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ABSTRACT 
Four crystal plasticity codes, the viscoplastic Material Point Simulator (MPS) developed 

at Cornell and the ViscoPlastic Self-Consistent code (VPSC7b) developed at LANL, and two 
elastic-viscoplastic codes developed at Drexel University, were employed to calculate 
deformation textures and mechanical properties of model polycrystalline specimens by 
simulating isochoric, free upsetting. Uniaxial compression of a model sample with a starting 
random texture of 5000 grains was carried out at a constant true strain rate of 0.001/s to a true 
strain of 1.0 with 0.02 strain increments. Material properties simulated a face-centered cubic 
(FCC) alloy, Type 304 Stainless Steel, and a hexagonal close-packed (HCP) material, unalloyed 
Ti. Both non-hardening and linear hardening conditions were investigated. Different strain-rate 
sensitivities simulated deformation conditions appropriate to ambient and elevated temperature 
conditions. All codes permitted use of the Taylor homogenization hypothesis, resulting in an 
upper bound for the mechanical properties. All codes produce essentially identical results for the 
same input material, homogenization hypothesis and deformation conditions. For comparison, 
one alternative homogenization hypothesis to model grain interactions was examined for each of 
the MPS and VPSC7b codes. 



 

INTRODUCTION 
Over the last two decades, significant progress in the field of crystal plasticity modeling 

has led to the development of many codes with proven success in simulating various aspects of 
the mechanical behavior of both FCC and HCP metals. This proliferation makes it difficult for 
researchers to decide which code is best suited for a particular application. This study aims to 
provide an unbiased study of the capabilities and limitations of three different types of codes by 
examining the results obtained from each using identical input conditions. The codes employed 
are 1) the ViscoPlastic Self-Consistent code1 (VPSC7b) developed and maintained by C. Tomé 
and R. Lebensohn at Los Alamos National Laboratory, Los Alamos, NM, hereafter referred to as 
V; 2) the Material Point Simulator (MPS) code2 developed by P. R. Dawson, D. E. Boyce and 
associates at Cornell University, hereafter referred to as C;  and 3) two elastic-plastic codes, one 
each for face-centered cubic and hexagonal close-packed metals, developed by S. Kalidindi and 
associates at Drexel University3,4, hereafter referred to collectively as D.  

All of the codes are capable of calculating effective stress-effective strain (SS) curves, the 
final orientation of each grain in the ensemble (TEX), from which pole figures can be calculated, 
and the effective Taylor factor (M) for the ensemble. All employ a form of the Voce hardening 
law for hardening on the active slip systems and the V and D codes permit the inclusion of latent 
hardening in cases where more than one type of slip system is active. Although all codes are 
capable of including both slip and twinning in the calculations, only slip was considered in this 
study to reduce the number of permutations of material variables.  A homogenization assumption 
specifies the relationship between the state of deformation for individual grains and the global 
state of deformation for the ensemble. The Taylor hypothesis, in which the strain or strain rate in 
each grain is the same as that for the ensemble, is common to all three codes and gives an upper 
bound to the resulting SS curve. In addition the C code provides an option for the Sachs 
hypothesis, in which the state of stress in each grain is the same as for the ensemble, giving a 
lower bound to the SS curve. Although this code also permits selected weighted averages of the 
Taylor and Sachs hypotheses, these were not investigated in this study. The Affine linearization 
hypothesis of the V code5 was employed in this work for comparison. 

 

MATERIAL PARAMETERS AND COMPUTATIONAL DETAILS  
Material properties employed in the calculations correspond to austenitic stainless steel, a 

face-centered cubic (FCC) avatar, and unalloyed Ti, a hexagonal close-packed (HCP) avatar.  
Crystal deformation was confined to {111}<110> slip for the FCC material and to the basal <a>, 
first order prismatic <a> and pyramidal <c + a> systems in the HCP material. For both ambient 
and high temperature deformation conditions, relative values of the critical resolved shear stress 
(CRSS) on each of the slip systems in the HCP material were set to 1.0:0.7:3.0, respectively. 
Deformation by twinning was not included in any of the calculations. Reduced values of the 
CRSSs on each slip system were employed, so that the CRSS on the reference slip system (basal 
for hcp) was 1.0. 

Different temperatures were simulated only by employing different values of the stress 
exponent (strain-rate sensitivity) while the hardening ratios and CRSSs remained constant. For 
both the FCC and HCP materials, high temperature deformation conditions correspond to a stress 
exponent n = 4 and low temperature, to a stress exponent of n = 20 in an equation of the form  
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where k
ijε&  is the ijth component of the deviatoric strain rate due to slip on the kth slip system, 

k
ijm is the Schmid tensor on that system, σrs is the local deviatoric stress tensor, n is the stress 

exponent, γo is a reference strain rate, and and k
oτ is a reference stress for slip on the kth slip 

system, respectively. The strain rate due to slip on all systems is obtained by summing equation 
(1) over all active slip systems. While the V code employs this form of the rate-dependent law, 
the C and D codes use the form in which the resolved shear stress is given in terms of the strain 
rate, using a strain-rate sensitivity exponent, m = 1/n. 
 Both hardening and non-hardening conditions were investigated using an empirical Voce-
type hardening law. On each active slip system these relationships have the form  

 ( ) ( ) ( )o s o 1 e−αγτ γ = τ + τ − τ −  (2) 
where τ(γ) is the resolved shear stress at a resolved shear strain of γ, τo and τs are the critical 
resolved shear stress (CRSS) and saturation stress, respectively on the slip system and α is a 
hardening parameter. The V code employs a version of equation (2) that uses the accumulated 
shear strain in a grain instead of γ for the strain and permits hardening to approach a non-zero 
asymptotic value, introducing a fourth parameter into the expression1.  The present study treats 
only linear hardening, simulated over the range of strain for which calculations were performed 
by setting τs = 1000 τo and the initial hardening rate θo = α(τs-τo) = 0.2τo. For the HCP material 
the initial hardening rates on the active slip systems were selected in the same ratios as the 
CRSSs. 
 The effective Taylor factor, M, for the ensemble of grains was calculated at each 
increment of effective strain for the V and D codes. In the former case M is given by  
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where summation over repeated indices is implied and the deviatoric stress and strain rate  
components refer to global values. The SS curves were normalized by dividing stresses by the 
CRSS on the reference slip system (basal slip for HCP). Equation (3) and the use of 1.0 as the 
CRSS on the reference slip system results in the value of M being numerically equal to the von 
Mises effective stress at each increment of strain for both FCC and HCP materials. The D code 
uses a definition for M that replaces individual stress components in equation (3) with the CRSS 
on the reference system.  

Computations of the SS curves were performed at effective strain intervals of 0.02 from 
an initial true strain of 0.0 to a final value of 1.0 under uniaxial compression along the x3 axis at 
a rate of 10-3 s-1. However, because of the elastic-viscoplastic nature of the D codes, when the 
instantaneous total strain was less than 0.05 it was necessary to perform calculations at a smaller 
increment of strain than for the rest of the curve to achieve agreement with the purely 
viscoplastic codes in the vicinity of initial yielding. an ensemble of 5000 randomly oriented 
grains was selected as the starting material.  



RESULTS 

Face-Centered Cubic 
The SS curves for the FCC calculations produced by all codes are shown in Figure 1. The 

legend identifying data sets specifies the code (C, D, V), crystal structure (F or H), temperature 
as high (H) or ambient (R), hardening (H) or non-hardening (N), and the homogenization 
assumption. The latter is represented by U for the Taylor hypothesis, L for the Sachs and A for 
Affine linearization. The effective stress is numerically equal to M for the V code. 

 

 
 

Figure 1.  FCC Upper Bound Effective Stress-Strain Curves from All Codes 
 

Pole figures from the calculations shown in Figure 1 are given in Figures 2a and 2b for 
hardening and non-hardening, respectively, under ambient temperature deformation conditions. 
Orientations of all grains in the ensemble at an effective true strain of 1.0 were employed to 
construct pole figures for the deformed materials using TSL6 software marketed by EDAX. All 
pole figures have the compression (x3) axis at the center of the figure and intensity contours 
represent multiples of the random probabilities for the indicated poles.  

 



 
Figure 2a. FCC Pole Figures for Ambient Temperature, Hardening Deformation Condition 

 

 
 

Figure 2b. FCC Pole Figures for Ambient Temperature, Non- Hardening Deformation Condition 
 
Figures 3a and 3b show similar pole figures for high temperature conditions. 

 
 

Figure 3a. FCC Pole Figures for High Temperature, Hardening Deformation Condition 

 
 

Figure 3b. FCC Pole Figures for High Temperature, Non-Hardening Deformation Condition 
 
Figure 4 compares the SS curves calculated with the C code using the U and L assumptions.  
 



 
 

Figure 4.  FCC Upper and Lower Bound Effective Stress-Strain Curves from C code 
 
Figure 5 shows pole figures associated with the lower bound stress-strain curves in Figure 4. 

 
 

Figure 5. FCC Pole Figures for Lower Bound calculations with C code 
 
Figure 6 compares stress-strain curves obtained with the V code using the Taylor (T) model with 
the same deformation conditions calculated using the Affine (A) option of the code. 
 



 
 

Figure 6. FCC Effective Stress-Strain Curves from Taylor and Affine options of V code 
 
Figure 7 gives pole figures obtained using the Affine option of the V code. 

 
 

Figure 7. FCC Pole Figures from Affine option calculated with V code 
 

Hexagonal Close-Packed 
Figure 8 shows SS curves obtained from all codes for HCP material. 
 



 
 

Figure 8. HCP Upper Bound Effective Stress-Strain Curves from all codes 
 
Pole figures for the stress-strain curves in Figure 8 are shown in Figure 9a, 9b, 10a and 10b. 

 
 

Figure 9a. HCP Pole Figures for Ambient Temperature, Hardening Deformation Condition 

 
Figure 9b. HCP Pole Figures for Ambient Temperature, Non-Hardening Deformation Condition 



 
 

Figure 10a. HCP Pole Figures for High Temperature, Hardening Deformation Condition 

 
 

Figure 10b. HCP Pole Figures for High Temperature, Non-Hardening Deformation Condition 
 

 
Figure 11. HCP Upper and Lower Bound Effective Stress-Strain Curves from C code 

 



Figure 11 compares lower bound and upper bound SS curves for HCP material. 
Pole figures from the lower bound calculations are shown in Figure 12. 
 

 
 

Figure 12. HCP Pole Figures for Lower Bound calculations with C code 
 
 Figure 13 compares SS results from the Affine and Taylor options of the V code. 

 
 

Figure 13. HCP Effective Stress-Strain Curves from Taylor and Affine options of V code 
 
Pole figures obtained with the Affine option are shown in Figure 14. 



 
 

Figure 14. HCP Pole Figures from Affine option calculated with V code 
 

DISCUSSION AND CONCLUSIONS 
The ratio of initial flow stresses for the polycrystalline effective stress-strain curves under 

high and ambient temperature deformation conditions was nearly equal to the strain rate raised to 
a power [(1/nL) - (1/nH)],  where nH  and nL refer to the stress exponents for high (H) and ambient 
(L) temperature deformation. Thus the difference in initial flow stresses is accentuated by the use 
of a relatively slow strain rate in the calculations.  If the strain rate employed for the calculations 
were 1.0 s-1, there would be virtually no difference in the initial flow stresses of the 
polycrystalline effective stress-strain curves obtained for the two deformation conditions. The 
differences that do exist can be attributed to a small amount of texture hardening. 

Hardening exhibited by the effective stress-strain curves calculated using the Taylor 
assumption for the polycrystalline materials is virtually linear, as is the input constitutive 
equation. However, the intensity of hardening is enhanced in the polycrystalline aggregate as a 
result of texture formation. While the input hardening rates are 0.2(CRSS) on each active slip 
system, the apparent linear hardening rates of the FCC polycrystal curves are 0.7 and 0.6 times 
the initial flow stress for the ambient and high temperature deformation conditions, respectively. 
The corresponding factors for the HCP polycrystal curves are 0.46 and 0.17. This enhanced 
hardening of the polycrystalline aggregate may also be attributed to texture hardening effects. 

Texture differences between upper and lower bound calculations obtained with the C 
code can be attributed to two characteristics of the lower bound assumption: 1) in the lower 
bound approximation fewer grains accommodate more deformation in contrast to the upper 
bound where all grains experience the same deformation and 2) since all grains experience the 
same stress, hardening of a grain renders it less capable deforming further forcing other grains to 
accommodate more of the deformation. These effects cause the texture to be more strongly 
developed in the hardening cases for both high and low temperature deformation. With no 
hardening, all grains remain active and reorient as deformation progresses, while hardening 
causes decreased slip activity in some grains, forcing the activation of other grains. 

All three codes produced excellent agreement among calculated effective stress-strain 
curves for all material and deformation conditions investigated. Pole figures produced by all 
codes were essentially identical for the Taylor homogenization hypothesis. The principal 
differences in pole figures for both FCC and HCP material occurred as a result of different 
strain-rate sensitivities. 
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