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We propose constitutive models for polycrystalline aggregates with
intergranular cavities and test them against full-field numerical simulations.
Such conditions are prevalent in many engineering applications and failure
of metallic components (e.g. HIPing and other forming processes,
spallation under dynamic loading conditions, etc.), where the dilatational
effects associated with the presence of cavities must be accounted for, and
standard polycrystalline models for incompressible plasticity are not
appropriate. On the other hand, it is not clear that the use of porous
plasticity models with isotropic matrix behavior is relevant, particularly,
when large deformations can lead to significant texture evolution and
therefore to strong matrix anisotropy. Of course, finite strains can also lead
to significant changes in the porosity and pore shape, resulting in additional
anisotropy development. In this work, we make use of ‘variational linear-
comparison’ homogenization methods to develop constitutive models
simultaneously accounting for texture of the matrix, porosity and average
pore shape and orientation. The predictions of the models are compared
with full-field numerical simulations based on fast Fourier transforms to
study the influence of different microstructural features (e.g. overall
porosity, texture of the matrix phase, single-crystal anisotropy, etc.) and
type of loading (triaxiality) on the dilatational viscoplastic behavior of
voided polycrystals. The results are also compared with the predictions of
isotropic-matrix porous plasticity models to assess the effect of the possible
matrix anisotropy in textured samples.
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1. Introduction

The aim of this work is to provide constitutive models for the viscoplastic response of
polycrystalline aggregates accounting for the dilatational effects associated with the

presence of intergranular cavities. These conditions are prevalent in many engineer-

ing problems (e.g. HIPing and other forming processes) where the dilatational

effects associated with the presence of cavities must be accounted for, and standard
polycrystalline models for incompressible plasticity are not appropriate.

A particularly important problem that calls for such constitutive models is the

ductile failure of metals and other polycrystalline solids by void growth to

coalescence [1,2]. Experimental observations on rolled [1,3,4] and extruded [5]
engineering alloys show that crystallographic and morphological textures can induce

strongly anisotropic damage growth and fracture behavior. Texture has also been

found to result in anisotropic spallation of low-symmetry metals under shock

loading [6,7]. Most available theories of dilatational viscoplasticity, however, make
use of the simplifying assumption that the matrix material is homogeneous and

isotropic, and are therefore unable to capture texture effects. This is the case, for

instance, of the celebrated theory of Gurson [8] and its various generalizations

proposed by Leblond et al. [9], Gologanu et al. [10], and Gǎrǎjeu et al. [11], among
others. These theories are collectively referred to as Gurson-type theories, and are all

based on approximate solutions of an isotropic hollow sphere subject to axisym-

metric loadings. Recent work by Benzerga et al. [12], Monchiet et al. [13],
Keralavarma and Benzerga [14] and others have explored ways to incorporate plastic

anisotropy into these models by assuming that the plastic matrix obeys an

anisotropic yield criterion of the form proposed by Hill [15]. However, this approach

is restricted to rate-independent plasticity with orthotropic yield criteria, and, in
principle, cannot account for the evolution of plastic anisotropy due to deformation-

induced changes in texture. In contrast, the dilatational viscoplasticity theories for

polycrystalline voided solids will be derived in this work by generalizing polycrystal

models, accounting for the heterogeneity associated with both the crystallites and the
cavities on an equal footing.

Several constitutive theories are already available to estimate the viscoplastic

response of fully dense polycrystalline solids in terms of their morphological and

crystallographic texture. For linearly viscous polycrystals, the so-called self-
consistent theory has been found to be both very accurate [16,17] and easy-to-use.

This linear theory was originally proposed – in the mathematically analogous context

of elasticity – as an ad hoc model consisting in the use of the Eshelby solution to

approximate the grain interactions through the replacement of all other grains by an
effective medium – chosen in a self-consistent manner – by Hershey [18] and Kröner

[19], and was later derived more rigorously via the Hashin–Shtrikman variational

principles [20], and endowed with a clear statistical interpretation, by Willis [21].
Driven by the need to understand plastic deformation in metals and other

polycrystalline solids, many attempts have been made to generalize the self-

consistent theory to nonlinear constitutive responses.
Among the earlier nonlinear self-consistent theories, perhaps the most popular

are the ‘incremental’ theory of Hill [22] and Hutchinson [23], and the ‘tangent’
procedure of Molinari et al. [24] and Lebensohn and Tomé [25]. These theories – and
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their various variants – also made use of the linear Eshelby solution, together with an
appropriately chosen linearization scheme to approximate the grain interactions.
However, while the ‘incremental’ and ‘tangent’ theories generally provide improve-
ments on the elementary Taylor and Sachs approximations, they can give inaccurate
predictions for low rate-sensitivity materials, especially when crystal anisotropy is
large. And even more importantly for our purposes, these classical theories are
already known to give unphysical predictions for isotropic voided solids [26], the
reason being that their linearization schemes are based on the first moments of the
fields only, while the presence of cavities induces strong field gradients in the solid
phases, making it necessary to use linearization schemes that should also incorporate
higher-order information on the field distributions.

A new class of nonlinear self-consistent theories, improving considerably on the
above ‘classical’ theories, is available from the work of Ponte Castañeda and
co-workers. These theories rely on the use of a ‘linear-comparison polycrystal’
(LCP), consisting of a polycrystal with the same microstructure as the nonlinear
polycrystal but whose single-crystal response is identified with a certain linearization
of the corresponding nonlinear response, typically guided by suitably designed
variational principles. Then, the standard (linear) self-consistent theory can be used
to estimate the macroscopic response of the linear-comparison polycrystal, which in
turn can be used to estimate the macroscopic response of the nonlinear polycrystal.
The difference between the various ‘linear-comparison’ theories proposed in the
literature lies on the choice of the linearization scheme. The first ‘linear-comparison’
variational estimates of the self-consistent type for viscoplastic polycrystals were
derived by Ponte Castañeda and Nebozhyn [27], making use of the variational
approach of deBotton and Ponte Castañeda [28] and building on earlier work by
Ponte Castañeda [29] for isotropic nonlinear materials. This theory uses a secant
approximation to the nonlinear local response evaluated at the second moments of
the fields [30,31], and yields rigorous bounds for all other self-consistent theories.
This fact was used to demonstrate the inconsistency of the ‘incremental’ theory,
which was often found to violate those bounds [32]. A refined version of the ‘secant’
variational theory has been recently derived by Idiart and Ponte Castañeda [33],
which can deliver sharper bounds [34] at the expense of introducing a more
complicated optimization problem. However, precisely because of their bounding
property, the ‘secant’ variational estimates are expected to be rather stiff. Softer
estimates were derived by Bornert et al. [35], making use of a linear-comparison
procedure proposed by Ponte Castañeda [36] and endowed with a variational status
by Ponte Castañeda and Willis [37]. This procedure uses a tangent approximation to
the nonlinear local response evaluated at the first moments of the fields, and
generates estimates that are exact to second-order in the heterogeneity contrast. A
simplified version of this procedure, referred to as the ‘affine’ procedure, is available
from the work of Masson et al. [26]. However, precisely because the linearization
scheme is based on first moments only, these ‘tangent’ variational estimates give
poor predictions for extremely heterogeneous systems. For isotropic voided solids in
particular, they predict non-convex stress potentials with unbounded hydrostatic
strength [38,39]. More recently, Liu and Ponte Castañeda [40], building on earlier
work by Ponte Castañeda [41], proposed an improved ‘second-order’ theory that
makes use of a ‘generalized-secant’ interpolation of the nonlinear local response,
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incorporating dependence on both the first and second moments of the fields, while

at the same time, preserving the exactness to second-order in the contrast.

Comparisons with full-field numerical simulations for cubic and hexagonal

polycrystals show that the generalized-secant variational theory is the most accurate

among the various nonlinear self-consistent theories available to date [16,17,42,43].
Even though all theories mentioned above can be extended to account for a

vacuous phase, their use in the context of polycrystalline voided solids remains

largely unexplored, presumably because of the additional complications introduced

by the presence of a compressible phase. The use of an incremental theory was first

attempted by Lebensohn et al. [4] to model anisotropic damage in aluminum alloys.

This work was restricted to small-strain elastoplasticity. More recently, Lebensohn

et al. [44] made use of the affine procedure to model the viscoplastic response of

voided polycrystals. In order to achieve reasonable accuracy, however, these authors

introduced a modified linearization scheme to soften the response at high porosities

and triaxialities, which requires the numerical computation of a fitting parameter

that depends on loading, porosity, and material properties.
Motivated by these findings, dilatational viscoplasticity models for polycrystal-

line voided solids will be derived in this work by extending the generalized-secant

variational theory. The resulting models will be general enough to account for

(i) morphological and crystallographic texture of the polycrystalline matrix,

(ii) porosity, and (iii) average pore shape and orientation, as well as their

deformation-induced evolution under arbitrary loading conditions. Even though

such a degree of generality will prevent us from obtaining analytical closed-form

expressions as in the case of Gurson-type approaches, the models should be

amenable to implementation in dynamic finite-element codes. In order to assess their

accuracy, bounds are derived by extending the simpler ‘secant’ variational theory.
The models are also validated by comparing their predictions with full-field

numerical simulations for voided polycrystals. In the context of isotropic voided

solids, full-field simulations have been carried out mostly by means of Finite Element

(FE) methods. In the present context, such FE calculations would require the use of

3-D crystal-plasticity (CP) with high intragranular resolution and a sufficient

number of grains to guarantee a good statistical representativity of the results. With

these requirements, the implementation of such 3-D CP-FE calculations becomes a

daunting task. Alternatively, in this work we perform the required reference full-field

numerical simulations by means of a fast Fourier transform (FFT)-based method.

This method, which provides the exact solution of the governing equations in a

periodic medium, has better numerical performance than a FE calculation for the

same purpose and resolution. It was originally developed by Suquet and co-workers

[45–47] as a fast algorithm to compute the elastic and elastoplastic effective and local

response of composites, and was later adapted by Lebensohn and co-workers

[17,43,48] to deal with the viscoplastic deformation of three-dimensional (3-D)

power-law polycrystals. The full-field simulations and various models are then used

to investigate the effect of crystallinity, crystallographic texture and porosity in

polycrystalline solids with low- and high-symmetry crystals. Also, the validity of

standard dilatational viscoplasticity models based on isotropic matrix behavior is

evaluated for various types of textured and untextured polycrystals.
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2. The polycrystalline solid model

Voided polycrystals are idealized here as random aggregates of perfectly bonded
single crystals (i.e. grains) and cavities. Individual grains and cavities are assumed to
be of a similar size, much smaller than the specimen size and the scale of variation of
the applied loads. Furthermore, the aggregates are assumed to have statistically
uniform and ergodic microstructures. Their viscoplastic behavior is most conve-
niently studied by adopting a Eulerian description of motion. The ensuing analysis
thus refers to the current configuration of the aggregate at a generic stage of
deformation.

Let the grain orientations in the current configuration take on a set of N
discrete values, characterized by rotation tensors Q(r) (r¼ 1, . . . ,N ). All grains with
a given orientation Q(r) occupy a disconnected domain �(r) and are collectively
referred to as ‘phase’ r. Similarly, all cavities occupy a disconnected domain �(0)

and are collectively referred to as ‘phase’ 0. The domain occupied by the
polycrystal is then � ¼ [Nr¼0�

ðrÞ. The domains �(r) can be described by a set of
characteristic functions �(r)(x), which take the value 1 if the position vector x is in
�(r) and 0 otherwise.

Grains are assumed to individually deform by multi-glide along K slip systems.
Cavities, on the other hand, cannot sustain stress. The effects of grain elasticity and
possible twinning will be neglected in this work, for simplicity. The local viscoplastic
response of the aggregate can then be described by a stress potential u, such that the
Eulerian strain-rate tensor D and the stress tensor r are related by

D ¼
@u

@r
ðx, rÞ, uðx,rÞ ¼

XN
r¼0

�ðrÞðxÞuðrÞðrÞ: ð1Þ

Here, u(0) is the stress potential for the voided phase, which takes the value 0 if r¼ 0

and infinity otherwise, and u(1), . . . , u(N ) are the stress potentials characterizing grains
with orientation Q(1), . . . ,Q(N ), given by

uðrÞðrÞ ¼
XK
k¼1

�ðrÞ
ðkÞ �

ðrÞ
ðkÞ

� �
: ð2Þ

The convex functions �ðrÞ
ðkÞ (k¼ 1, . . . ,K) characterize the response of the K slip

systems in a crystal with orientation Q(r), and depend on the resolved shear (or
Schmid) stresses

�ðrÞ
ðkÞ ¼ r � l

ðrÞ
ðkÞ, where l

ðrÞ
ðkÞ ¼

1

2
n
ðrÞ
ðkÞ �m

ðrÞ
ðkÞ þm

ðrÞ
ðkÞ � n

ðrÞ
ðkÞ

� �
: ð3Þ

Here, the l
ðrÞ
ðkÞ are second-order tensors with n

ðrÞ
ðkÞ and m

ðrÞ
ðkÞ denoting the unit vectors

normal to the slip plane and along the slip direction of the kth system, respectively,
for a crystal with orientation Q(r). Note that the Schmid tensors l

ðrÞ
ðkÞ are related to

corresponding tensors l(k) for a ‘reference’ crystal via l
ðrÞ
ðkÞ ¼ QðrÞ

T

lðkÞQ
ðrÞ.

Let h�i and h�i(r) denote volume averages over the aggregate � and over each
phase �(r), respectively. In view of the microstructural randomness, the functions �(r)

in (1) are random variables that must be characterized in terms of ensemble averages
[21]. The ensemble average of �(r)(x) represents the one-point probability p(r)(x) of
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finding phase r at x; the ensemble average of the product �(r)(x)�(s)(x0) represents the
two-point probabilities p(rs)(x, x0) of finding simultaneously phase r at x and phase s

at x0. Higher-order probabilities are defined similarly. Due to the assumed statistical

uniformity and ergodicity, the one-point probability p(r)(x) can be identified with the

volume fractions – or concentrations – c(r)¼h�(r)(x)i of each phase r, the two-point

probability p(rs)(x, x0) can be identified with the volume average h�(r)(x)�(s)(x0)i, and
so on. Note that

PN
r¼0 c

ðrÞ ¼ 1. In describing voided polycrystals, it seems more

natural to employ the alternative set of concentrations:

f ¼ cð0Þ, and cðrÞg ¼
cðrÞ

1� f
for r ¼ 1, . . . ,N: ð4Þ

The microstructural variable f denotes the volume fraction of cavities, or porosity, in

the voided polycrystal, while the rescaled grain concentrations cðrÞg denote the volume

fraction of grains with a given orientation Q(r) within the solid phase, and are such

that
PN

r¼1 c
ðrÞ
g ¼ 1. Thus, the set of volume fractions cðrÞg characterizes the crystal-

lographic texture of the aggregate surrounding the cavities, while the multi-point

correlation functions characterize the morphological texture of the aggregate and the

shape and distribution of the cavities.
Due to the microstructural inhomogeneity, the local fields D(x) and r(x) exhibit

strong spatial variations within the aggregate. The effective viscoplastic behavior of

the aggregate is defined as the relation between the average stress r ¼ rh i and the

average strain rate D ¼ Dh i over the aggregate. Formally, it can be characterized by

(e.g. [31])

D ¼
@eu
@r
ðrÞ, euðrÞ ¼ min

r2SðrÞ
huðx, rÞi ¼ ð1� f Þ min

r2S�ðrÞ

XN
r¼1

cðrÞg hu
ðrÞðrÞiðrÞ, ð5Þ

where eu is the effective stress potential for the aggregate. In this definition,

SðrÞ ¼ rjdiv r ¼ 0 in �, hri ¼ rf g denotes the set of statically admissible stress fields

with prescribed average r, while S*�S denotes the subset of stress fields with zero

traction vector on the surface of the cavities. The (strict) convexity of the local

potential u in r implies (strict) convexity of the effective potential eu in r. The

minimizer in (5)2 corresponds to the stress field within the aggregate under the

prescribed loading conditions. Carrying out this minimization is in general a

formidable task, since it requires the solution to sets of nonlinear partial differential

equations with randomly oscillatory coefficients. In Section 3, we will generate

approximate estimates for the effective potential by means of variational ‘linear-

comparison’ methods. Corresponding estimates for the effective behavior of the

aggregate may then be generated by differentiation, according to relation (5)1. This

relation provides the instantaneous response of the aggregate. A continuing process

of deformation can then be analyzed by integrating over time the instantaneous

response along with appropriate evolution laws for the internal variables charac-

terizing the underlying texture and porosity [49]. Such laws require statistical

information about the strain-rate distribution within the solid, which can also be

extracted from the effective potential [50]. In this work, however, we will focus

exclusively on the estimation of the instantaneous response.
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3. Estimates of the self-consistent type for the effective stress potential

Estimates and bounds for the effective stress potential of voided polycrystals are
generated here by means of the linear-comparison variational theories of Liu and
Ponte Castañeda [40] and deBotton and Ponte Castañeda [28], which will be referred
to as ‘generalized secant’ and ‘secant,’ respectively. (The latter use should not be
confused with more traditional usages [23].) When used in conjunction with the
linear self-consistent theory, these nonlinear estimates incorporate microstructural
information up to two-point statistics. We begin by recalling the relevant formulas
for the linear self-consistent theory.

3.1. Linear self-consistent estimates

The nonlinear theories considered in this work make use of a ‘thermoelastic’ linear-
comparison voided polycrystal (or more precisely, a porous linearly viscous
polycrystal with prescribed internal strain rates) with local stress–strain-rate
relations of the form D¼M(r)rþ e(r), where M(r) and e(r) are viscous-compliance
and ‘residual’ strain-rate tensors in each phase r, respectively – see Figure 1 below.
For the voided phase, (M(0))�1¼ 0 and e(0)¼ 0. The associated stress potentials can
be written as

u
ðrÞ
L ðrÞ ¼

1

2
r �MðrÞrþ eðrÞ � r, ð6Þ

Figure 1. ‘Generalized-secant’ and ‘secant’ linearization schemes.
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and the corresponding effective stress potential is given by

euLðrÞ ¼ ð1� f Þ min
r2S�ðrÞ

XN
r¼1

cðrÞg hu
ðrÞ
L ðrÞi

ðrÞ: ð7Þ

A subscript L is used here to identify potentials associated with linear polycrystals.
Self-consistent estimates for thermoelastic systems are available from the work of

Laws [51] and Willis [52]. When the local stress potentials are of the form (6) and one
of the phases is vacuous, the effective stress potential (7) may be written in the form

euLðrÞ ¼ 1

2
r � eMrþee � rþ 1

2
eg, ð8Þ

where the overall properties can be shown to reduce to

eM ¼XN
r¼1

cðrÞg MðrÞBðrÞ þ
f

1� f
eM�,

ee ¼ ð1� f Þ
XN
r¼1

cðrÞg BðrÞ
T

eðrÞ, and

eg ¼ ð1� f Þ
XN
r¼1

cðrÞg bðrÞ � eðrÞ

ð9Þ

which are the effective viscous compliance, effective residual strain rate and effective
energy under zero applied stress, respectively. In these expressions, B(r) and b(r) are
concentration tensors given by

BðrÞ ¼ MðrÞ þ eM�� ��1 eMþ eM�� �
and bðrÞ ¼ MðrÞ þ eM�� ��1 ee� eðrÞ

� �
, ð10Þ

eM� ¼ eQ�1 � eM is the constraint tensor introduced by Hill [22], and eQ is a
microstructural tensor that depends on eM and on the ‘shape’ of the two-point
correlation functions p(rs)(x, x0) for the distribution of the grain orientations and the
porosity within the aggregate. In this work, it is assumed that the two-point
correlation functions exhibit ‘ellipsoidal symmetry’, that is: p(rs)(x, x0)¼ p(jZ(x� x0)j)
for all r and s, where Z is a symmetric second-order tensor serving to characterize the
‘shape’ of the distribution. In particular, Z¼ I corresponds to the special case of
statistical isotropy, which is equivalent to the so-called ‘equi-axed’ hypothesis. More
generally, the tensor Z allows for changes in the average shape of grains and cavities
when the polycrystal is subjected to finite deformation histories. Under the
assumption of ellipsoidal symmetry, the tensor eQ may be expressed in terms of the
effective viscous moduli tensor eL ¼ eM�1 and a microstructural tensor eP as eQ ¼eL�eLePeL, where [21]

eP ¼ 1

4�detZ

Z
jnj¼1

eHðnÞjZ�1nj�3 dS: ð11Þ

Here, eHijklðnÞ ¼ eK�1ik �j�l jðij Þðkl Þ and
eKik ¼ eLijkl�j�l. Note that in this model, cavities and

grains are treated on the same footing, which corresponds to the problem of a
polycrystal with intergranular cavities. This is in contrast to aggregates of grains
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exhibiting intragranular porosity, which should be treated differently, using, for

instance, a three-scale approach [53].
Finally, eM solves the implicit equation

eMþ eM�� ��1
¼ ð1� f Þ

XN
r¼1

cðrÞg MðrÞ þ eM�� ��1
, ð12Þ

which follows from the combination of expressions (10)1 and (10)2.
The associated estimate for the effective stress–strain-rate relation follows from

differentiation of (8), and is given by

D ¼ eMrþee: ð13Þ

In turn, corresponding estimates for the first and second moments of the stress field

in each solid phase r, which are required by the linear-comparison theories below, are

given by

rðrÞ ¼ BðrÞrþ bðrÞ and hr� riðrÞ ¼
1

1� f

2

c
ðrÞ
g

@euL
@MðrÞ

: ð14Þ

The second moments of the intraphase stress fluctuations then follow from the

identity

CðrÞr ¼ ðr� rðrÞÞ � ðr� rðrÞÞ
� �ðrÞ

¼ hr� riðrÞ � rðrÞ � rðrÞ: ð15Þ

3.2. Nonlinear ‘generalized-secant’ estimates

Estimates for the effective potential of nonlinear voided polycrystals are generated

here by means of the ‘generalized-secant’ variational theory of Liu and Ponte

Castañeda [40]. This second-order theory was originally derived for the case of fully

dense polycrystals under the assumption of incompressible constituent phases. In this

section we extend the theory to account for the presence of a compressible voided

phase.
The theory makes use of a linear-comparison voided polycrystal with the same

microstructure as the nonlinear polycrystal but with local stress potentials u(r) given

by (6), where

MðrÞ ¼
XK
k¼1

�ðrÞ
ðkÞl
ðrÞ
ðkÞ � l

ðrÞ
ðkÞ and eðrÞ ¼

XK
k¼1

e
ðrÞ
ðkÞl
ðrÞ
ðkÞ ðr ¼ 1, . . . ,N Þ ð16Þ

define the viscous-compliance and ‘residual’ strain-rate tensors at the grain level in

terms of the corresponding slip-level quantities �ðrÞ
ðkÞ and e

ðrÞ
ðkÞ, respectively. For the

voided phase, (M(0))�1¼ 0 and e(0)¼ 0.
The local potentials u(r) of the nonlinear polycrystal are then approximated in

terms of the local potentials u
ðrÞ
L of the above-defined linear-comparison polycrystal,
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and a suitable measure of the error, to obtain the following approximation for the

effective potential of the nonlinear polycrystal:

euðrÞ ¼ ð1� f Þ
XN
r¼1

XK
k¼1

cðrÞg �ðrÞ
ðkÞð�̂

ðrÞ
ðkÞÞ � �

ðrÞ
ðkÞ

0
ð�ðrÞ
ðkÞÞ �̂

ðrÞ
ðkÞ � �

ðrÞ
ðkÞ

� �h i
: ð17Þ

In this expression, the variables �̂ðrÞ
ðkÞ and �

ðrÞ
ðkÞ depend on the averages and fluctuations

of the resolved shear stresses r � l
ðrÞ
ðkÞ in the linear-comparison polycrystal defined by

relations (6)–(16), subjected to a macroscopic stress r. They are such that:

�ðrÞ
ðkÞ ¼ r � l

ðrÞ
ðkÞ

D EðrÞ
¼ rðrÞ � l

ðrÞ
ðkÞ

ð18Þ

and

�̂ðrÞ
ðkÞ � �

ðrÞ
ðkÞ

� �2
¼ r � l

ðrÞ
ðkÞ � �

ðrÞ
ðkÞ

� �2� 	ðrÞ
¼ l

ðrÞ
ðkÞ � C

ðrÞ
r l
ðrÞ
ðkÞ, ð19Þ

where the quantities �̂ðrÞ
ðkÞ � �

ðrÞ
ðkÞ are taken to have the same sign as the �ðrÞ

ðkÞ. Self-

consistent estimates for the tensors rðrÞ and CðrÞr in terms of the local properties M(r)

and e(r) are given by expressions (14) and (15) of Section 3.1.
In turn, the properties of the linear-comparison polycrystal must be specified

such that the variables e
ðrÞ
ðkÞ and �

ðrÞ
ðkÞ in relations (16) satisfy the relations

e
ðrÞ
ðkÞ ¼ �

ðrÞ
ðkÞ

0
ð�ðrÞ
ðkÞÞ � �

ðrÞ
ðkÞ�
ðrÞ
ðkÞ

ð20Þ

and

�ðrÞ
ðkÞ

0
ð�̂ðrÞ
ðkÞÞ � �

ðrÞ
ðkÞ

0
ð�ðrÞ
ðkÞÞ ¼ �

ðrÞ
ðkÞð�̂

ðrÞ
ðkÞ � �

ðrÞ
ðkÞÞ: ð21Þ

Note that relation (21) identifies the viscous slip compliances �ðrÞ
ðkÞ of the linear-

comparison polycrystal with a ‘generalized-secant’ approximation of the non-

linear constitutive relation for the corresponding slip systems in the viscoplastic

polycrystal, taking into account both the average and fluctuation of the stress

for the given grain orientation – as determined by the linear-comparison

approximation, see Figure 1. Expressions (18)–(21) together with (14) constitute

a system of nonlinear algebraic equations for the variables �̂ðrÞ
ðkÞ, �

ðrÞ
ðkÞ and �ðrÞ

ðkÞ,

which must be solved numerically, in general. The solution of these equations

and the ‘generalized-secant’ linearization scheme were implemented in the

‘VPSC’ (ViscoPlastic Self-Consistent) code, suitably modified to account for

the presence of a compressible voided phase. Details of the algorithm can be

found in [54].
Finally, an estimate for the effective behavior of the polycrystal can be obtained

by differentiating (17) with respect to r. It is given by

D ¼ DL � ð1� f Þ
XN
r¼1

XK
k¼1

cðrÞg ð�
ðrÞ
ðkÞÞ
00
ð�ðrÞ
ðkÞÞ � �

ðrÞ
ðkÞ

h i
�̂ðrÞ
ðkÞ � �

ðrÞ
ðkÞ

� � @�ðrÞ
ðkÞ

@r
, ð22Þ
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where DL is the macroscopic strain rate in the LCP, which is given in terms of

the linear properties (16) by an expression of the form (13), and can be shown to

reduce to

DL ¼ ð1� f Þ
XN
r¼1

XK
k¼1

cðrÞg �
ðrÞ
ðkÞ

0
ð�ðrÞ
ðkÞÞl

ðrÞ
ðkÞ þ f ðeMþ eM�Þr: ð23Þ

It is noted that the resulting stress–strain-rate relation (22) does not coincide exactly

with the effective stress–strain-rate relation for the underlying linear-comparison

polycrystal. It contains additional terms that depend on the derivatives of the

average shear stresses �ðrÞ
ðkÞ, which must be determined by differentiating the system of

Equations (18)–(21). An alternative approach for the estimation of the stress–strain-

rate relation consists in the direct use of the effective stress–strain-rate relation (23)

for the linear-comparison polycrystal. While this avoids the need to compute the

derivatives of the quantities �ðrÞ
ðkÞ, however, it should be emphasized that the relation

(23) does not possess an associated potential function eu and is not exact to second-

order in the heterogeneity contrast. It can be interpreted as a generalization of the

so-called ‘affine’ approximation of Masson et al. [26], including the effect of field

fluctuations (see [41] for more details).

3.3. Nonlinear ‘secant’ estimates

A simpler variational theory for nonlinear polycrystals is available from the work

of deBotton and Ponte Castañeda [28]. This ‘secant’ theory, originally derived for

the case of fully dense incompressible polycrystals, delivers rigorous bounds on

the effective potential that can be used to assess the accuracy of other theories. In

this section we extend it to account for the presence of a compressible voided

phase.
The theory makes use of a linear-comparison voided polycrystal where the grain

potentials are given by (6) with viscous compliances M(r) given by (16)1, but with

strain-rate tensors e(r)¼ 0. For the voided phase, in turn, (M(0))�1¼ 0 and e(0)¼ 0.

The potentials u(r) of the nonlinear polycrystal are then approximated in terms of

these linear potentials u
ðrÞ
L and a suitable measure of the error, to obtain the following

approximation for the effective potential of the porous nonlinear polycrystal:

euðrÞ ¼ ð1� f Þ
XN
r¼1

XK
k¼1

cðrÞg �
ðrÞ
ðkÞð�̂

ðrÞ
ðkÞÞ: ð24Þ

The variables �̂ðrÞ
ðkÞ in this expression depend on the resolved shear stresses r � l

ðrÞ
ðkÞ in

the linear-comparison polycrystal. They are such that

ð�̂ðrÞ
ðkÞÞ

2
¼ r � l

ðrÞ
ðkÞ

� �2� 	ðrÞ
¼ l

ðrÞ
ðkÞ � hr� riðrÞl

ðrÞ
ðkÞ: ð25Þ

Self-consistent estimates for the second moments hr�ri(r) in terms of the local

properties M(r) are given by expressions (14) of Section 3.1, with the e(r)¼ 0.
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In turn, the properties of the linear-comparison polycrystal must be specified

such that the variables �ðrÞ
ðkÞ satisfy the relations

�ðrÞ
ðkÞ

0
ð�̂ðrÞ
ðkÞÞ ¼ �

ðrÞ
ðkÞ�̂
ðrÞ
ðkÞ: ð26Þ

Note that relation (26) identifies the viscous slip compliances �ðrÞ
ðkÞ of the linear-

comparison polycrystal with a ‘secant’ approximation of the nonlinear constitutive

relation for the corresponding slip systems in the viscoplastic polycrystal, taking into

account the second moments of the stress for the given grain orientation – as

determined by the linear-comparison approximation, see Figure 1. Expressions (25)–

(26) together with (14) constitute a system of nonlinear algebraic equations for the

variables �̂ðrÞ
ðkÞ and �

ðrÞ
ðkÞ, which must be solved numerically, in general. Once again, the

resolution of the above equations was implemented in the ‘VPSC’ code [54] by

making use of the ‘second-order’ option and setting the eigenstrain-rates equal to

zero. The variational ‘secant’ estimate (24) in fact provides a rigorous lower bound

for all other estimates for eu of the self-consistent type, and in particular, for the

‘generalized-secant’ estimates proposed above.
The effective behavior of the polycrystal follows from differentiation of (17) with

respect to r. It is given by

D ¼ DL ¼ eMr: ð27Þ

Thus, unlike the ‘generalized-secant’ estimates, the ‘secant’ estimates for the stress–

strain-rate relation coincide exactly with that of the underlying linear-comparison

polycrystal. It is emphasized, however, that this stress–strain-rate relation is

nonlinear, as it should be, since the slip-compliances �ðrÞk , and therefore eM, depend

on r.

4. Full-field simulations based on a fast Fourier transform algorithm

This numerical formulation is based on the fact that the local mechanical response of

a heterogeneous medium can be calculated as a convolution integral between Green

functions associated with appropriate fields in a linear reference homogeneous

medium and the actual polarization (heterogeneity) field. A well-known technique,

frequently used in combination with the Green function method, is to utilize Fourier

transforms to reduce the convolution integrals in real space to simple products in

Fourier space. For periodic microstructures, the FFT algorithm can be applied to

transform the heterogeneity field into Fourier space and, in turn, get the mechanical

fields by transforming the product of the latter with the Fourier transform of the

Green function back to real space. However, since the actual polarization field

depends precisely on the a priori unknown mechanical field, an iterative scheme has

to be implemented to obtain, upon convergence, a compatible strain-rate field and a

stress field in equilibrium.
In what follows, we describe the specialization of the FFT-based method to the

case of viscoplasticity of polycrystals with voids. Moreover, since one of our goals is

to assess the effect of crystallinity on the dilatational viscoplastic behavior of porous
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materials, we will also address the FFT-based solution for voided materials with a
nonlinear isotropic matrix.

4.1. Unit cell construction

The granular microstructures considered here are periodic unit cells generated by
Voronoi tessellation, with intergranular cavities. The FFT-based calculation requires
a discrete description of a unit cell on a regularly-spaced grid. Therefore, the
generation procedure is simpler than in the case of having to determine the exact
position of the boundaries between Voronoi cells and cavities in a continuum. We
have proceeded as follows:

(1) N points were randomly distributed in a cubic domain (unit cell), and, to
ensure periodicity of the microstructure, they were periodically duplicated
immediately outside the unit cube. This Poisson distribution of points
constituted the nuclei of the random grains. The results to be presented in
Section 5 for untextured and textured specimens make use of N¼ 200 and
N¼ 1000, respectively.

(2) The sides of the unit cell were partitioned into 128 points, determining a
128� 128� 128 regular Fourier grid.

(3) Each Fourier point was assigned to its nearest nucleus (including those that
were across the unit cell limits) determining N different domains (grains); see
Figure 2a (case N¼ 200).

(4) All the identified Fourier points at multiple junctions were picked in a
random sequence to try to accommodate a cavity of a radius r1 (e.g. in the
5% porosity cases that follow, r1 was chosen to be six times the distance
between adjacent Fourier points) and surrounded by an ‘exclusion’ zone of
radius r2 (4r1) where no other cavity was allowed (e.g. for 5% porosity, r2
was set to nine times the distance between adjacent Fourier points).

(5) The above random process was stopped when the target overall porosity was
reached, e.g. 5% for the microstructures analyzed in Section 5, see Figure 2b
(and also 15%, as needed for the analysis of the effect of overall porosity,
see Figures 6 and 10 below).

Figure 2. Unit cells used in FFT simulations: (a) fully dense polycrystal (200 grains);
(b) voided polycrystal; (c) isotropic voided solid.
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4.2. Green’s function method

The discretization of the above periodic unit cell representing a porous polycrystal

into 128� 128� 128 Fourier points determines a regular grid in Cartesian space {xd}

and a corresponding grid of the same size in Fourier space {nd}. Either a velocity

gradient vi, j (which can be decomposed into a symmetric strain-rate and an

antisymmetric rotation rate: vi, j ¼ Dij þ�ij) or a stress �ij is imposed on the unit cell.

The local strain-rate field is a function of the local velocity field, i.e. Dij(vk(x)), and

can be split into its average and a fluctuation term: Dij vkðxÞð Þ ¼ Dij þ ~Dij ~vkðxÞð Þ,

where viðxÞ ¼ Dijxj þ ~viðxÞ. Velocities and tractions along the boundary of the unit

cell are to be determined. The velocity fluctuation field ~viðxÞ is periodic across the

boundary of the unit cell and the force field is antiperiodic.
The local constitutive relation between the strain-rate Dij(x) and the stress �ij(x)

for material points (i.e. belonging to grains) is given by (1) with (2) – note that the

strain-rate has no dilatational component. As for the Fourier points belonging to

voids, the stress vanishes and the strain-rate is non-traceless in general and needs to

be determined. Let us choose a fourth-order tensor L0 to be the stiffness of a linear

reference medium (the choice of L0 can be quite arbitrary, but the speed of

convergence of the method will depend on this choice), and define the polarization

field �ij(x) as

sðxÞ ¼ ~rðxÞ � L0 ~DðxÞ: ð28Þ

Then, the stress deviation can be written as

~rðxÞ ¼ L0 ~DðxÞ þ sðxÞ: ð29Þ

Combining Equation (29) with the equilibrium condition (�ij, j(x)¼ 0) and the

relation ~DijðxÞ ¼ ð ~vi, jðxÞ þ ~vj,iðxÞÞ=2, we obtain

L0
ijkl ~vk,ljðxÞ þ �ij, jðxÞ ¼ 0: ð30Þ

The auxiliary system involving Green functions is then given by

L0
ijklGkm,ljðx� x0Þ þ 	im	ðx� x0Þ ¼ 0: ð31Þ

After some manipulation, the convolution integral that gives the velocity-gradient

deviation fields is

~vi, jðxÞ ¼

Z
R3

Gik, jlðx� x0Þ�klðx
0Þdx0: ð32Þ

Convolution integrals in direct space are simply products in Fourier space, hence

~̂vi, jðnÞ ¼ �̂ijklðnÞ�̂klðnÞ, ð33Þ

where the symbol ˆ indicated a Fourier transform. The Green operator is defined as

�ijkl¼Gik, jl. The tensors Ĝij(n) and �̂ijklðnÞ can be calculated by taking the Fourier

transform of system (31):

�i�jL
0
ijklĜkmðnÞ ¼ 	im ð34Þ
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from where, defining the matrix AikðnÞ ¼ L0
ijkl�j�l, we have

ĜijðnÞ ¼ A�1ij ðnÞ ð35Þ

and

�̂ijklðnÞ ¼ ��j�lĜikðnÞ: ð36Þ

4.3. FFT-based algorithm

The following iterative procedure is based on the augmented Lagrangians algorithm
[47] adapted to the case of porous polycrystals, for a stress state imposed on the unit
cell [55]. Supraindices indicate values corresponding to the current iteration (e.g.
supraindex zero indicates the initial guess). The algorithm needs an initial guess for

the average strain-rate, i.e. D
0

ij ¼ D
00

ij þ ðD
0

kk=3Þ	ij, which will be adjusted iteratively.
Initial guess values also need to be assigned to the strain-rate field in the regular
grid {xd}:

~D
00
ij ðx

d Þ ¼ 0) D
00
ij ðx

d Þ ¼ D
0

ij xd 2 material and voids ð37Þ

~D0
kkðx

d Þ ¼ �Dkk ) D0
kkðx

d Þ ¼ 0 xd 2 material ð38Þ

~D0
kkðx

d Þ ¼
1� f

f
Dkk xd 2 voids: ð39Þ

With these initial values, the corresponding stress field r0(xd ) at the crystalline
material points is obtained by inverting the local constitutive relation, which requires
us to know the initial values of the critical stresses �k0 ðx

d Þ, and the Schmid tensors
l(k)(x

d ) (note that the hydrostatic component is zero). As for the points belonging to
voids, simply, r0(xd )¼ 0. The initial specification of these fields allows us to calculate
the initial guess for the polarization field in direct space s0(xd ), which in turn can be
Fourier-transformed to obtain ŝ0ðnd Þ. Furthermore, assuming k0(xd )¼r0(xd ) as the
initial guess for a field of Lagrange multipliers associated with the compatibility
constraints, the iterative procedure based on augmented Lagrangians proposed by
Michel et al. [47] reads as follows. With the polarization field after iteration i
being known, the (iþ 1)th iteration starts by computing the new guess for the
kinematically-admissible strain-rate deviation field:

~̂d
iþ1
ðnd Þ ¼ �!̂symðnd Þŝðnd Þ, 8nd 6¼ 0, and ~̂d

iþ1
ð0Þ ¼ 0, ð40Þ

where !̂sym is the Green operator, appropriately symmetrized. The corresponding
field in real space is thus obtained by application of the inverse FFT, i.e.

~d iþ1
ðxd Þ ¼ fft�1 ~̂d

iþ1
ðnd Þ

n o
ð41Þ

and a new guess for the stress field in the grains is calculated from

riþ1ðxd Þ þ L0Diþ1ðxd Þ ¼ kiðxd Þ þ L0 D
i
þ ~d iþ1

ðxd Þ
� �

, ð42Þ
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which, using relation (1), leads to the following 6� 6 system of nonlinear algebraic
equations:

riþ1ðxd Þ þ L0 @u

@r
xd, rðxd Þ
� �

¼ kiðxd Þ þ L0 D
i
þ ~d iþ1

ðxd Þ
� �

: ð43Þ

The iteration is completed with the calculation of new guesses for the Lagrange
multiplier field:

kiþ1ðxd Þ ¼ kiðxd Þ þ L0ð ~Diþ1ðxd Þ � ~d iþ1
ðxd ÞÞ ð44Þ

and the average strain-rate [55]:

D
iþ1
¼ hDiðxd Þi þ ðL0Þ

�1
ðr� hkiþ1ðxd ÞiÞ, ð45Þ

where h�i indicates the average over the entire Fourier grid.
Note that Equations (42)–(44) are intended to enforce the convergence of: (a)

d(xd ) (i.e. the kinematically-admissible strain-rate field) towards D(xd ) (i.e. the
strain-rate field related to the stress through the constitutive equation) in fulfillment
of compatibility, and (b) the Lagrange multiplier field k(xd ) towards the stress field
r(xd ) to fulfill equilibrium. Once the values of the stress field have been determined,
the local stress potential (1) can be calculated for every material point, and the
effective stress potential is thus obtained as

euðrÞ ¼ ð1� f Þ u xd, rðxd Þ
� �� �

m
, ð46Þ

where h�im indicates the average over the material points.

5. Estimates for cubic and hexagonal power-law polycrystals

The methods presented above are used here to study the influence of crystallinity,
texture and porosity on the instantaneous response of special – but representative –
classes of porous polycrystalline solids. Of particular interest in this study is to assess
the simplifying assumption made in essentially all homogenization-type theories of
dilatational viscoplasticity that the matrix material surrounding the cavities is
homogeneous and isotropic. For this reason, attention is restricted to polycrystalline
solids with isotropic morphological statistics, that is, with ‘equi-axed’ grains and
isotropically distributed porosity, but with possibly textured orientation distribu-
tions. In the linear-comparison theories of Section 3, these assumptions correspond
to setting Z¼ I in expression (11), but with possibly different weights cðrÞg for the
various crystal orientations.

5.1. Single-crystal behavior

The single-crystal behavior is characterized by slip potentials of the common power-
law form

�ðkÞð�Þ ¼
�ðkÞ0 _
0
nþ 1

�

�ðkÞ0













nþ1

ð47Þ
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for all grains. Here, m¼ 1/n (0�m� 1) is the strain-rate sensitivity, _
0 is a reference
strain rate, and �ðkÞ0 4 0 is the flow stress of the kth slip system in the ‘reference’
crystal. This class of slip potentials is particularly appropriate for investigating the
effect of nonlinearity and grain anisotropy in a wide range of material behaviors. In
particular, the limiting cases m¼ 1 and m¼ 0 correspond to linearly viscous and
rigid-ideally plastic behaviors, respectively.

Two types of single-crystal anisotropy are considered:

(1) The first type corresponds to high-symmetry face-centered cubic (FCC)
crystals that deform plastically through slip on a set of four slip planes of the
type {111} along three slip directions (per plane) of type h110i, which,
together, constitute a set of 12 slip systems with suitably defined Schmid
tensors l

ðrÞ
ðkÞ. Of these, five are linearly independent, allowing arbitrary plastic

deformation for the grains. For simplicity, all systems are assumed to have
identical slip flow stresses �ðkÞ0 ¼ �0 for all k¼ 1, . . . , 12.

(2) The second type corresponds to low-symmetry hexagonal closed-packed
(HCP) crystals with ideal c/a ratio of 1.633, which are taken to deform
plastically through two sets of slip systems: three prismatic systems
(f1010gh1120i) and 12 first-order pyramidal-hcþ ai slip (f1011gh1123i). Of
these systems, five are linearly independent, allowing arbitrary plastic
deformation for the grains. We take all prismatic systems to have slip flow
stresses �ðkÞ0 ¼ �A, and all pyramidal systems to have slip flow stresses
�ðkÞ0 ¼ �B, such that the ratio M8 �B/�A¼ 5.

5.2. Polycrystal behavior and gauge surfaces

Results are given below for untextured and textured polycrystals with a relatively
large porosity level ( f¼ 0.05) and two values of the viscous exponent n corresponding
to linear (n¼ 1) and strongly nonlinear (n¼ 10) behaviors. In spite of the fact that the
value n¼ 1 is unrealistic for most materials, the results are useful to assess the role of
nonlinearity on the various findings since, as we have seen, the effective behavior of
linear polycrystals is used to estimate the behavior of the nonlinear polycrystals.

The fact that the viscous exponent n and the reference strain rate _
0 are the same
for all the slip systems and grains in a given polycrystal simplifies the analysis
considerably. The local potential u is in this case a homogeneous function of degree
nþ 1 in r, and consequently, the corresponding effective potential eu is a
homogeneous function of degree nþ 1 in r [31]. Then, a single equipotential surfaceeuðrÞ ¼ constant in r-space fully characterizes eu; any other equipotential surface is
simply a homothetic surface [9]. Results for power-law polycrystals are reported here
in the form of equipotential surfaces given by

D : euðDÞ ¼ ��n0 _
0
nþ 1

� �
, ð48Þ

where �0 is some reference flow stress – see below. This is the so-called gauge surface
of the polycrystal, which characterizes completely the effective response [9]. The
‘normal’ to this surface in r-space dictates the direction of macroscopic plastic flow
in D-space. In the ideally-plastic limit, the gauge surface reduces to the yield surface
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of the aggregate. The fact that euðrÞ ¼euð�rÞ implies point symmetry of the gauge
surface about the origin, and (strict) convexity of eu implies (strict) convexity of the
gauge surface. Also note that a lower bound on euðrÞ translates into an outer bound
on the gauge surface.

A more convenient equation for the gauge surface can be obtained by writing the
function eu as [9]

euðrÞ ¼ �0 _
0
nþ 1

�ðrÞ

�0

 �nþ1

, ð49Þ

where the so-called gauge factor �ðrÞ is a homogeneous function of degree 1 in r,
which depends on the microstructure of the aggregate and on the material
parameters n and �ðkÞ0 , but is independent of _
0. Then, the tensor

D ¼
r

�ðrÞ
ð50Þ

lies on the gauge surface (48). Thus, we can determine the gauge surface by
computing the effective stress potential for macroscopic stresses r of arbitrary
magnitude, determining the corresponding gauge factor from (49), and rescaling r

according to (50).
With the objective of comparing predictions for the various material systems

considered, we will report gauge surfaces for FCC and HCP voided polycrystals with
�0 being the flow stress of the corresponding fully dense polycrystal with isotropic
crystallographic and morphological textures. Recall that the flow stress e�0 of a fully
dense isotropic polycrystal is defined by the identity (e.g. [31])

euðrÞ ¼ e�0ð�Þ _
0
nþ 1

�ee�0ð�Þ
 �nþ1

, ð51Þ

where �e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þr0 � r0

p
is the von Mises equivalent stress, and � is the Lode angle

defined by cosð3�Þ ¼ ð27=2Þ detðr0=�eÞ, with r0 denoting the macroscopic stress
deviator. Note that the effective flow stress is not a constant but actually depends on
r0 through the stress invariant �. This stress invariant is homogeneous of degree zero
in r0, and characterizes the ‘direction’ of the applied stress in deviatoric space: the
particular values � ¼ 0 and � ¼ �=6 correspond to axisymmetric shear and simple
shear loadings, respectively. In the results reported below we set �0 ¼ e�0ð0Þ and make
use of the FFT method of Section 4 – with f¼ 0 – to compute it. The resulting values
are given in Table 1.

Finally, we recall for later use that the overall stress triaxiality X� is defined as the
ratio of the hydrostatic stress �m ¼ ð1=3Þtrr to the von Mises equivalent stress �e,
and that uniaxial tension corresponds to X� ¼ 1=3. Corresponding invariants of D,
denoted by �m and �e, are defined similarly.

5.3. The effect of crystallinity and porosity on the effective response

We shall investigate first the effect of crystallinity and porosity on the effective
response of untextured polycrystals. For conciseness, only axisymmetric loadings
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with positive triaxialities are considered; other loadings lead to similar conclusions
on the instantaneous response.

Figure 3 shows gauge surfaces, as defined by (48), calculated from FFT full-field
simulations. Two hundred (N¼ 200) crystal orientations in the unit cell were
prescribed according to a Sobol sequence [56] in order to generate polycrystalline
voided solids with an effective response as close as possible to isotropy [57]. In this
context, it should be noted that improved results could be generated, at least in
principle, by considering ensemble averages of a sufficiently large number of
realizations. However, in this work we will be satisfied with a the use of a
‘representative’ realization of the material for the purpose of making comparisons

0
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0.6
0.8

1
1.2(a)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

FFT-vM

FFT-FCC

Fully dense solid

FFT-HCP

LPS

0
0.2
0.4
0.6
0.8

1
1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

FFT-vM

FFT-FCC

FFT-HCP

Fully dense solid

LPS

Figure 3. Gauge surfaces from FFT full-field simulations of untextured FCC and HCP
polycrystalline solids and of a von Mises solid (vM) with porosity level f¼ 0.05 and viscous
exponents (a) n¼ 1 and (b) n¼ 10. Also included are predictions of the viscoplastic Gurson-
type model of Leblond, Perrin and Suquet (LPS) [9]. Dashed lines indicate directions of
constant stress triaxialities X� ¼ 1=3, 1, 2, 4. Axisymmetric loadings (� ¼ 0).

Table 1. FFT estimates for the effective flow stress e�0 of fully
dense polycrystals with FCC and HCP crystals, subjected to
axisymmetric shear (� ¼ 0). The values are averages over three sets
of results obtained by loading each specimen along three mutually
orthogonal axes.

FCC – e�0ð0Þ=�0 HCP – e�0ð0Þ=�A
n¼ 1 n¼ 10 n¼ 1 n¼ 10

1.499 2.574 3.627 7.733
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with the corresponding homogenization estimates. For a given triaxiality, each
specimen was loaded along three mutually orthogonal axes – amounting to actually
considering three different, although not independent, realizations – and the effective
stress potential was taken to be the average value. Also included for comparison
purposes are gauge surfaces for von Mises (vM) voided solids. These surfaces were
also obtained by the FFT method of Section 4, with the unit cell having the same
distribution of cavities as those of the voided polycrystals – see Figure 2c – but with a
von Mises isotropic response assigned to all Fourier points formerly belonging to
‘grains’. The reference stress �0 in the vM gauge surfaces was identified with the flow
stress of the von Mises matrix. In this representation, the gauge surface of a fully
dense solid with either a polycrystalline or von Mises matrix is given by the line
�e ¼ 1, parallel to the hydrostatic axis.

We begin by noting that the FFT gauge surfaces are closed and convex as
expected. The results show that the weakening effect due to the presence of cavities
increases with increasing nonlinearity, cf. Figures 3a and b. Since the normal to the
gauge surface dictates the direction of macroscopic flow, it follows that in a creep
experiment under fixed stress triaxiality the nonlinear polycrystal will exhibit a larger
hydrostatic strain rate than the linear polycrystal, and consequently, porosity will
grow faster. The main observation in the context of this figure, however, is that
crystallinity of the matrix material has a minor effect on the effective response within
the entire range of nonlinearities considered. In the linear case, FCC and HCP
surfaces are virtually indistinguishable from each other – see Figure 3a – while in the
nonlinear case the surfaces remain very close to each other – see Figure 3b.
Moreover, in both cases the von Mises surfaces lie very close to the polycrystal
surfaces. Thus, the usual matrix isotropy assumption made in most available theories
of dilatational viscoplasticity seems to be reasonable for untextured aggregates, even
when the constituent crystals exhibit low symmetry. A generalization of Gurson’s
theory to von Mises voided solids exhibiting power-law viscoplasticity was proposed
by Leblond, Perrin and Suquet [9]. Gauge surfaces predicted by this theory are
shown in the figure – labeled LPS and given by expression (40) in that reference –
and, indeed, fairly good agreement with FFT simulations is observed for both values
of n – with the FFT results showing a somewhat softer response than the LPS model.

However small, the FFT simulations do show an influence of crystallinity on the
effective response. In the linear case, the von Mises solid is always stronger than the
polycrystalline solids – see Figure 3a – while in the nonlinear case, the von Mises
solid is weaker than the polycrystalline solids under axisymmetric shear, but stronger
under hydrostatic tension – see Figure 3b. This feature may be related to the role
of crystal anisotropy on strain-rate localization. Figure 4 shows FFT maps of
equivalent strain-rate, normalized by the macroscopic equivalent strain-rate, in
polycrystalline (HCP and FCC) and von Mises voided solids under macroscopic
stress triaxialities X� ¼ 0, 6,1 (note that, for a given triaxiality, the scales are
identical for the three materials, but the maximum values of the strain-rate field
strongly increase as triaxiality increases). At low triaxialities, the strain rate is mildly
localized in bands inclined with respect the direction of the largest principal stress. In
both the polycrystalline and von Mises solids, these localization bands are formed
due to interaction between neighboring voids, but in the case of the polycrystalline
solid the bands are more intense when traversing soft grains. Thus, crystallinity

Philosophical Magazine 3057

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
e
b
e
n
s
o
h
n
,
 
R
.
 
A
.
]
 
A
t
:
 
1
6
:
2
0
 
1
6
 
J
u
n
e
 
2
0
1
1



seems to enhance localization at low triaxialities. As triaxiality increases, voids
interact more strongly. In the case of large but finite triaxiality, the strongest
localization bands are formed in regions that are normal to the direction of the
largest principal stress. However, in the polycrystalline solid, some of these bands are
disrupted by the presence of hard grains and grain boundaries – see the locations
marked with yellow ellipses in the plots for X� ¼ 6, where the localization is
appreciably lower in the polycrystal, compared with the same spot in the von Mises
solid. Meanwhile, under purely hydrostatic tension, localization zones are stronger
as the distance between interacting voids is smaller, irrespective of its orientation. In
this case, disruptions of the localization zones related to crystallinity are harder to
appreciate due to their very high intensity, but they can still be found.

Our interpretation of these differences is that, at low triaxialities, when the
hydrostatic component of the strain-rate is small (or null) and the shear localization
takes place mainly between voids that are close and favorably oriented with respect
to each other (e.g. in the case of X� ¼ 0: at around 45	 with respect to the axial
direction), the (statistically) likely presence of at least one ‘soft’ crystal orientation
(note that here and in what follows, ‘soft’ and ‘hard’ refer to the relative anisotropy

Figure 4. FFT maps of equivalent strain-rate (same 2-D section of the corresponding 3-D unit
cells), normalized by the macroscopic equivalent strain-rate, in polycrystalline and von Mises
voided solids under macroscopic stress triaxialities X� ¼ 0, 6,1. The porosity level is f¼ 0.05
and the viscous exponent is n¼ 10. The strain-rate is nullified inside the cavities to improve
visualization of the field in the solid material.
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of the mechanical response with respect to the local states) linking well-oriented voids
should increase the strain localization, determining an overall softer behavior,
compared to an isotropic matrix material with the same distribution of voids. On the
other hand, at high triaxialities, when the expansion of the voids has to
accommodate the dilatation applied to the aggregate, so that the material that
surrounds the cavities should undergo very large local (deviatoric) strains, the likely
presence of at least one ‘hard’ grain in the voids’ surroundings should disrupt the
strain localization, leading to a harder response of the aggregate.

We now consider the different linear-comparison theories of Section 3. Figure 5
shows gauge surfaces predicted by the ‘secant’ (SEC) [28] and ‘generalized-secant’
(GSEC) [40] theories. In both cases, two hundred (N¼ 200) equi-weighted grain
orientations were prescribed according to a random process in order to generate
polycrystalline voided solids with a fairly isotropic effective response. Also shown in
this figure for comparison purposes are the ‘affine’ (AFF) linear-comparison
estimates of the self-consistent type proposed in [26] and the FFT polycrystal results
of Figure 3. For reasons that will become evident shortly, GSEC surfaces for n¼ 10
have been plotted in continuous lines for X� � 2 but in dotted lines for X�4 2. We
begin by noting that for n¼ 1 all linear-comparison theories agree exactly with the
linear self-consistent estimate on which they are based but give divergent predictions
for n¼ 10. Among the nonlinear theories, the GSEC estimates are seen to show the
best overall performance. These estimates predict gauge surfaces that are closed,
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0 0.5 1 1.5 2 2.5 3 3.5 4
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FFT-FCC/HCP
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Figure 5. ‘Secant’ (SEC) [28] and ‘generalized-secant’ (GSEC) [40] estimates for the gauge
surfaces of untextured FCC and HCP polycrystalline solids with porosity level f¼ 0.05 and
viscous exponents (a) n¼ 1 and (b) n¼ 10. FFT simulations are also shown for comparison
purposes. Dashed lines indicate directions of constant stress triaxialities X� ¼ 1=3, 1, 2, 4.
Axisymmetric loadings (� ¼ 0).
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convex, and that lie within the SEC surfaces, as they should. Recall that the SEC
estimates are rigorous outer bounds for all other linear-comparison estimates of the
self-consistent type, and in particular, for the GSEC estimates. More importantly,
GSEC surfaces show the best agreement with FFT simulations. In particular, they
agree with FFT simulations in that gauge surfaces of untextured polycrystals are
fairly insensitive to matrix crystallinity within the entire range of nonlinearities
considered. The SEC estimates, on the other hand, give stronger predictions –
consistent with their outer bound character – and show a noticeable difference
between FCC and HCP surfaces at low triaxialities. However, the performance
of both GSEC and SEC models constitute a substantial improvement over that of
classical polycrystalline models. The AFF model is representative of this class of
models: it produces unphysical non-convex gauge surfaces with unbounded
hydrostatic strength – see Figure 5b. This poor performance at large triaxialities is
a direct consequence of a linearization scheme solely based on the first moments of
the local fields. The secant and generalized-secant linearization schemes utilized in
this work involve the second moments and as a consequence give superior
predictions.

Now, while very accurate at low to moderate triaxialities, 0 � X�92, GSEC
estimates are seen to give overly strong predictions at larger triaxialities. At the
hydrostatic point, these estimates agree exactly with the SEC bound and are roughly
twice as strong as the FFT results. Moreover, unlike the smooth FFT surfaces, they
exhibit a corner at that point. As a result, GSEC predictions for highly triaxial
creeping processes will give unrealistically small hydrostatic strain rates and
consequently will underestimate void growth at the initial stages of deformation.
This problem of variational linear-comparison estimates is already well known in the
context of von Mises voided solids [58,59]. However, Danas et al. [60] have proposed
an ad hoc remedy whereby the linearization scheme is forced to depend explicitly on
the macroscopic stress triaxiality in such a way that the effective gauge surface tends
to some specified hydrostatic point. In the case of von Mises solids, a suitable
hydrostatic point is available from the well-known solution of a hollow shell. A
similar strategy could be envisaged for voided polycrystalline solids and will be
explored in future work; in this connection, the recent work of Idiart [61,62] for
sequentially laminated composites could prove helpful. In any event, as it stands, the
generalized-secant theory proposed in this work should be accurate enough to model
deformation processes involving low to moderate stress triaxialities.

For completeness, trends as a function of porosity are explored in Figure 6. Since
the linear-comparison theories derived in this work have been found to be inaccurate
at large stress triaxialities, we shall restrict attention to the purely deviatoric
response. GSEC predictions and FFT results are thus given in the form of �e versus f
for two values of the viscous exponent (n¼ 1, 10). Theoretical and numerical results
show a fairly linear decrease of �e with increasing f for both values of n and porosity
levels of up to f¼ 0.15. The main observation, however, is that FFT results show that
the influence of matrix crystallinity on the effective response remains relatively small
at large porosity levels, even for the strongly nonlinear polycrystals. The GSEC
estimates are in good agreement with the FFT results for n¼ 1, but exhibit a
somewhat more pronounced influence of matrix crystallinity than the FFT results
for n¼ 10. It should be noted, however, that porosity levels beyond 0.15 are hardly
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met in practice and the dependence on matrix crystallinity exhibited by the nonlinear
GSEC estimates remains relatively small when the porosity level is below that value.

5.4. The effect of crystallographic texture and porosity on the effective response

We now assess the effect of crystallographic texture and porosity on the effective
response. Textures are simulated by a set of one thousand (N¼ 1000) crystal
orientations: FCC polycrystals are given a sharp rolling texture represented by
the (111) pole figure of Figure 7a, while HCP polycrystals are given a sharp
transversely isotropic texture represented by the (0001) pole figure of Figure 7b.

Figure 7. Crystallographic textures considered: (a) (111) pole figure of a rolled FCC
polycrystal with normal direction (ND) in the center; (b) basal pole figure of an HCP
polycrystal with axisymmetric texture and axial direction (x3) in the center. Intensity
lines correspond to multiples of random distribution (mrd). Dots correspond to regions of the
pole figures with intensities lower than that of the random distribution (1mrd).
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Figure 6. Deviatoric response of untextured voided polycrystals as a function of porosity f:
(a) linear (n¼ 1) and (b) nonlinear (n¼ 10) polycrystals.
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In both cases, specimens are subjected to axisymmetric stress states with positive

triaxiality and principal axes aligned with the symmetry axes of the microstructure.

FCC specimens are loaded in axisymmetric tension along the rolling, normal and

transverse directions, while HCP specimens are loaded along parallel and perpen-

dicular directions to the axis of transverse isotropy. For a given orientation of the

tensile axis, these axisymmetric stress states can be described by the von Mises and

hydrostatic stress measures. Gauge surfaces obtained by FFT numerical simulations

and generalized-secant estimates are given in Figures 8 and 9. Secant estimates are

omitted in this section for ease of presentation. Also included in these figures for

comparison purposes are the corresponding gauge surfaces for untextured

specimens.
We begin by noting that all gauge surfaces are closed and convex, as expected.

It is observed that numerical simulations and theoretical estimates both predict a

minor influence of crystallographic texture on the effective response of polycrystal-

line solids when the crystal symmetry is high – see Figures 8a and b. On the other

hand, when the crystal symmetry is low, corresponding to large grain anisotropy, the

effective response is significantly influenced by texture, especially for low strain-rate

sensitivity (m¼ 1/n) – see Figures 9a and b. In all cases, it is interesting to remark

that the effect of grain anisotropy and texture on the flow stress under purely

hydrostatic conditions is relatively minor. In view of these results, we conclude that

the assumption of matrix isotropy is clearly inadequate for textured low-symmetry

polycrystals, and polycrystalline models like the ones that we have developed in this
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Figure 8. Gauge surfaces from FFT simulations and ‘generalized-secant’ (GSEC) theory [40]
of a rolled FCC polycrystal under axisymmetric loadings with tensile axis along three different
directions: rolling, normal, and transverse directions. The porosity level is f¼ 0.05 and the
viscous exponents are (a) n¼ 1 and (b) n¼ 10. Dashed lines indicate directions of constant
stress triaxialities X� ¼ 1=3, 1, 2, 4.
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work are required. In parallel with earlier observations for untextured polycrystals, it
is noted that the GSEC estimates also predict closed and convex gauge surfaces, as
they should, and exhibit good agreement with numerical simulations in general, but
for n¼ 10 and large stress triaxialities (X� 4 2) they give overly strong predictions.
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Figure 9. Gauge surfaces from FFT simulations and ‘generalized-secant’ (GSEC) theory [40]
of an axisymmetrically textured HCP polycrystal with a strong basal component along the
‘parallel’ direction. The porosity level is f¼ 0.05 and the viscous exponents are (a) n¼ 1 and
(b) n¼ 10. Dashed lines indicate directions of constant stress triaxialities X� ¼ 1=3, 1, 2, 4.
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Figure 10. Deviatoric response of textured voided polycrystals as a function of porosity f:
(a) FCC and (b) HCP polycrystals. The viscous exponent is n¼ 10.
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As mentioned above, however, these estimates already constitute a substantial
improvement over earlier linear-comparison estimates.

Finally, trends as a function of porosity are explored in Figure 10. Once again, we
restrict attention to the purely deviatoric response. GSEC predictions and FFT
results are given in the form of �e versus f for the FCC and HCP textured
polycrystals with n¼ 10. As already observed in untextured polycrystals, theoretical
and numerical results show a fairly linear decrease of �e with increasing f for
porosity levels of up to f¼ 0.15. The main observation, however, is that FFT results
and GSEC predictions show that the influence of matrix crystallinity and
crystallographic texture on the effective response already found for f¼ 0.05 persists
for the entire range of porosities considered.

6. Summary and concluding remarks

We have carried out numerical simulations and theoretical calculations for the
viscoplasticity of polycrystalline solids containing intergranular cavities.
The simulations followed from a fast Fourier transform algorithm originally
developed by Moulinec and Suquet [45,46]. The theoretical predictions, in turn, were
obtained by means of suitable extensions of the variational linear-comparison
theories of deBotton and Ponte Castañeda [28] and Liu and Ponte Castañeda [40] for
porous polycrystals.

The simultaneous effects of porosity, crystallinity and crystallographic texture
were investigated in both linear and strongly nonlinear solids. Numerical simulations
and theoretical predictions both indicate that the effective response of untextured
voided solids is relatively insensitive to the crystallinity of the polycrystalline matrix,
even when crystal symmetry and strain-rate sensitivity are low. By contrast, the
effective response of strongly textured voided solids was found to be quite sensitive
to matrix crystallinity when crystal symmetry and strain-rate sensitivity are both
sufficiently low. In this case, standard models based on isotropic-matrix theories are
inadequate and polycrystalline theories like the ones presented in this work should be
employed. In this connection, it is emphasized that even if the crystal structure
exhibits many geometrical symmetries (e.g. FCC and BCC crystals), local processes
like strain hardening may introduce a strong anisotropy in the crystal’s response
upon large deformations, further restricting the range of validity of isotropic-matrix
models.

Meanwhile, our findings at the local level seem to indicate that, at low
triaxialities, the crystallinity of the matrix increases the strain localization due to the
statistically likely presence of ‘soft links’ (i.e. at least one soft crystal) in the
surroundings of interacting voids, while the opposite happens for high triaxialities,
i.e. the likely presence of at least one ‘hard’ crystal in the vicinities of expanding
cavities may disrupt strain localization.

Among the polycrystalline theories considered, the generalization of the secant
second-order theory of Liu and Ponte Castañeda [40] was found to be the most
accurate. Unlike classical theories, it correctly predicts closed and convex gauge
surfaces and satisfies available bounds. Moreover, the predictions were in good
agreement with the numerical simulations in general. With decreasing strain-rate
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sensitivity, however, the predictions become progressively less accurate at large stress
triaxialities (X�02). This is a well-known issue in variational linear-comparison
theories, which will be addressed in future work. In this context, it is important to
emphasize that this limitation of the variational linear-comparison methods for
porous media has already been addressed successfully for isotropic-matrix materials
[60], and it seems reasonable that improved models for porous materials with
anisotropic (textured) polycrystalline solid phases may be possible following similar
ideas. The key point is the generation of improved estimates for the hydrostatic
point, which may be feasible by means of an appropriate generalization of the
sequential lamination methods, which has been shown to recover the exact result at
least for the isotropic-matrix case [62]. In any event, as it stands, the generalized-
secant theory proposed in this work should be appropriate to model deformation
processes involving stress triaxialities in the range 0 � X�92. While this may not be
suitable for some applications, such as HIPing, it may provide useful approximations
in other approximations with lower overall triaxialities.

The present work has demonstrated the capabilities of the FFT algorithm to
model voided polycrystals. It is emphasized, however, that the reported results were
based on a single unit-cell realization and therefore do not account for the expected
statistical deviations due to microstructural randomness. More accurate results that
do account for such deviations can be produced by ensemble averaging multiple
realizations as in the work of Moulinec and Suquet [63] on two-phase composites.

This study has focused on the instantaneous viscoplastic response of polycrys-
talline voided solids. By integrating this response along with appropriate evolution
laws for the various microstructural variables over time, as has already been done for
isotropic-matrix porous materials [64,65], as well as for fully dense polycrystalline
aggregates [40,43], a more general micromechanical theory of dilatational
viscoplasticity accounting for the simultaneous evolution of texture and porosity
can be achieved. This is in contrast to Gurson-type theories recently proposed in the
literature [12–14], which rely on phenomenological descriptions of texture effects.
Efforts to derive such micromechanical theories, and their corresponding numerical
implementation, are currently under way and will be reported in due time.

Acknowledgements

The authors wish to thank Prof. Pierre Suquet (Laboratoire de Mécanique et d’Acoustique/
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