant improve-
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Figure 5. Ensemble-averaged number-density Fourier spectra for different Stokes numbers
and SGS velocity models. The LES wavenumber cutoff is located at κℓk = 0.13.

ments are observed when LES-DF and LES-SDF are employed, the latter rendering the
best results in the third level of reconstruction. Conversely, at Stokes numbers smaller
than unity, both LES and LES-DF miscalculate the location of the spectrum peak, which
is artificially shifted toward larger scales as a result of the inaccessibility of LES to sub-
grid wavenumbers. However, the LES-SDF model considerably improves the prediction
of the spectra at scales smaller than the original LES grid while capturing increasingly
more accurately the shift in the peak location and the peak magnitude as the level of
reconstruction is increased. The considerations given above are ratified by visualizing
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Figure 6. Instantaneous spatial distribution of particles (dots) contained in a slice of thickness
ℓk for Stk = 0.5. Only half of the computational domain in the x1 and x2 directions is represented
for clarity.

the spatial distribution of particles in Figures 6 and 7. Specifically, the visualizations
confirm that the LES-SDF model increasingly improves the performance compared to
LES and LES-DF as the number of reconstruction level is increased, both in terms of
predicting the overall structure of the preferentially concentrated clouds of particles and
their associated spatial scales.

5. Conclusions

In this work, a new subgrid-scale model for LES of particle-laden turbulence formulated
in physical space is proposed, which constructs an spectrally-enriched velocity field on
a grid finer than the original LES grid. The model extends the dynamic DF model of
Park et al. (2017) using a dynamic re-formulation of the velocity estimation model by
Domaradzki & Loh (1999). The procedure for regenerating SGS motion from the resolved
velocity field does not entail tunable parameters. The regeneration of small scales in the
model is based on non-linear, convective interactions between resolved eddies.
The model performance is assessed in homogeneous-isotropic turbulence laden with a

dilute suspension of inertial point particles. In most cases, the prediction of preferential
concentration is improved compared to LES with no model and to LES with the dy-
namic DF model of Park et al. (2017). The intensity and scales of associated with the
particle concentration field are better predicted with the new model since it bears scales
smaller than the LES grid cutoff. The model is also shown to increasingly reproduce the
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Figure 7. Instantaneous spatial distribution of particles (dots) contained in a slice of
thickness ℓk for Stk = 8.

spatial intermittency of the carrier-phase velocity gradients as the reconstruction level is
increased.
Future work may include the investigation of higher-order interpolation schemes for

interpolating the carrier-phase velocity onto finer grids in the model formulation, the
analysis of the structural properties of the SGS-modeled velocity field, and the extension
of the assessment of the model to particle kinematics statistics in wall-bounded flows. In
addition, analyses of the sensitivity of the results to the divergence of the modeled velocity
field may be worthwhile since enforcing zero divergence requires to solve a linear system
of equations that increases the computational cost of the model. This cost would further
increase in complex geometries where the development of fast linear solvers is a subject
of research. Lastly, it is worth mentioning that it is possible to use the present SGS model
locally on a cell-by-cell basis, by reconstructing an spectrally-enriched velocity field in
physical space only in spatial regions characterized, for instance, by high concentration
of particles, in a way similar to that proposed within the context of conceptual PP-CCS
models discussed in Section 2.3.
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