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We present the infinitesimal-strain version of a formulation based on fast Fourier trans-
forms (FFT) for the prediction of micromechanical fields in polycrystals deforming in the
elasto-viscoplastic (EVP) regime. This EVP extension of the model originally proposed by
Moulinec and Suquet to compute the local and effective mechanical behavior of a hetero-
geneous material directly from an image of its microstructure is based on an implicit time
discretization and an augmented Lagrangian iterative procedure. The proposed model is
first benchmarked, assessing the corresponding elastic and viscoplastic limits, the correct
treatment of hardening, rate-sensitivity and boundary conditions, and the rate of conver-
gence of the numerical method. In terms of applications, the EVP–FFT model is next used
to examine how single crystal elastic and plastic directional properties determine the dis-
tribution of local fields at different stages of deformation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Polycrystalline materials play a fundamental role as structural and functional materials in current and future technolog-
ical applications. The mechanical properties of plastically deforming polycrystals are dictated, on the one hand, by the struc-
ture and dynamics of crystalline defects, like vacancies and interstitials, dislocations, grain boundaries, voids, and, on the
other hand, by the size, morphology, spatial distribution and orientation of the constituent single crystal grains, i.e. in a
broad sense, by the texture of the polycrystal. From an experimental point of view, powerful techniques are emerging to fully
characterize polycrystal textures in three dimensions (3-D) and follow its in situ evolution during thermo-mechanical pro-
cessing. For example, serial-sectioning by Focus-Ion-Beam (FIB) combined with Electron Back-Scattering Diffraction (EBSD)
is by now a well established tool to characterize (destructively) local orientations in 3-D (e.g. Uchic et al., 2006) with nano-
metric spatial resolution. Also, synchrotron-based X-ray diffraction can now be used for in situ measurement of the posi-
tions, shapes, and crystallographic orientations (e.g. Lauridsen et al., 2006) and local elastic strains of bulk grains in an
aggregate (Oddershede et al., 2010, 2011), with micrometric and sub-micrometric resolution, in a non-destructive fashion.

From a modeling perspective, the challenge arising from these novel experimental techniques, which produce very large
3-D digital images of the microstructure (i.e. crystal orientation and/or the phase identification given on a regular grid of
points with intragranular resolution) is to devise new, robust and very efficient numerical formulations for interpretation
and exploitation of the massive amount of data generated by these measurements.

As a contribution to face this challenge, we present here an extension to the most general elasto-viscoplastic (EVP) defor-
mation regime of a modeling technique originally developed by Suquet and co-workers (Moulinec and Suquet, 1994, 1998;
. All rights reserved.
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Michel et al., 2000, 2001) as an efficient method to compute the micromechanical fields of periodic heterogeneous materials
directly from an image of their microstructure. Under this technique, which in the past we have extended, implemented and
applied to polycrystals deforming in the more restricted elastic (Brenner et al., 2009) and the rigid-viscoplastic (Lebensohn,
2001; Lebensohn et al., 2008, 2009; Lee et al., 2011) regimes, the input microstructural image is treated using the Fast Fou-
rier Transform (FFT) algorithm to solve the corresponding micromechanical problem. The present extension of the FFT-based
model to the EVP regime is a necessary step towards expanding its applicability to open problems involving polycrystal plas-
ticity, like the prediction of internal stresses with intragranular resolution for interpretation of either space-resolved or glo-
bal measurements, or the modeling of the role played by texture and microstructure on the distribution of extreme values of
the micromechanical fields, which in turn determine the macroscopic mechanical behavior of polycrystalline aggregates dur-
ing cyclic deformation, to mention some of the most challenging and relevant problems.

While the finite element method (FEM) has been extensively used to deal with problems involving crystal plasticity (CP)
in the elastoplastic regime (e.g. Mika and Dawson, 1998; Barbe et al., 2001a, 2001b; Raabe et al., 2001; Bhattacharyya et al.,
2001; Diard et al., 2005; Delannay et al., 2006; and the comprehensive review of Roters et al., 2010), the large number of
degrees of freedom required by FEM calculations with direct input from microstructural images constitutes an objective lim-
itation for the size of the polycrystalline aggregates that can be treated with CP-FEM, within reasonable computing times.
Conceived as an efficient alternative to FEM, the FFT-based methodology can account for fine-scale microstructural informa-
tion with a level of fidelity, in practice, unreachable with FEM. One disadvantage of FFT-based formulations is the require-
ment of periodic microstructures, making them less general than FEM.

The plan of the paper is as follows. In Section 2 we present the extension of the FFT-based formulation to the case of poly-
crystals deforming in the elasto-viscoplastic regime. In Section 3 we benchmark the EVP–FFT formulation, including: (a) the
assessment of the corresponding elastic (EL) and viscoplastic (VP) limits by comparison with earlier elastic (EL-FFT) and
viscoplastic (VP-FFT) implementations, (b) the correct treatment of hardening, rate-sensitivity and boundary conditions,
and (c) a detailed convergence analysis. In Section 4 we show an application of the EVP–FFT model to study how the single
crystal elastic and plastic directional properties determine the distribution of local stresses in the initial elastic loading, the
elastoplastic transition and the fully plastic regime, and, consequently, how this crystal anisotropy impacts the aforemen-
tioned transition at macroscopic level. In Section 5 we summarize and provide some perspectives for future applications
of the EVP–FFT formulation.
2. Model

The FFT-based formulation is conceived for periodic unit cells and provides an exact solution (within the limitations im-
posed by the required discretization and the iterative character of the numerical algorithm) of the governing equations of
equilibrium and compatibility, in such a way that the final (converged) equilibrated stress and compatible strain fields fulfill
the required constitutive relation, at every discrete material point. The method was originally developed for linear (elastic)
(Moulinec and Suquet, 1994, 1998), and nonlinear elastoplastic (Moulinec and Suquet, 1994, 1998) and viscoplastic (Michel
et al., 2000, 2001) composites, with the goal of computing local and effective mechanical responses directly from pixel-based
optical images of these materials, in which the source of heterogeneity is related to the spatial distribution of phases with
different mechanical properties and image contrasts. Later, the FFT-based formulation was extended to linear and nonlinear
polycrystals. In this case, the heterogeneity is related to the spatial distribution of crystals with directional mechanical prop-
erties, which can be identified by means of orientation images.

Briefly, the FFT-based formulation consists in iteratively adjusting a compatible strain (or strain-rate) field, related with
an equilibrated stress field through a constitutive potential, such that the average of local work (or power) is minimized.
Owing to the periodicity of the unit cell, periodic Green functions, convolution integrals and Fourier transforms can be effi-
ciently utilized to solve the micromechanical problem (details are given in next section).

Regarding the specific iterative procedure required to solve a given micromechanical problem, several versions of the FFT-
based method are presently available. The original formulation of Moulinec and Suquet (1994, 1998), known as the ‘‘basic’’
scheme, has been proven to converge for linear materials at a rate proportional to the local contrast in mechanical properties.
To improve the convergence of this basic scheme, accelerated schemes have been proposed by different authors (Eyre and
Milton, 1999; Brisard and Dormieux, 2010; Zeman et al., 2010). When the mechanical contrast is infinite and therefore con-
vergence of the basic algorithm is not ensured, Michel et al. (2000, 2001) proposed an ‘‘augmented Lagrangians’’ scheme,
which consists in adjusting two strain (or strain-rate) and two stress fields. By construction, one of the strain fields is com-
patible, and one of the stress fields fulfills equilibrium. Meanwhile, the constitutive equation relates the other strain and
stress fields. The iterative procedure is designed to make the pairs of strain and stress fields converge to each other. At con-
vergence, the method delivers a compatible strain field related to an equilibrated stress field through the local constitutive
equation.
2.1. Elasto-viscoplastic formulation

As mentioned above, for plastically deforming polycystals, a version of the FFT-based model based on the popular rigid-
viscoplastic approximation to crystal plasticity (Asaro and Needleman, 1985) is available (Lebensohn, 2001; Lebensohn et al.,
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2008, 2009; Lee et al., 2011). Under this approximation, the elastic strains are considered negligible compared with the plas-
tic strains and the viscoplastic strain rate _epðxÞ is constitutively related with the stress r(x) at a single-crystal material point
x through a sum over the N active slip systems, of the form:
_epðxÞ ¼
XN

s¼1

msðxÞ _csðxÞ ¼ _co

XN

s¼1

msðxÞ jm
sðxÞ : rðxÞj
ss

oðxÞ

� �n

sgnðmsðxÞ : rðxÞÞ ð1Þ
where _csðxÞ; ss
oðxÞ and ms(x) are, respectively, the shear rate, the critical resolved shear stress (CRSS) and the Schmid tensor,

associated with slip system (s) at point x; _co is a normalization factor and n is the stress exponent (inverse of the rate-sen-
sitivity exponent). Note that, in general, ss

oðx; epðrðxÞÞÞ, i.e. the CRSS of slip system (s) is a function of accumulated plastic
strain in the crystal (in turn a function of the stress) due to the strain-hardening of the slip systems. The resulting VP-FFT
formulation, in combination with the augmented Lagrangians scheme, and (when necessary for large deformation predic-
tions) with an Eulerian description of motion, has proven to be very useful for predicting local fields with intragranular res-
olution, effective behavior, and microstructure evolution of polycrystals deforming in a fully-plastic regime. However, while
neglecting elastic effects simplifies the formulation and speeds up considerably its numerical performance, the VP-FFT for-
mulation cannot be used in problems in which the elastic and plastic strains are comparable in magnitude and/or when the
full stress tensor field (not just the deviatoric part of it) needs to be determined. The ability of a model to simultaneously
account for elastic and viscoplastic effects in single crystals is obviously relevant to study phenomena like the build-up of
internal elastic strains responsible for measurable changes in lattice spacing, or the development of stress concentrations
leading to damage during cyclic deformation/incipient plasticity, etc.

The solution of an EVP problem involves the adoption of an appropriate time discretization scheme. Using an Euler implicit
time discretization and Hooke’s law, the expression, in small strains, of the stress in material point x at t + Dt is given by
rtþDtðxÞ ¼ CðxÞ : ee;tþDtðxÞ ¼ CðxÞ : etþDtðxÞ � ep;tðxÞ � _ep;tþDtðx;rtþDtÞDt
� �

ð2Þ
where r(x) is the Cauchy stress tensor, C(x) is the elastic stiffness tensor, e(x), ee(x), and ep(x) are the total, elastic and plastic
strain tensors, and _epðxÞ is the plastic strain-rate tensor given, e.g. by Eq. (1). In what follows, the supra-indices t + Dt will be
omitted, i.e. the time-dependent stress and strain fields with no time supra-index correspond to time (t + Dt), and only fields
corresponding to the previous time step (t) will be explicitly indicated. Constitutive Eq. (2) and its inverse relation then read:
rðxÞ ¼ CðxÞ : ðeðxÞ � ep;tðxÞ � _epðx;rÞDtÞ ð3Þ

eðxÞ ¼ C�1ðxÞ : rðxÞ þ ep;tðxÞ þ _epðx;rÞDt ð4Þ
2.2. Green function method

Adding and subtracting from the stress tensor an appropriate expression involving Co, the stiffness of a reference linear
medium, gives (using explicit index notation):
rijðxÞ ¼ rijðxÞ þ Co
ijkluk;lðxÞ � Co

ijkluk;lðxÞ ð5Þ
where uk,l (x) is the displacement-gradient tensor, i.e. eklðxÞ ¼ ðuk;lðxÞ þ uk;lðxÞÞ=2.
Conveniently regrouping terms in Eq. (5):
rijðxÞ ¼ Co
ijkluk;lðxÞ þuijðxÞ ð6Þ
where the polarization field is given by
uijðxÞ ¼ rijðxÞ � Co
ijkluk;lðxÞ ¼ rijðxÞ � Co

ijkleklðxÞ ð7Þ
Combining expression (7) with the equilibrium equation rij,j(x) = 0:
Co
ijkluk;ljðxÞ þuij;jðxÞ ¼ 0 ð8Þ
Solving differential Eq. (8) for a periodic unit cell under an applied strain E = he(x)i using Green function method requires
writing the following auxiliary problem:
Co
ijklGkm;ljðx� x0Þ þ dimdðx� x0Þ ¼ 0 ð9Þ
where Gkm(x) is the Green function associated with the displacement field uk(x). The solution for the displacement gradient is
given by the convolution integral:
uk;lðxÞ ¼
Z

R3
Gki;jlðx� x0Þuijðx0Þdx0 ð10Þ
Solving Eq. (10) in Fourier space using the convolution theorem, the compatible strain field deriving from the solution of Eq.
(8) is given by
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eijðxÞ ¼ Eij þ FT�1 sym Ĉo
ijklðkÞ

� �
ûklðkÞ

� �
ð11Þ
where the symbol ‘‘^’’ indicates Fourier transform (FT) and k is a point (frequency) of Fourier space. The Green operator in
Fourier space, which is only a function of the reference stiffness tensor and the frequency, is given by
Ĉo
ijklðkÞ ¼ �kjklĜikðkÞ ð12Þ
With
ĜikðkÞ ¼ ½Co
kjilklkj��1
Note that, while Eqs. (1)–(12) are valid for arbitrary material points x and frequencies k, the numerical method consists in
evaluating these expressions in points and frequencies belonging to regular grids (of the same size) in Cartesian and Fourier
spaces, respectively, in which case, the direct and inverse Fourier Transforms in Eq. (11) become discrete, and the FFT algo-
rithm can be applied.

2.3. Iterative procedure

Since the polarization field, defined in Eq. (7), is precisely a function of the strain field e(x), i.e. the sought solution of dif-
ferential Eq. (8), some kind of iterative procedure is required to solve the problem. Let assume that kðiÞij and eðiÞij are, respec-
tively, auxiliary guess stress and strain fields at iteration (i). The polarization field then reads:
uðiÞij ðxÞ ¼ kðiÞij ðxÞ � Co
ijkle

ðiÞ
kl ðxÞ ð13Þ
and the new guess for the strain field is given by (c.f. Eq. (11)):
eðiþ1Þ
ij ðxÞ ¼ Eij þ FT�1 sym Ĉo

ijklðkÞ
� �

/̂ðiÞkl ðkÞ
� �

ð14Þ
An alternative fix-point expression, which requires computing the Fourier transform of the stress field instead of that of
the polarization field is given by (Michel et al., 2001):
eðiþ1Þ
ij ðxÞ ¼ Eij þ FT�1 ~̂eðiÞij þ sym Ĉo

ijklðkÞ
� �

k̂ðiÞkl ðkÞ
� �

ð15Þ
With eðiþ1Þ
ij ðxÞ obtained from Eq. (15), one possibility, following the ‘‘basic’’ scheme of Moulinec and Suquet (1994, 1998), is to

replace its value in Eq. (3) and solve a set of 6 nonlinear equations to obtain the six unknown independent components of
kðiþ1Þ

ij ðxÞ. However, in our implementation, we chose to use the more involved, but also more robust and faster to converge
augmented Lagrangians scheme, adapted from Michel et al. (2000, 2001). This scheme requires, for every material point x,
the nullification of a residual R, which is a function of the stress tensor rðiþ1Þ constitutively related with the strain tensor eðiþ1Þ

(in what follows, the dependence with x will be omitted):
Rk rðiþ1Þ� �
¼ rðiþ1Þ

k þ Co
kle

iþ1ð Þ
l ðrðiþ1ÞÞ � kðiÞk � Co

kle
ðiþ1Þ
l ¼ 0 ð16Þ
Note that for convenience in Eq. (16) the residual is written in contracted notation for symmetric tensors, e.g.
rij ! rk; k ¼ 1;6; Cijmn ! Ckl; k; l ¼ 1;6, etc. Nonlinear Eq. (16) is solved using a scheme of the Newton–Raphson (N–R) type,
i.e.
rðiþ1;jþ1Þ
k ¼ rðiþ1;jÞ

k � oRk

orl

����
rðiþ1;jÞ

� ��1

Rl rðiþ1;jÞ� �
ð17Þ
is the expression that gives the (j + 1)-guess for the stress field rðiþ1Þ
k . Using Eq. (16) and the constitutive relation (Eq. (4)), the

Jacobian in the above expression reads:
oRk

orl

����
rðiþ1;jÞ

¼ dkl þ Co
kqC�1

ql þ Dt Co
kq

o _ep
q

orl

����
rðiþ1;jÞ

ð18Þ
The derivative on the right is the tangent compliance of the viscoplastic relation (Eq. (1)). Noting that, due to the dependence
of the plastic strain on the stress, the CRSS is a function of the stress ss

oðepðrÞÞ ¼ ss
oðrÞ, an approximate expression for this

tangent compliance is given by
o _ep
q

orl

����
rðiþ1;jÞ

ffi n _co

XN

s¼1

ms
qms

l

ss
o rðiþ1;jÞð Þ

ms : r
ss

o rðiþ1;jÞð Þ

� �n�1

ð19Þ
In writing Eq. (19), we have neglected the term oss
o=orj, which, besides complicating the above expression, depends on the

specific functional form of the adopted hardening law. Consequently, combining Eqs. (18) and (19):
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oRk

or1

����
riþ1;j

ffi dklþ Co
kqC�1

ql þ ðDt n _coÞCo
kq

XN

s¼1

ms
qms

l

ss
o rðiþ1;jÞð Þ

ms : r
ss

o rðiþ1;jÞð Þ

� �n�1

ð20Þ
gives an approximate Jacobian (strictly, not Newton–Raphson’s tangent operator). In spite of this approximation, the conver-
gence rate is almost unaffected, even in the case of strong strain-hardening, compared with the no hardening case (see
Section 3).

Once convergence is achieved on r(i+1) (and thus on e(i+1)), the new guess for the auxiliary stress field k is given by
kðiþ1ÞðxÞ ¼ kðiÞðxÞ þ Co : eðiþ1ÞðxÞ � eðiþ1ÞðxÞ
� �

ð21Þ
and the algorithm advances (c.f. Eq. (15)), until the normalized average differences between the stress fields r(x) and k(x),
and the strain fields e(x) and e(x), are smaller than a threshold. In all the examples that follow, we used a threshold of 10�5.
This condition also implies fulfillment of equilibrium and compatibility (Michel et al., 2001) up to such precision.

2.4. Boundary conditions

While the algorithm described above solves the problem for a strain imposed to the unit cell of the form:
Eij ¼ Et
ij þ _EijDt ð22Þ
the actual boundary conditions applied to the unit cell can be mixed, i.e. some components of macroscopic strain rate _Eij and
some complementary components of the macroscopic stress Rij may be imposed (e.g. in the case of tension along x3 with no
shear strains allowed, _E33 > 0 and _E23 ¼ _E31 ¼ _E12 ¼ 0 and R11 = R22 = 0 are the imposed strain-rate and stress components),
or even the full stress tensor may be prescribed (i.e. creep). In such cases, the algorithm should include the following extra
step, after k(i+1) (x) is determined (Eq. (21)). If component Rpq is imposed, the corresponding (i + 1)-guess for strain compo-
nent Eðiþ1Þ

pq is obtained as (Michel et al., 2001):
Eðiþ1Þ
pq ¼ EðiÞpq þ Co�1

pqkla
½kl� Rkl � kðiþ1Þ

kl ðxÞ
D E� �

ð23Þ
where a[kl] = 1 if component Rkl is imposed, and zero otherwise.

2.5. Hardening law

While, as discussed above, the approximate expression for the Jacobian (Eq. (19)) allows us to use different hardening
laws without changing the proposed EVP algorithm, in what follows we present cases with either no strain-hardening
(i.e. ss

o constant), or a very simple linear hardening, i.e.
Dss
o ¼ HDC ð24Þ
where H is a positive scalar and DC ¼
PN

s¼1j _csDtj .

3. Benchmarks

The first benchmark for the proposed EVP–FFT numerical scheme is to verify that the elastic and viscoplastic limits match
the previous simpler EL-FFT and VP-FFT implementations. For this we have chosen the case of a copper polycrystal, repre-
sented by a periodic unit cell generated by Voronoi tessellation, consisting of 100 grains with randomly chosen orientations.
The unit cell was discretized using a 128 � 128 � 128 grid (same unit cell, discretized in the same fashion will be adopted
throughout the examples presented in this paper). The adopted single crystal elastic constants correspond to copper at room
temperature: C11 = 170.2 GPa, C12 = 114.9 GPa and C44 = 61.0 GPa (Simmons and Wang, 1971). The copper crystals deform
plastically by slip on 12 {111}h110i slip systems with a constant (i.e. no strain-hardening) CRSS value of
ss

o ¼ 10 MPa ðs ¼ 1; . . . ;12Þ and a stress exponent n = 10. The boundary conditions correspond to uniaxial tension along
x3, with an applied strain rate component along the tensile axis _E33 ¼ 1s�1. The EVP–FFT simulation was carried out in 30
steps of 0.01%, up to a strain of 0.3%. Fig. 1 shows: (a) the equivalent stress–strain curve predicted with the EVP–FFT model,
together with two straight lines representing the effective responses predicted for the same unit cell by the EL-FFT (which
gives the initial elastic slope) with the same elastic constants, and the by VP-FFT (which gives the saturated stress) adopting
the same slip systems, CRSS and stress exponent respectively, and (b) the equivalent stress fields predicted by the EL-FFT and
EVP–FFT models at 0.01%, and by the VP-FFT and EVP–FFT at 0.3%, respectively. The agreement of both the effective behavior
and the von Mises local fields, between the EVP–FFT predictions and the corresponding EL and VP limits is excellent. We have
also verified the good match between individual stress component fields, i.e. of the full stress tensor, in the elastic case; and
of the deviatoric stress tensor, in the fully plastic case.

The second benchmark concerns the adequate treatment of strain-hardening and rate-sensitivity. Fig. 2 shows the stress–
strain curves predicted for the copper polycrystal with the same elastic constants, slip systems, CRSS and stress exponent,
and a linear strain-hardening, adopting H = 100 MPa (see Eq. (24)). Uniaxial stress boundary conditions are also the same



Fig. 1. Equivalent stress–strain curve predicted with the EVP–FFT model using a 128 � 128 � 128 Fourier grid, for the case of a copper polycrystal with 100
grains, random texture and no strain-hardening, deformed in unixial tension up to 0.3%, and effective responses (initial elastic slope and saturated stress
lines) predicted with EL-FFT for the same elastic constants, and VP-FFT for the same viscoplastic constitutive parameters. Also shown: equivalent stress
fields predicted with EL-FFT and EVP–FFT at 0.01%, and with VP-FFT and EVP–FFT at 0.3%.

Fig. 2. Stress–strain curves predicted for the copper polycrystal, with linear hardening (H = 100 MPa), for four different values of the prescribed axial strain
rate: _E33 ¼ 10�3;10�2;10�1 and 1 s�1.
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as the ones previously considered, but, in this case, in order to assess the rate-sensitivity of the model, four different values of
the axial strain rate component were prescribed: _E33 ¼ 10�3;10�2;10�1 and 1 s�1. The predicted final slope of the stress–
strain curves and the relatively high strain-rate dependence of the effective response, corresponding to the relatively low
stress exponent adopted, are well captured by the model.

Next, we present a convergence analysis of the proposed numerical method. Fig. 3 shows the convergence of two simu-
lations for the copper polycrystal, deformed in uniaxial tension at a axial strain rate _E33 ¼ 1s�1, assuming no hardening
(H = 0) and a very strong linear hardening (H = 1000 MPa, i.e. H ¼ 100� ss

o). Fig. 3(a) shows the effective stress–strain curves
obtained after 15 steps of 0.01%. In order to compare the convergence rate in both cases, Fig. 3(b) and (c) show the average
number (calculated over the entire Fourier grid) of N-R iterations required to solve Eq. (16), as a function of the accumulated
number of (‘‘global’’) iterations of the EVP–FFT model, for the ‘‘no-hardening’’ and ‘‘hardening’’ cases, respectively. (Note that
in Section 2.3 the N-R and global iterations are indicated by the supra-indices (j) and (i), respectively). The alternating white
and gray regions represent the intervals of global iterations required to converge within each deformation increment.
Fig. 3(d) and (e) show the average (calculated over the entire Fourier grid) of the difference between the stress fields r(x)
and kðxÞ, normalized by the effective equivalent stress, as a function of the total number of global iterations, in the no-hard-
ening and hardening cases, respectively. From Fig. 3(b) and (c) it can be observed that for both cases the average number of
N-R iterations decreases, as convergence is approached within each deformation step. However, in the non-hardening case,
this average number of N-R iterations starts from smaller values at the beginning of each deformation step and reaches faster
the value of 2 for every voxel. This difference reflects the approximation incurred in the hardening case by using the N–R
Jacobian given by Eq. (20). In any case, the fact that after some number of global iterations within each deformation step



Fig. 3. Convergence of two simulations for the copper polycrystal, assuming no hardening (H = 0) and a very strong linear hardening (H = 1000 MPa). (a)
Effective stress–strain curves up to 15 steps of 0.01%. (b) and (c) Average number of N-R iterations as a function of the accumulated number of global
iterations of the EVP–FFT model, in the no hardening (b) and hardening (c) cases. (d) and (e) Normalized average difference between the stress fields r(x)
and kðxÞ, as a function of the total number of global iterations, in the no hardening (d) and hardening (e) cases.
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Fig. 4. Stress–strain curve for the copper polycrystal, in the case of uniaxial tension along x3 ( _E33 ¼ 1s�1 and R11 = R22 = 0 prescribed, R33, _E11 and _E22
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every voxel requires only 2 N–R iterations reflects the goodness of the proposed Jacobian. On the other hand, Fig. 3(d) and (e)
show that hardening has a very little effect on the number of global iterations required for convergence of the proposed FFT-
based method.
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The last benchmark consists in verifying the correct treatment of mixed boundary conditions. Fig. 4 displays the same
stress–strain curve as shown in the first example for the case of uniaxial tension along x3 of a non-hardening copper poly-
crystal (i.e. with _E33 ¼ 1s�1 and R11 = R22 = 0 prescribed, and, thus, R33, _E11 and _E22 resulting from the predicted response).
The other two curves show the predicted (‘‘instantaneous’’) transversal-to-longitudinal strain rate ratio (� _E11= _E33), and the
(‘‘accumulated’’) ratio between the total strain components (�E11/E33). The instantaneous ratio starts at the value of 0.35,
corresponding to the effective Poisson ratio of a random copper polycrystal, while, as the simulation goes through the elas-
toplastic transition into the fully-plastic regime, the latter rapidly increases, reaching a value of 0.5, corresponding to the
transversal-to-longitudinal ratio associated with an incompressible axisymmetric plastic flow.
4. Application

After assessing our model with the above relatively simple but indispensable benchmarks, in this Section we show a first
application of the EVP–FFT formulation to study the interplay between elastic and plastic anisotropy, and its effect on the
effective behavior and local micromechanical response during the elastoplastic transition. Similar analysis of the role of tex-
ture and microstructure on the distribution of stress ‘‘hot spots’’ (i.e. local values of stress significantly above the average)
was recently carried out by Rollett et al. (2010) using the VP version of the FFT formulation. Consequently, the conclusions of
this earlier study were strictly only applicable to materials already deforming in a fully-plastic regime. The ability of carrying
out similar hot-spot analysis using the EVP–FFT model allows us gaining new insights into the important regime of incipient
plasticity, in which it is evident that extreme values statistics of the micromechanical fields very often play a dramatic role in
determining macroscopic response, although the correlation between microstructure and those extreme values is not well
understood.

To illustrate the feasibility of performing this kind of analysis using our new EVP–FFT tool, we compare simulations car-
ried out for the same copper polycrystal studied in the previous Section (with H = 100 MPa), against the case of another ‘‘arti-
Fig. 5. (a) Effective response predicted with the EVP–FFT model for the copper polycrystal (A = 2.2) and the artificial fcc random polycrystal (A = 0.5)
deformed in uniaxial tension up to 0.2%. (b) and (c) Predicted fields of normalized fluctuations of the von Mises stress, for the copper polycrystal (b) and the
artifical fcc polycrystal (c), in different stages of the loading.
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ficial’’ fcc polycrystal, having identical distribution of grains and orientations and same viscoplastic constitutive parameters,
but different single crystal elastic anisotropy. At this point, it should be reminded that the elastic anisotropy parameter of a
cubic single crystal is defined as A = (2 � C44)/(C11 � C12), which, in the case of the adopted elastic constants for copper, gives
A = 2.2. Such value of A > 1 determines that, in a copper single crystal, e.g. h100i and h111i are soft and hard elastic direc-
tions, respectively. The same is true for the plastic anisotropy of a fcc single crystal deforming by {111}h110i slip. Mean-
while, for our artificial fcc single crystal, in order to reverse the elastic directional properties with respect to the plastic
anisotropy while keeping the same effective elastic response, we have used a simple algorithm based on Hershey’s (1954)
elastic self-consistent formula for the effective response of a random cubic polycrystal with spherical grains. Prescribing
A = 0.5, the values of Cij that give the same effective elastic response (according to the elastic self-consistent model) as
the copper polycrystal are: C11 = 233.6, C12 = 88.2 and C44 = 33.8 GPa.

Fig. 5(a) shows the effective stress–strain response for uniaxial tension along x3 for an axial strain rate _E33 ¼ 1s�1 of the
copper polycrystal (A = 2.2) and the artificial fcc polycrystal (A = 0.5), after 20 steps of 0.005%, up to a strain of 0.2%. The ini-
tial elastic and the stable fully-plastic responses are identical, but the stress–strain curves differ in the elastoplastic transi-
tion. In order to interpret this difference in effective behavior, Fig. 5(b) and (c) show the predicted fields of normalized
fluctuations of the von Mises stress, for the copper and the artificial fcc polycrystal, respectively, in selected stages of the
loading. Since, in the copper single crystal, the same crystallographic directions are relatively soft or hard, both elastically
and plastically, the locations of the hot and cold spots of the stress field do not change throughout the deformation. On
the other hand, since in the artificial single crystal the hard elastic crystal directions become soft plastic directions and vice
versa, the elastic hot spots become plastic cold spots and vice versa, as the material goes through the elastoplastic transition.
This switch results in an almost homogenous stress field approximately half-way through the transition. This hot spot/cold
spot reversion very clearly observed at local level also has an effect on the effective response, giving a longer elastoplastic
transition compared with the copper polycrystal, as seen in Fig. 5(a). This result shows that Rollett et al’s. (2010) VP hot-spot
analysis cannot automatically be extended to the incipient-plasticity regime, although the correlation between texture and
microstructure and the location of VP hot spots may be also meaningful (at least qualitatively) in the incipient-plasticity re-
gime in the cases of high SFE fcc materials (i.e. deforming exclusively by {111}h110i slip) with single crystal elastic anisot-
ropy parameter A > 1 (e.g. Cu, Al, Fe).
5. Summary and perspectives

In this paper we have described the formulation, benchmarked our numerical implementation and presented a first appli-
cation to stress hot-spot analysis, of the small-strain version of the EVP–FFT model for polycrystalline materials. The EVP–
FFT formulation has also been extended to large strains and it is being reported elsewhere (Eisenlohr et al., in preparation).
Depending on the specific need, the small-strain or large-strain versions of the model can be further utilized in a suite of
applications requiring full-field polycrystal plasticity.

All the benchmarks and applications presented here correspond to a unit cell discretized using a 128 � 128 � 128 grid, i.e.
involving more than 2 million Fourier points. This resolution can be handled with 8 GB RAM and computing times of about
1 h per deformation increment. We have verified that going to the next level of refinement (256 � 256 � 256) produces very
similar results, at the expense of 8 times more memory usage and at least 8 times more execution time. We have run the case
reported in Fig. 5(a) with a 2563 grid and compared the results with the 1283 discretization of the same polycrystal. The pre-
dicted effective behavior is indistinguishable within the threshold error used in the iterative procedure. Meanwhile, the com-
parison between the mean value of the stress in the grains, averaged over the 100 grains, is better than 3 � 10�4, relative to
the effective stress, and the average normalized difference in local stresses, computed for every point in the coarser case
against every other point in the more refined case is less than 2%.

Of particular interest are applications of the new EVP–FFT formulation for better interpretation of experimental data. For
instance, the interpretation of neutron diffraction measurements of internal lattice (elastic) strains can benefit from the use
of the EVP–FFT. Until now, the numerical approaches used to correlate texture and microstructure with lattice strains were
based on self-consistent homogenization (e.g. Turner and Tomé, 1994; Clausen et al., 1998; Neil et al, 2010) or CP-FEM mod-
els (Dawson et al., 2001, 2005; Wong and Dawson, 2010). Homogenization-based models do a reasonably good job at match-
ing some features of the distribution of internal strains measured with neutron diffraction, specially because the latter in
general provides lattice strain measurements from a relatively large (statistically representative) polycrystalline volume
containing a large number of grains. However, homogenization approaches cannot account for neighboring grain interac-
tions and intragranular heterogeneity of the micromechanical fields. CP-FEM models, on the other hand, do account for
grain-to-grain interactions and intragranular field variations, but the size of the volume element and the intra-grain resolu-
tion that can be investigated is limited, i.e. far from being statistically representative, with presently available computational
resources. In contrast, the EVP–FFT formulation is able to deliver space-resolved predictions of elastic strains with high intra-
granular resolution, more efficiently than CP-FEM (Prakash and Lebensohn, 2009; Eisenlohr et al., in preparation). The first
application of the EVP–FFT formulation to model neutron diffraction measurements of lattice strains evolution in fcc mate-
rials is being published elsewhere (Kanjarla et al., submitted for publication). Further on, we foresee 3-D space-resolved
measurements of internal strains of individual grains in hcp (Aydiner et al., 2009) as well as in cubic aggregates (Oddershede
et al., 2010, 2011) also being modeled with the EVP–FFT approach, with direct input and validation from such measurements.
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Finally, we should mention another potential application of the proposed model. In the past the more restricted viscoplas-
tic FFT-based formulation was applied to generate reference solutions, obtained by computing ensemble averages over mul-
tiple realizations of polycrystalline (Lebensohn et al., 2004a,b) and composites (Idiart et al., 2006) volume elements, for the
assessment of different nonlinear homogenization models for viscoplastic heterogenous materials. On the other hand, sev-
eral homogenization theories have being been recently proposed for the more general case of elasto-viscoplastic heteroge-
neous materials (Lahellec and Suquet, 2007a,b; Mercier and Molinari, 2009; Doghri et al., 2010). The proposed EVP–FFT can
be useful to obtain reference solutions for comparison against estimates of these different theories, specialized to polycrys-
talline materials.
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