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We present a detailed description of the numerical implementation, within the
widely used viscoplastic self-consistent (VPSC) code, of a rigorous second-order
(SO) homogenization procedure for non-linear polycrystals. The method is based
on a linearization scheme, making explicit use of the covariance of the
fluctuations of the local fields in a certain linear comparison material, whose
properties are, in turn, determined by means of a suitably designed variational
principle. We discuss the differences between this second-order approach and
several first-order self-consistent (SC) formulations (secant, tangent and affine
approximations) by comparing their predictions with exact full-field solutions.
We do so for crystals with different symmetries, as a function of anisotropy,
number of independent slip systems and degree of non-linearity. In this
comparison, the second-order estimates show the best overall agreement with
the full-field solutions. Finally, the different SC approaches are applied to
simulate texture evolution in two strongly heterogeneous systems and, in both
cases, the SO formulation yields results in better agreement with experimental
evidence than the first-order approximations. In the case of cold-rolling of
low-SFE fcc polycrystals, the SO formulation predicts the formation of a texture
with most of the characteristic features of a brass-type texture. In the case
of polycrystalline ice, deforming in uniaxial compression to large strain, the SO
predicts a substantial and persistent accommodation of deformation by basal slip,
even when the basal poles become strongly aligned with the compression
direction.

1. Introduction

The computation of the mechanical behaviour and the texture evolution of
polycrystalline materials using self-consistent models is, nowadays, a standard
approach in the Materials Science community. In 1987, Molinari et al. [1] developed
the basic principles of the one-site viscoplastic (VP) self-consistent (SC) theory for
polycrystal deformation. In 1993, Lebensohn and Tomé [2] numerically implemented
this formulation to fully account for polycrystal anisotropy, developing the first

*Corresponding author. Email: lebenso@lanl.gov

Philosophical Magazine

ISSN 1478–6435 print/ISSN 1478–6443 online � 2007 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/14786430701432619



D
ow

nl
oa

de
d 

B
y:

 [L
os

 A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y]

 A
t: 

15
:1

9 
29

 A
ug

us
t 2

00
7 

version of the VPSC code. In the last decade, the VPSC code has experienced
several improvements and extensions [3] and, nowadays, it is extensively used to
simulate the plastic deformation of polycrystalline aggregates and to interpret
experimental evidence on metallic, geological and polymeric materials.

Some of the applications of VPSC tometallic materials are: Zr-alloys (e.g. [2, 4–7]),
Al-alloys (e.g. [8–13]), Cu-alloys (e.g. [14–16]), Ti-alloys (e.g. [17–19]), Mg-alloys
(e.g. [20–23]), steels (e.g. [24–26]), Ni-alloys [27], U [28], Be [29], Ag [30], TiAl [31],
Cu–Fe [32], Sn–Ag [33] and multilayered Cu–Nb [34]. Among the applications to
geological materials, we can mention: ice (e.g. [35–37]), calcite [38], quartzite [39],
halite [40], epsilon-iron [41, 42], olivine (e.g. [43–45]) and other Earth mantle’s
high-pressure phases, e.g. wadsleyite [46], ringwoodite [47, 48] andMgSiO3 perovskite
[49], MgOmagnesio-wüstite [49, 50] and SiO2 stishovite [51]. In a recent application to
polymeric materials, Nikolov et al. [52] adapted the VPSC code to study the
mechanical behaviour of semicrystalline high-density polyethylene. Most of these
applications were done using the tangent SC approximation described below.

In addition, VPSC has been improved to incorporate more complex
deformation mechanisms, microstructures and processes. Worth mentioning are:
modelling of deformation twinning (e.g. [2, 53]), modelling of dynamic recrystalliza-
tion (e.g. [54]), solution of the inverse problem for identification of VPSC parameters
[55], multiscale calculations coupling VPSC and Finite Element (FE) methods
(e.g. [6, 10, 23, 44]), modeling of equal-channel extrusion (e.g. [56]), dilatational
VPSC formulation for voided polycrystals [57], VPSC-based fitting of anisotropic
yield functions to account for texture development and anisotropic hardening
[58, 59]. The following multi-site extensions of the VPSC formulation have been
proposed: two-site VPSC formulation [18], n-site VPSC formulation [60, 61] and
VPSC formulation for lamellar structures [31].

The self-consistent approximation, one of the most commonly used
homogenization methods to estimate the mechanical response behaviour of
polycrystals, was originally proposed by Hershey [62] for linear elastic materials.
For nonlinear aggregates (as those formed by grains deforming in the viscoplastic
regime), the several self-consistent approximations proposed differ in the procedure
used to linearize the non-linear local mechanical behaviour. Until now, the VPSC
code offered the possibility of choosing among the secant (SEC) [63, 64], the tangent
(TG) [1, 2] and the affine (AFF) [65] first-order SC approximations. All of them are
based on linearization schemes at local level that make use of information on field
averages only, disregarding higher-order statistical information inside the grains.
However, the above assumption may be questionable (as first suggested by
Gilormini’s [66] systematic comparison between the different first-order SC
approximations and bounds, for the case of two-phase non-linear composites),
especially when strong directionality and large variations in local properties are to be
expected. Such is the case for low rate-sensitivity materials, aggregates made of
highly anisotropic grains, and multiphase polycrystals. In all those cases,
strong deformation gradients are likely to develop inside grains owing to the
contrast in properties between neighbouring grains. We show here that introducing
intragranular fluctuations via higher-order statistical moments is particularly critical
for the treatment of those materials and for the prediction of their mechanical
behaviour and microstructural evolution.

4288 R. A. Lebensohn et al.
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To overcome the above limitations, Ponte Castañeda and coauthors have

developed, over the last 15 years, more accurate nonlinear homogenization methods,

using linearization schemes at grain level that also incorporate information on the

second moments of the field fluctuations in the grains. These variational SC

estimates are based on the use of so-called linear comparison methods, which express

the effective potential of the nonlinear VP polycrystal in terms of a linearly viscous

aggregate with properties that are determined from suitably designed variational

principles. Two types of linear comparison estimates are available, depending on the

linearization method used. The first method – known as the variational method – was

originally proposed in 1991 for nonlinear composites [67], and then extended to VP

polycrystals [68]. It makes use of the SC approximation for linearly viscous

polycrystals to obtain bounds and estimates for nonlinear VP polycrystals.

The second method – known as the second-order (SO) method – was proposed in

2002 for nonlinear composites [69] and later extended to VP polycrystals [70].

It makes use of the SC approximation for a more general class of linearly viscous

polycrystals (i.e. those having a non-vanishing strain-rate at zero stress) to generate

more accurate SC estimates for VP polycrystals, and derives its name from the fact

that it leads to estimates that are exact to second-order in the heterogeneity contrast

(as opposed to earlier methods, which are only exact to first-order in the contrast).
The 1991 variational formulation was applied to the study of the effective

behaviour of cubic [71] and hexagonal [72] polycrystalline aggregates with fixed

microstructure and to simulate texture evolution of hcp Ti at high temperature [73].

In the latter case, a better overall agreement was found with analogous

FE simulations than corresponding Taylor and tangent SC predictions. The

second-order SC formulation was used to generate estimates of the effective

behaviour of random polycrystals and of the average field fluctuations in the

constituent grains as a function of their orientation, in cubic and hexagonal materials

[74], and to predict texture evolution in halite, an ionic cubic material [75]. In the

latter case, the SO method predicts a pattern of texture evolution that was not

captured by other homogenization methods, in good agreement with full-field FE

predictions and experimental measurements. Finally, a thorough comparison

between the different nonlinear SC estimates of the effective properties of cubic

and hexagonal polycrystals [76] showed that the SO formulation yields the best

overall agreement with corresponding ensemble averages of full-field results.
As a consequence, the implementation of a fully anisotropic SO approach

inside VPSC is a necessary step towards improving its predictive capability for

polycrystalline materials exhibiting high contrast in local properties. Unavoidably,

this improved capability comes at the expense of algebraically more complex and

numerically more demanding algorithms.
This paper describes in detail the implementation of the SO formulation inside

the VPSC code [3]. The key aspect of this addition is the calculation of average field

fluctuations inside the grains of the linear comparison polycrystal, in terms of the

derivatives of the corresponding effective stress potential. It also shows examples in

which improved predictions of the mechanical behaviour and microstructure

evolution of polycrystals are obtained, when the fluctuations are accounted for in

the homogenization procedure by means of the SO approach.

Self-consistent formalisms for viscoplastic polycrystals 4289
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2. Viscoplastic self-consistent formalism

In this section, we first present the incompressible viscoplastic self-consistent

formulation [77], using the affine linearization scheme [65]. Next, the methodology to

calculate the average stress fluctuations in the grains of the linear comparison

polycrystal is given and the second-order linearization procedure is described.

Finally, algorithmic aspects of the SO implementation in VPSC are discussed.
In VPSC, the polycrystal is represented by means of weighted, ellipsoidal,

statistically representative (SR) grains. Each of these SR grains represents the

average behaviour of all the grains with a particular crystallographic orientation and

morphology, but different environments. These SR grains should be regarded

as representing the behaviour of mechanical phases, i.e. all the single crystals with

a given orientation (r) belong to mechanical phase (r) and are represented by SR

grain (r). (Note the difference between ‘mechanical phases’, which differ from each

other only in terms of crystallographic orientation and/or morphology, and actual

‘phases’ differing from each other in crystallographic structure and/or composition).

In what follows, ‘SR grain (r)’ and ‘mechanical phase (r)’ will be used

interchangeably. The weights represent volume fractions. The latter are chosen to

reproduce the initial texture of the material. In turn, each representative grain will be

treated as an ellipsoidal viscoplastic inclusion embedded in an effective viscoplastic

medium. Both, i.e. inclusion and medium, have fully anisotropic properties.

Deformation is based on crystal plasticity mechanisms: slip and twinning

systems activated by a resolved shear stress.

2.1. Local constitutive behaviour and homogenization

Let us consider a polycrystalline aggregate. The incompressible viscoplastic

constitutive behaviour at each material point is described by means of the following

non-linear, rate-sensitive equation:

" xð Þ ¼
X
k

mk xð Þ�k xð Þ ¼ �o
X
k

mk xð Þ
mk xð Þ : � xð Þ

�so xð Þ

� �n
ð1Þ

In the above expression �ko and mk
ij ¼ ð1=2Þðnki b

k
j þ nkj b

k
i Þ are the threshold resolved

shear stress and the symmetric Schmid tensor associated with slip (or twinning)

system (k), where nk and b
k
are the normal and Burgers vector direction of such

slip (or twinning) system, " and � are the deviatoric strain-rate and stress, and � k

is the local shear-rate on slip (or twinning) system (k), which can be obtained as:

�k �xð Þ ¼ �o
mk �xð Þ : � �xð Þ

�ko �xð Þ

� �n

ð2Þ

where �o is a normalization factor and n is the rate-sensitivity exponent. Let us

assume that the following linear relation (i.e. an approximation of the actual

non-linear relation, equation (1)) holds between the strain-rate and stress in the

4290 R. A. Lebensohn et al.
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SR grain (r):

" xð Þ ¼ M ðrÞ : � xð Þ þ "oðrÞ ð3Þ

where M(r) and "o(r) are, respectively, the viscoplastic compliance and the

back-extrapolated term of SR grain (r). Depending on the linearization assumption,

M(r) and "o(r) can be chosen differently (below we discuss some possible choices).

Taking a volumetric average we obtain:

" ðrÞ ¼ M ðrÞ : � ðrÞ þ "oðrÞ ð4Þ

where "(r) and �(r) are average magnitudes in the volume of SR grain (r). Performing

homogenization on a linear heterogeneous medium, whose local behaviour is

described by equation (3), consists in assuming an analogous linear relation at the

effective medium (macroscopic) level:

E ¼ �M : �þ Eo ð5Þ

where E and � are overall (macroscopic) magnitudes and �M and Eo are the

macroscopic viscoplastic compliance and back-extrapolated term, respectively.

The latter moduli are a priori unknown and need to be adjusted. The usual

procedure to obtain the homogenized response of a linear polycrystal is the linear

self-consistent method. The problem underlying the self-consistent method is that

of an inhomogeneous domain (r) of moduli M(r) and "o(r), embedded in an infinite

medium of moduli �M and Eo. Invoking the concept of the equivalent inclusion [78],

the local constitutive behaviour in domain (r) can be rewritten as:

" xð Þ ¼ �M : � xð Þ þ Eo þ "� xð Þ ð6Þ

where "� xð Þ is an eigen-strain-rate field, which follows from replacing the

inhomogeneity by an equivalent inclusion. Rearranging and subtracting (5) from

(6) gives:

~� xð Þ ¼ �L : ~" xð Þ � "� xð Þð Þ ð7Þ

The symbol � denotes local deviations from macroscopic values of the correspond-

ing magnitudes and �L ¼ �M�1. Combining equation (7) with the equilibrium

condition gives:

�cij, j xð Þ ¼ ~�cij, j xð Þ ¼ ~�ij, j xð Þ þ ~�m,i xð Þ ð8Þ

where �cij and �
m are the Cauchy stress and the mean stress, respectively. Using the

relation ~"ijðxÞ ¼ ð1=2Þ ~ui, jðxÞ þ ~uj,iðxÞ
� �

between strain-rate and velocity-gradient,

and adding the incompressibility condition associated with plastic deformation,

we obtain:

�Lijkl ~uk,lj �xð Þ þ ~�m,i �xð Þ þ fi �xð Þ ¼ 0
~uk,k �xð Þ ¼ 0

���� ð9Þ

where the fictitious volume force associated with the heterogeneity is:

fi xð Þ ¼ � �Lijkl"
�
kl,j xð Þ ð10Þ

Self-consistent formalisms for viscoplastic polycrystals 4291
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System (9) consists of four differential equations with four unknowns: three are the
components of velocity deviation vector ~ui xð Þ and one is the mean stress deviation
~�m xð Þ. Such system can be solved using the Green function method, as explained in
Appendix A. The average strain-rate and rotation-rate in the equivalent inclusion (r)
can be obtained from:

~" ðrÞ ¼ S : "�ðrÞ ð11Þ

~! ðrÞ ¼ � : "�ðrÞ ¼ � : S�1 : ~" ðrÞ ð12Þ

where ~" ðrÞ ¼ E� " ðrÞ and ~! ðrÞ ¼ �� ! ðrÞ are deviations of the average strain-rate
and rotation-rate inside the inclusion, with respect to the corresponding overall
magnitudes, "*(r) is the average eigen-strain-rate in the inclusion, and S and � are
the (viscoplastic) symmetric and skew-symmetric Eshelby tensors, functions of �L
and the shape of the ellipsoidal inclusion, representing the morphology of the
SR grains.

2.2. Interaction and localization equations

Taking volume averages over the domain of the inclusion on both sides of
equation (7) gives:

~� ðrÞ ¼ �L : ~" ðrÞ � "�ðrÞ
� �

ð13Þ

Replacing the eigen-strain-rate given by equation (11) into equation (13), we obtain
the interaction equation:

~" ðrÞ ¼ � ~M : ~� ðrÞ ð14Þ

where the interaction tensor is given by:

~M ¼ I� Sð Þ
�1: S : �M ð15Þ

Replacing the constitutive relations for inclusion and effective medium in the
interaction equation (14), after some manipulation one can write the following
localization equation:

� ðrÞ ¼ B ðrÞ : �þ b ðrÞ ð16Þ

where the localization tensors are defined as:

B ðrÞ ¼ M ðrÞ þ ~M
� ��1

: �Mþ ~M
� �

ð17Þ

b ðrÞ ¼ M ðrÞ þ ~M
� ��1

: Eo � "oðrÞ
� �

ð18Þ

2.3. Self-consistent equations

The derivation presented in the previous sections solves the problem of an equivalent
inclusion embedded in an effective medium subjected to external loading conditions.
In this section, we use the previous result to construct a polycrystal model, consisting

4292 R. A. Lebensohn et al.
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in regarding each SR grain (r) as an inclusion embedded in an effective medium
that represents the polycrystal. The properties of such medium are not known
a priori but have to be found through an iterative procedure. Replacing the
stress localization equation (16) in the average local constitutive equation (4),
we obtain:

" ðrÞ ¼ M ðrÞ : � ðrÞ þ "oðrÞ ¼ M ðrÞ : B ðrÞ : �þM ðrÞ : bðrÞ þ "oðrÞ ð19Þ

Taking equation (19), enforcing the condition that the weighted average
of the strain-rates over the aggregate has to coincide with the macroscopic
quantities, i.e.:

E ¼ "ðrÞ
� �

ð20Þ

(where the brackets h i denote average over the SR grains, weighted by the associated
volume fraction), and using the macroscopic constitutive equation (5), we obtain
the following self-consistent equations for the homogeneous compliance, and the
back-extrapolated term (strain-rate at zero stress):

�M ¼ M ðrÞ : B ðrÞ
� �

ð21Þ

Eo ¼ M ðrÞ : bðrÞ þ "oðrÞ
� �

ð22Þ

These self-consistent equations are derived imposing the average of the local
strain-rates to coincide with the applied macroscopic strain-rate (equation (20)). If all
the SR grains are represented by ellipsoids that have the same shape and orientation,
it can be shown that the same equations are obtained from the condition that the
average of the local stresses coincides with the macroscopic stress. If the SR grains
have different morphologies, they have associated different Eshelby tensors and the
interaction tensors cannot be factored from the averages. In such a case, the
following generalized self-consistent expressions should be used [79]:

�M ¼ M ðrÞ : B ðrÞ
� �

: B ðrÞ
� ��1

ð23Þ

Eo ¼ M ðrÞ : b ðrÞ þ "oðrÞ
� �

� M ðrÞ : B ðrÞ
� �

: B ðrÞ
� ��1

: b ðrÞ
� �

ð24Þ

The self-consistent relations (21) and (22) are a particular case of (23) and (24). Both
sets constitute fix-point equations that provide improved estimates of �M and Eo,
when they are solved iteratively starting from a suitable initial guess. From a
numerical point of view, equations (23) and (24) are more robust and improve the
speed and stability of the convergence procedure, even when solving a problem
where all the inclusions have the same shape.

2.4. Secant, affine, tangent and intermediate approximations

As stated earlier, different choices are possible for the linearized behaviour at grain
level and the results of the homogenization scheme depend on this choice. In what
follows, we present several first-order linearization schemes, defined in terms of the
stress first-order moment (average) inside SR grain (r).

Self-consistent formalisms for viscoplastic polycrystals 4293



D
ow

nl
oa

de
d 

B
y:

 [L
os

 A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y]

 A
t: 

15
:1

9 
29

 A
ug

us
t 2

00
7 

The secant approximation [63, 64] consists in assuming the following linearized

moduli:

M ðrÞ
sec ¼ �o

X
k

mkðrÞ �mkðrÞ

�kðrÞo

mkðrÞ : � ðrÞ

�kðrÞo

� �n�1

ð25Þ

"oðrÞsec ¼ 0 ð26Þ

where the index (r) in mk(r) and �kðrÞo indicates uniform (average) values of these

magnitudes, corresponding to a given orientation and hardening state associated

with SR grain (r).
Under the affine approximation [65], the moduli are given by:

M
ðrÞ
aff ¼ n�o

X
k

mkðrÞ �mkðrÞ

�kðrÞo

mkðrÞ : � ðrÞ

�kðrÞo

� �n�1

ð27Þ

"oðrÞaff ¼ 1� nð Þ�o
X
k

mkðrÞ : � ðrÞ

�kðrÞo

� �n

ð28Þ

In the case of the tangent approximation [1, 2], the moduli are, formally, the same

as in the affine case: M
ðrÞ
tg ¼ M

ðrÞ
aff and "oðrÞtg ¼ "oðrÞaff . However, instead of using these

moduli and to avoid the iterative adjustment of the macroscopic back-extrapolated

term, Molinari et al. [1] used the secant SC moduli (equations (25) and (26)) to adjust
�M (to be denoted �Msec), in combination with the tangent–secant relation:
�Mtg ¼ n �Msec derived by Hutchinson [64]. Then, the expression of the interaction

tensor is given by:

~M ¼ I� Sð Þ
�1: S : �Mtg ¼ n I� Sð Þ

�1: S : �Msec ð29Þ

Qualitatively, the interaction equation (14) indicates that the larger the

interaction tensor, the smaller the deviation of grain stresses with respect to the

average stress should be. As a consequence, for n!1 the tangent approximation

tends to a uniform stress state (Sachs or lower-bound approximation). This

rate-insensitive limit of the tangent formulation is an artefact created by the use of

the above tangent–secant relation of the non-linear polycrystal in the self-consistent

solution of the linear comparison polycrystal. Since, on the other hand, the secant

interaction has been proven to be stiff and to tend to a uniform strain-rate state

(Taylor or upper-bound approximation) in the rate-insensitive limit, an effective-n

approximation was proposed [80, 81]. This approximation gives a polycrystal

response in between the stiff secant and the compliant tangent, which remains

intermediate with respect to the bounds in the rate-insensitive limit and is obtained

by replacing, in equation (29), the factor n by a ‘tunable’ parameter neff, chosen to be

15neff5n. The interaction tensor is, therefore, given by:

~M ¼ neff I� Sð Þ
�1: S : �Msec ð30Þ

4294 R. A. Lebensohn et al.
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2.5. Second-order formulation

2.5.1. Second-order moments. The effective stress potential �UT of a linearly viscous
polycrystal described by equation (5) may be written in the form [82, 83]:

�UT ¼
1

2
�M :: ���ð Þ þ Eo : �þ

1

2
�G ð31Þ

where �G is the energy under zero applied stress. Let us rewrite the self-consistent

expression for �M and Eo (equations (21) and (22)) as:

�M ¼ M ðrÞ : B ðrÞ
� �

¼
X
r

c ðrÞM ðrÞ : B ðrÞ ð32Þ

Eo ¼ M ðrÞ : b ðrÞ þ "oðrÞ
� �

¼
X
r

c ðrÞ M ðrÞ : b ðrÞ þ "oðrÞ
� �

¼
X
r

c ðrÞ"oðrÞ : B ðrÞ ð33Þ

where c(r) is the volume fraction associated with SR grain (r). (The equivalence

between both sums in equation (33) was proved by Laws [82]). Finally, the

corresponding expression for �G is:

�G ¼
X
r

c ðrÞ"oðrÞ : b ðrÞ ð34Þ

The average second-order moment of the stress field over a SR grain (r) of this

polycrystal is a fourth-rank tensor given by [70]:

� � �h i ðrÞ¼
2

c ðrÞ

@ �UT

@M ðrÞ
ð35Þ

Replacing equations (31)–(34) in (35) we obtain:

� � �h i ðrÞ¼
1

c ðrÞ

@ �M

@M ðrÞ
:: ���ð Þ þ

1

c ðrÞ

@Eo

@M ðrÞ
: �þ

1

c ðrÞ

@ �G

@M ðrÞ
ð36Þ

Using matrix notation for symmetric deviatoric tensors [84], the first derivative in the

right term can be obtained solving the following equation:

�ijkl
@ �Mkl

@M ðrÞ
uv

¼ � ðr,uvÞ
ij ð37Þ

where i, j, k, l and u,v¼ 1,5. The expressions for �ijkl and � ðr,uvÞ
ij are given in

Appendix B. Expression (37) is a linear system of 25 equations with 25 unknowns

(i.e. the components of @ �Mkl=@M
ðrÞ
uv ). In turn, the other two derivatives appearing

in equation (36) can be calculated as:

@Eo
i

@M ðrÞ
uv

¼ �ikl
@ �Mkl

@M ðrÞ
uv

þ � ðr,uvÞ
i ð38Þ

@ �G

@M ðrÞ
uv

¼ ’ij
@ �Mij

@M ðrÞ
uv

þ #i
@Eo

i

@M ðrÞ
uv

þ � ðr,uvÞ ð39Þ

where �ikl, ’ij, #i, �
ðr,uvÞ
i and � ðr,uvÞ are given in Appendix B.
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Once the average second moments of the stress are obtained, the corresponding

second moments of the strain-rate can be calculated as:

"� "h i ðrÞ¼ M ðrÞ �M ðrÞ
� �

:: � � �h i ðrÞ þ " ðrÞ � "oðrÞ þ "oðrÞ � " ðrÞ � "oðrÞ � "oðrÞ ð40Þ

The average second moments can be used, for instance, to generate the average

second moment of the equivalent stress and strain-rate in mechanical phase (r) as:

��� ðrÞ
eq ¼

3

2
I :: � � �h i ðrÞ

� �1=2

ð41Þ

��" ðrÞ
eq ¼

2

3
I :: "� "h i ðrÞ

� �1=2

ð42Þ

where I is the fourth order identity tensor. The standard deviations of the

equivalent magnitudes over the whole polycrystal are defined as:

SD �eq
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���
2

eq �� 2
eq

q
ð43Þ

SD "eq
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��E
2

eq � E 2
eq

q
ð44Þ

where:

���
2

eq ¼
��� ðrÞ
eq

	 
 2
� �

¼
X
r

c ðrÞ ��� ðrÞ
eq

	 
 2

ð45Þ

��E
2

eq ¼
��" ðrÞ
eq

	 
 2
� �

¼
X
r

c ðrÞ ��" ðrÞ
eq

	 
 2

ð46Þ

The overall SDs defined by equations (43) and (44) are global scalar indicators

that contain information about both inter-phase and intra-phase stress and strain-

rate heterogeneity. Let us define alternate SDs that only reflects inter-phase (but not

intra-phase) dispersions:

SD0 �eq
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ðrÞ
eq

	 
 2
� �

�� 2
eq

s
ð47Þ

SD0 "eq
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
" ðrÞ
eq

	 
 2
� �

� E 2
eq

s
ð48Þ

Finally, a measure of the intra-phase strain-rate heterogeneity relative to the total

strain-rate heterogeneity can be defined as:

	"%intra ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
" ðrÞ
eq

	 
 2
� �

� E 2
eq

��E
2

eq � E 2
eq

vuuuut
0
BBB@

1
CCCA� 100 ð49Þ
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The latter adopts values between 0%, when the strain-rate is homogeneous inside
each mechanical phase, i.e. hð" ðrÞ

eq Þ
2
i ¼ E 2

eq, and 100%, when all the heterogeneity is

due to fluctuations between mechanical phases, i.e. hð" ðrÞ
eq Þ

2
i ¼ E

¼
2
eq. An analogous

magnitude can be defined for the intra-phase stress heterogeneity.

2.5.2. Second-order procedure. Once the average second-order moments of the
stress field over each SR grain (r) are obtained by means of the calculation of the
derivatives appearing in equation (36), the implementation of the SO procedure
follows the work of Liu and Ponte Castañeda [70]. The covariance tensor of stress
fluctuations is given by:

C ðrÞ
� ¼ � � �h i ðrÞ�� ðrÞ � � ðrÞ ð50Þ

The average and the average fluctuation of resolved shear stress on slip system (k) of
SR grain (r) is given by:

��kðrÞ ¼ mkðrÞ : � ðrÞ ð51Þ

�̂kðrÞ ¼ ��kðrÞ � mkðrÞ : C ðrÞ
� : mkðrÞ

� �1=2
ð52Þ

where the positive (negative) branch should be selected if ��kðrÞ is positive (negative).
The slip potential of slip system (k) is defined as:


k �ð Þ ¼
�ko

nþ 1

�j j

�ko

� �nþ1

ð53Þ

Two scalar magnitudes associated with each slip system (k) of each SR grain (r)
are defined by:

�kðrÞ ¼

0kðrÞ �̂kðrÞ

� �
� 
0kðrÞ ��kðrÞ

� �
�̂kðrÞ � ��kðrÞ

ð54Þ

ek rð Þ ¼ 
0k rð Þ ��k rð Þ
� �

� �k rð Þ ��k rð Þ ð55Þ

where 
0k �ð Þ ¼ d
k=d� �ð Þ. The linearized local behaviour associated with SR grain (r)
is then given by:

" ðrÞ ¼ M
ðrÞ
SO : � ðrÞ þ "oðrÞSO ð56Þ

with:

M
ðrÞ
SO ¼

X
k

�kðrÞ mkðrÞ �mkðrÞ
� �

ð57Þ

"oðrÞSO ¼
X
k

ekðrÞmkðrÞ ð58Þ

Once the linear comparison polycrystal is defined by equations (57) and (58)
different second-order estimates of the effective behaviour of the nonlinear
aggregate can be obtained. Approximating the potential of the nonlinear polycrystal
in terms of the potential of the linear comparison polycrystal and a suitable measure

Self-consistent formalisms for viscoplastic polycrystals 4297
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of the error, Liu and Ponte Castaneda [70] generated the following expression
(corresponding to the so-called energy version of the second-order theory) for the
effective potential of the nonlinear polycrystal [70]:

�U �ð Þ ¼
X
r

c ðrÞ
X
k


kðrÞ �̂kðrÞ
� �

þ 
0kðrÞ ��kðrÞ
� �

��kðrÞ � �̂kðrÞ
� � �

ð59Þ

From where the effective response of the homogenized polycrystal can be obtained as
E ¼ @ �U �ð Þ=@�. The alternate constitutive equation version of the second-order theory
simply consists in making use of the effective stress–strain rate relations for the linear
comparison polycrystal, in which case, e.g. the effective strain is obtained as:

E ¼
X
r

c ðrÞ
X
k

mkðrÞ
0kðrÞ ��kðrÞ
� �

ð60Þ

Both versions of the SO theory give slightly different results, depending on
non-linearity and local anisotropic contrast. Such a gap is relatively small compared
with the larger variations obtained with the different SC approaches. For variable
nonlinearity, the gap between the two second-order model versions exhibits a
maximum at an intermediate value of exponent n (between 1 and infinity) and
vanishes for these two extreme values. For increasing local anisotropic contrasts,
the gap appears to stabilize at sufficient large contrasts [70]. The ‘constitutive
equation’ version is, in principle, less rigorous since it does not derive from
a potential function, but has the advantage that can be obtained by simply
following the affine algorithm described in the previous sections, using the linearized
moduli defined by equations (57) and (58). Therefore, it is the adequate choice to be
implemented in the VPSC code.

2.6. Numerical implementation

2.6.1. Algorithm. To illustrate the use of this formulation, we describe here the
steps required to predict the local and overall viscoplastic response of a polycrystal,
for an applied macroscopic velocity gradient, decomposed into the symmetric
strain-rate and the skew-symmetric rotation-rate: Ui, j¼Eijþ�ij. Mixed boundary
conditions (i.e. some components of the macroscopic velocity gradient and some
of the macroscopic stress imposed) or fully-imposed macroscopic stress (creep)
conditions can be solved as well, with slight variations of the algorithm described
below. Starting with an initial Taylor guess, i.e. "(r)¼E for all grains, we solve the
following non-linear equation to get �(r):

E ¼ �o
X
k

mkðrÞ mkðrÞ : � ðrÞ

�kðrÞo

� �n
ð61Þ

and use of an appropriate first-order linearization scheme is made to obtain
initial values of M(r) and "o(r) for each SR grain (r). Next, initial guesses for the
macroscopic moduli �M and Eo are obtained (usually as simple averages of the local
moduli). With them and the applied strain-rate, the initial guess for the macroscopic
stress � can be obtained (equation (5)), while the Eshelby tensors S and � can be

4298 R. A. Lebensohn et al.
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calculated using the macroscopic moduli and the ellipsoidal shape of the SR grains
via the procedure described in Appendix A. Subsequently, the interaction tensor ~M
(equation (15)) and the localization tensors B(r) and b(r) (equations (17) and (18))
can be calculated as well. With these tensors, new estimates of �M and E o are
obtained by solving iteratively the self-consistent equations (21) and (22) (for a
unique grain shape) or (23) and (24) (for a distribution of grain shapes). After
achieving convergence on the macroscopic moduli (and, consequently, also on the
macroscopic stress and the interaction and localization tensors), a new estimation
of the average grain stresses can be obtained, using the localization relations
(equation (16)). If the recalculated average grain stresses are different (within certain
tolerance) from the input values, a new iteration should be started, until reaching
convergence. If the chosen linearization scheme is the second-order formulation,
an additional loop on the linearized moduli is needed, using the improved estimates
of the second-order moments of the stress in the grains, obtained by the methodology
described in section 5.1 and Appendices B and C. Otherwise, the iterative procedure
is completed and the average shear-rates on the slip (or twinning) of each system (k)
in each grain (r) are calculated as:

�kðrÞ ¼ �o
mkðrÞ : � ðrÞ

�kðrÞo

� �n

: ð62Þ

These average shear-rates are in turn used to calculate the rotation-rates of
the inclusions representing grains and of the lattice associated with each SR grain
(a description of how kinematics is dealt with in VPSC can be found in [3]).

It is worth noting that in the case of first-order approximations, although the
second-order moments are not needed to readjust iteratively the linearized behaviour
of the SR grains, the average field fluctuations associated with the converged values
of the effective moduli can be obtained as well, after convergence is reached.

The above numerical scheme can be used either to obtain the anisotropic
response of the polycrystal, e.g. probing it along one (or several) strain-paths,
by applying strain-rates and obtaining the corresponding stress response, or to
predict texture development, by applying viscoplastic deformation in incremental
steps. The latter is done by assuming constant rates during a time interval �t
(such that E �t corresponds to a macroscopic strain increment in the order of a few
percents) and using: (a) the strain-rates and rotation-rates (times �t) to update the
shape and orientation of the SR grains and (b) the shear-rates (times �t) to update
the critical stress of the deformation systems due to strain hardening, after each
deformation increment. While any arbitrary hardening law may be implemented,
we frequently use an extended Voce law [85], characterized by an evolution of the
threshold stress with accumulated shear strain in each grain of the form:

��kðrÞ ¼ �koo þ ð�k1 þ �
k
1�

ðrÞÞð1� expð�� ðrÞ �ko=�
k
1

�� ��ÞÞ ð63Þ

where �(r) is the total accumulated shear in the grain; �koo, �
k
1 , �

k
o and �k1 are the initial

threshold stress, the initial hardening rate, the asymptotic hardening rate and the
back-extrapolated threshold stress, respectively. In addition, we allow for the
possibility of ‘self ’ and ‘latent’ hardening by defining coupling coefficients hkk

0

,
which empirically account for the obstacles that new dislocations (or twins)

Self-consistent formalisms for viscoplastic polycrystals 4299
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associated with system k0 represent for the propagation of dislocations (or twins) on
system k. The increase in the threshold stress is calculated as:

��kðrÞo ¼
d��kðrÞ

d� ðrÞ

X
k0

hkk
0

�k
0ðrÞ�t ð64Þ

2.6.2. Numerical aspects of the SO implementation. The SO procedure requires
iterating over M

ðrÞ
SO and "oðrÞSO to obtain improved estimations of the linear comparison

polycrystal. Each of these trial polycrystals has associated different first- and
second-order moments of the stress field in the SR grains. These statistical moments
can be used to obtain new values of �k(r) and ek(r), which in turn define a new linear
comparison polycrystal, etc. This procedure is terminated when the input and output
values of �k(r) and ek(r) coincide within a certain tolerance. This additional iterative
procedure is more numerically demanding than the one required by first-order
approximations (which in a SO context are also needed, being internal to the linear
comparison polycrystal loop). Here, we describe some aspects of the numerical
implementation of the external SO loop, which are essential to achieve convergence.

Initial guess for �k(r) and ek(r). The scheme to adjust the values of �k(r) and ek(r)

requires the adoption of initial guesses for these magnitudes. The adoption of an
‘affine’ initial guess usually provides a well-conditioned starting point for the
external SO loop. The ‘affine’ guess reads:

�kðrÞ o½ � ¼ n�o
mkðrÞ : � ðrÞ
� �n�1

�kðrÞo

	 
n ð65Þ

ekðrÞ o½ � ¼ 1� nð Þ�o
mkðrÞ : � ðrÞ

�kðrÞo

� �n
ð66Þ

‘Incremental’ procedure for low rate-sensitive materials. If an SO calculation is
performed for a low rate-sensitive material (i.e. large n value), the procedure
described above for the adjustment �k(r) and ek(r) may fail to converge. In that case,
the convergence could be achieved by using incremental steps in the exponent n.
Typically, it is necessary to: (a) obtain converged values of �k(r) and ek(r) for the
first three values in a sequence of increasing exponents n, (b) use those three initial
values of �k(r) and ek(r) to perform a quadratic interpolation for each of these
magnitudes, (c) obtain extrapolated estimations of �k(r) and ek(r) to be used as initial
guesses for the subsequent exponents in the incremental sequence.

‘Partial’ update of �k(r) and ek(r). Since the values of the second-order moments are
strongly dependent on the linear comparison polycrystal (determined from the set of
�k(r) and ek(r)) and this set is obtained precisely from second-order moments, it is
sometimes necessary to adopt a ‘partial’ update criterion for iterative adjustment of
�k(r) and ek(r). For example, if �k(r)[i] and �k(r)[new] are, respectively, the current value
and the corresponding new estimation of �k(r) obtained by means of equation (54),

4300 R. A. Lebensohn et al.
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a smooth convergence requires the actual updated value be adopted as: �k(r)[iþ1]
¼

(2/3)�k(r)[i]þ (1/3)�k(r)[new]. Similar ‘conservative’ update is required for ek(r).

3. Results

3.1. Model materials

The advantage of using field fluctuation information in nonlinear
homogenization schemes to get improved predictions of the mechanical behaviour
and texture development of viscoplastic polycrystals, becomes evident as the
heterogeneity (contrast in local properties) increases. The two possible sources
of heterogeneity in single-phase viscoplastic aggregates are the nonlinearity of the
material’s response and the local anisotropy of the constituent single
crystals. To study the influence of both sources of heterogeneity, in section 3.2 we
show examples of self-consistent calculations on different material systems: (a) fcc
aggregates (compatible with, e.g. polycrystalline copper) with fix local anisotropy
(given by the, rather mild, range of variation of the Taylor factor of individual
grains) and variable rate-sensitivity, and (b) hexagonal polycrystals with four
and two soft independent slip systems, and orthorhombic aggregates (compatible
with Ti deforming at high temperature, ice and olivine, respectively), with mild
nonlinear behaviour and variable local anisotropy, given by the ratio between
the threshold resolved shear stresses associated with hard and soft slip modes.
In sections 3.3 and 3.4, specific fcc and hcp systems will be considered for the
prediction of texture development of rolled low stacking-fault energy (SFE) fcc
materials and polycrystalline ice under compression, respectively.

3.2. Effective behaviour and field heterogeneity

The prediction of the effective properties of a random fcc polycrystal as the
rate-sensitivity of the material decreases is a classical benchmark for the different
non-linear SC approaches. Figure 1a (linear scale) and 1b (log scale) show a
comparison between average Taylor Factor (TF) versus rate-sensitivity (1/n) curves,
for a random fcc polycrystal under uniaxial tension. The TF was calculated as
�ref

eq =�o, where �o is the threshold stress of the (111)h110islip systems and �ref
eq is

the macroscopic equivalent stress corresponding to an applied uniaxial strain-rate
with a Von Mises equivalent value Eref

eq ¼ 1. The curves in figure 1 correspond to the
Taylor model, the different first-order SC approximations and the SO procedure.
The solid star indicates the rate-insensitive Sachs estimate. The open stars
correspond to the ‘exact’ solution, obtained from ensemble averages of full-field
solutions of the governing equations (equilibrium and compatibility), performed on
100 polycrystals with random microstructure, by means of a numerical scheme based
on Fast Fourier Transforms (FFT) [86, 87] (for more details on the FFT method
and the averaging procedure, see [76]). It can be observed that: (a) the Taylor
approach gives the stiffest response, consistent with the upper-bound character
of this model; (b) all the SC estimates coincide for n¼ 1, i.e. the linear SC case;

Self-consistent formalisms for viscoplastic polycrystals 4301
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(c) in the rate-insensitive limit, the secant and tangent models tend to the upper- and
lower-bounds, respectively, while the affine and second-order approximations
remain intermediate with respect to the bounds; (d) except for the tangent model
for n410, the SO procedure gives the lowest TF among the SC approaches.
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Figure 1. Average Taylor Factor and normalized overall standard deviations versus
rate-sensitivity for a random fcc polycrystal under uniaxial tension calculated with the
different SC approaches (linesþ symbols), and ‘exact’ values (stars) from ensemble averages of
FFT-based solution [76]. Left: linear scale plots; right: log–log plots.
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This softer macroscopic response (i.e. a lower stress is needed to induce a given
strain-rate) is a consequence of the softer behaviour at grain level in the linear
comparison polycrystal that results when the average field fluctuations are
considered for the determination of the linearized behaviour of the SR grains;
(e) the best match with the exact solutions (at least for rate-sensitivity exponents
up to 20, i.e. the highest value we were able to use in the full-field computations,
without loosing accuracy) corresponds to the SO estimates.

Concerning the overall heterogeneity of the mechanical fields, reflected in the
standard deviations of the equivalent magnitudes over the whole polycrystal
(equations (43) and (44)), the SC predictions (including the SO approximation) are
less accurate. Figures 1c and e (linear scale) and figures 1d and f (log scale) show
these overall SDs (normalized, for an unbiased comparison, by the corresponding
effective magnitudes) as a function of the rate-sensitivity. It can be observed that:
(a) at high nonlinearities only the SC models that do not tend to the bounds in the
rate-insensitive limit (i.e. AFF and SO) show the expected increases in both stress
and strain-rate heterogeneity. In the TG case, the stress heterogeneity decreases as
the rate heterogeneity increases, while the SEC approach predicts the opposite trend;
(b) both, the AFF and SO approximations overestimate the strain heterogeneity;
(c) the SO gives the best match with the full-field predictions for the stress
heterogeneity, although it remains below the exact solution. In connection with the
SO estimates, the use of the field fluctuations in the linear comparison material to
estimate the corresponding fluctuations in the VP polycrystal has recently been
shown [88] to be inconsistent. In fact, improved estimates can be generated by taking
into account certain correction terms that are associated with the lack of full
stationarity of these estimates with respect to the reference stresses. Still, the SC
methods would not be expected to yield accurate estimates for the higher-order
statistics of the fields, which become increasingly more sensitive to the details of the
microstructure as the order increases. For example, the third-order moments, which
contain information on the asymmetry of the distributions, are likely to become
relatively important in low rate-sensitivity materials [89], since the strain tends to
localize in deformation bands inside or across grains.

The next example concerns predictions of the effective behaviour of random
aggregates composed by 2000 SR grains with less than five linearly independent soft
slip systems. In this case, we analyze the dependence with the local contrast M, given
by the ratio between the critical stresses associated with the hard and the soft slip
modes. Figure 2 shows the predicted effective stress, relative to the threshold stress
of the soft slip systems �ref

eq =�
soft
o (where �ref

eq corresponds to an applied uniaxial
strain-rate, with a Von Mises equivalent Eref

eq ¼ 1), as a function the local contrast M,
predicted by different homogenization approaches, and by the ensemble averages
of exact FFT-based solutions, for the following cases:

(1) A random hcp aggregate with four linearly independent soft slip systems,
given by a suitable combination of {1010}h1120i prismatic (pr) slip, and
(0001)h1120i basal (bas) slip (such that �softo ¼ �pro ¼ �baso ). The hard slip mode
is {1011}h1123i pyramidal-5cþ a4 of the 1st-type (pyr1), and the
contrast parameter is, therefore, given by M ¼ �pyr1o =�pro ¼ �pyr1o =�baso .
Assuming a rate-sensitivity exponent n¼ 4 and a c/a ratio of 1.587,

Self-consistent formalisms for viscoplastic polycrystals 4303
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makes this system compatible with a Ti aggregate deforming at elevated
temperatures [90].

(2) A random orthorhombic aggregate, with three linearly independent soft slip
systems, given by a suitable combination of (010)[100], (001)[100], (010)[001],
(100)[001]. The hard mode, which closes the single crystal yield surface,
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Figure 2. Plots of reference stress versus contrast for random polycrystals with different
number of independent soft slip systems obtained with different SC approaches (lines) and
from ensemble averages of FFT-based ‘exact’ solution [76] (symbols). Left column: linear scale
plots, up to a contrast of 50. Right column: log–log plots, up to a contrast of 1000. The value
of � correspond to the slope of the logarithmic line.
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is assumed to be {111}h110i. All the soft systems were assumed to have the
same threshold stress �softo , resulting in a contrast parameter M ¼ �f111go =�softo .
With a rate-sensitivity exponent n¼ 4 and b/a and c/a ratios of 2.122
and 1.245, respectively, this material system is compatible with an
olivine polycrystal, deforming under conditions found in the Earth’s upper
mantle [44].

(3) A random hcp aggregate with two linearly independent soft systems,
corresponding to {0001}h1120i basal slip (i.e. �softo ¼ �baso ). The hard slip
modes are the {1010}h1120i prismatic slip and the {1122}h1123i pyramidal-
5cþ a4 of the 2nd-type (pyr2), and the contrast parameter is given by
M ¼ �pro =�

bas
o ¼ �pyr2o =�baso . Assuming a rate-sensitivity exponent n¼ 3 and a c/

a ratio of 1.629, this material system is compatible with an ice polycrystal,
deforming under conditions found in glaciers [35].

Figures 2a, c and e show the curves (plotted in linear scale) of reference stress
(i.e. �o ¼ �ref

eq =�
soft
o , for Eref

eq ¼ 1) versus contrast M, predicted with the different SC
approximations, the Taylor model and the full-field FFT-based solution, forM up to
50. The agreement between the SO estimates and the exact solutions is
apparent. Figures 2b, d and f show log–log plots of the effective stress
obtained with the different homogenization models, for contrasts up to 1000, with
the corresponding regression lines superimposed. It is evident that the results for all
models can be described by scaling laws of the form �O�M� [91]. In every case
analyzed (i¼ 2, 3 and 4, where i is the number of linearly independent soft systems),
�ffi 1 for the Taylor model and �ffi 0 for the tangent SC approach (note that the
latter exponent also corresponds to the lower-bound Sachs model), while the secant,
affine and second-order SC models give different exponents, depending on the value
of i. Interestingly, the exponents corresponding to the SO approach follow the
relation proposed by Nebozhyn et al. [91]: �ffi (4�i)/2, in the context of Ponte
Castañeda’s 1991 variational approach. The asymptotic trend to the lower-bound
that the tangent SC approach exhibits when the contrast increases due to the increase
of the exponent n (see section 2.4), is also obtained when the heterogeneity
increases due to local anisotropy, even for relatively low values of n. This observation
sheds light on why the tangent SC approach has been favoured to predict mechanical
behaviour of low-symmetry materials (e.g. olivine and related high-pressure
silicates [43–46] and ice [35–37]), which have ‘open’ single crystal yield surfaces
with three or less independent deformation systems. In such cases, the tangent SC
approach allows accommodation of the local deformation with the available slip
systems, without the need of ‘artificial’ systems to close the single crystal yield
surface. While these artificial hard systems make a very small contribution to strain,
they have a strong influence on the predicted macroscopic behaviour (effective
viscosity) in these low-symmetry systems, unless a saturated behaviour, like the one
displayed by the tangent predictions in figure 2, is obtained.

Next, we analyze the field heterogeneity as a function of the contrast parameter
M for the above case of the hcp polycrystal with two independent soft slip systems
representative of ice. Figures 3a and b show, respectively, the overall stress and
strain-rate standard deviations (equations (43) and (44)) that reflect both the
intra-phase and the inter-phase field heterogeneities, together with the alternate SD

Self-consistent formalisms for viscoplastic polycrystals 4305
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definitions (equations (47) and (48)) that measure inter-phase fluctuations only,
obtained with the different SC approximations (in the Taylor case, only inter-phase
SDs can be computed). The following observations can be made: (a) we obtain the
expected sequence for the stress heterogeneity indicators (TG5SO5AFF5
SEC5Taylor), for the whole range of contrast parameters and for both sets
of SDs (note that the reverse sequence is obtained for the strain heterogeneity);
(b) the intragranular and intergranular heterogeneities are of the same order
for the range of contrast analyzed; (c) within the rather comprehensive
interval 15M55 the heterogeneities increase linearly with contrast. Concerning
the intra-phase strain-rate heterogeneity factor (equation (49)), figure 4 shows its
trend to increase as the contrast increases, for the different SC approximations. In
the case of the SO approach, the intra-phase strain-rate fluctuations go from
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Figure 3. Normalized overall standard deviations of (a) stress and (b) strain-rate versus
contrast for the case of a random hcp polycrystal with two independent soft slip systems (ice)
obtained with different SC approaches. The interþ intra and inter labels correspond to the SD
definitions given by equations (43) and (44), and (47) and (48), respectively.
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representing one third of the total heterogeneity for M¼ 1 to more than a half, for
M¼ 50. This is an indication that, as the local anisotropy increases, the behaviour of
a grain is more sensitive to its particular environment and, concomitantly, the strain-
rate field inside the grains is more heterogeneous.

3.3. Texture evolution of fcc polycrystals under plane-strain

Predicting the brass-type texture in cold-rolled low-SFE fcc materials and,
more importantly, understanding the microstructural reasons leading to the
formation of this texture is a classical problem in the texture community (for a
comprehensive review, see [92]). Even if the initial material does not usually exhibit a
particularly high local anisotropy (e.g. a recrystallized aggregate), it is now well
established that the microstructural evolution in low-SFE fcc materials is
characterized by the appearance of very thin mechanical twins in a significant
fraction of grains. The twins induce a strong plastic anisotropy in those grains.
As a consequence, we expect that the different SC approaches should give
significantly different predictions of texture evolution in low SFE fcc, when this
induced anisotropy is accounted for.

Leffers and Juul Jensen [93] have characterized the microstructural evolution of
cold-rolled brass (15% zinc) by these salient features: (a) mechanical twins appear
at early stages of deformation, in about 40% of the (initially randomly oriented)
grains, (b) the twins are very thin and, therefore, make a minor volumetric
contribution to texture (as opposed to the strong contribution of twinning to texture
evolution in, e.g., hcp metals), (c) twin ’bundles’ usually lie parallel to a particular
{111} plane, i.e. the twin plane, (d) twins act as effective barriers to dislocations
gliding on {111} planes different from the twin plane, therefore ’coplanar’ single slip
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Figure 4. Intra-phase strain rate heterogeneity factor (equation (49)) versus contrast for the
case of a random hcp polycrystal with two independent soft slip systems (ice) obtained with
different SC approaches.
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(i.e. glide on one favourably-oriented system), with the slip plane coincident with the
twin plane of the predominant twins, is strongly favoured in grains with twins. Based
on this observed trend towards a single slip pattern in a large fraction of grains, in
the early days of texture development simulation a modified Sachs model was
proposed [94] to explain the formation of the brass-type texture. Later, the
tangent SC model was utilized, using a high n exponent to force a similar
close-to-lower-bound behaviour [14]. In what follows, we revisit the brass-type
texture prediction, using the different SC approaches described in previous sections.

To accurately account for the local anisotropy evolution associated with
mechanical twinning, we have proceeded as follows (see also [95]). The set of 1000
randomly generated orientations representing the initial low-SFE fcc polycrystal was
preprocessed under the assumption that {111}h110i slip and {111}h112i twinning
were the active deformation modes, with the same threshold stress. Applying a state
of plane-strain compression, we identified for each orientation the first and
second most active deformation systems. In this way, 418 of the 1000 grains were
identified, in which the geometrically favoured deformation systems were one slip
system and one twinning system sharing the same slip/twinning plane (note the good
agreement with the aforementioned observations [93] of about 40% of grains with
twins in cold-rolled 15%-zinc brass). These grains were then ‘marked’ to have
a strong non-coplanar latent hardening (NCLH), such that hkk

0

¼ 1 for systems k and
k0 having the same slip plane, and hkk

0

¼ 5 for k and k’ gliding on different
planes (see equation (64)). The remaining 582 grains were assigned an isotropic
hardening: hkk

0

¼ 1.5 for all k and k0. The adopted values of the other hardening
parameters were: �koo ¼ �k1 ¼ 16MPa, �ko ¼ 320MPa and �k1 ¼ 16MPa, ðk ¼ 1,12Þ
(see equation (63)). In this way, the sets of ‘marked’ and ‘non-marked’ grains
represent a ‘two-phase’ material, where both sets have initially the same local
mechanical response, but which, due to different hardening laws associated with the
likely presence of twins in the ‘marked’ grains, evolve differently, with coplanar slip
strongly favoured in the ‘marked’ grains. Only the effect of twinning on the
hardening of non-coplanar slip modes was taken into account in these simulations
and reorientation due to twinning was not considered, since experimental evidence
indicates little volumetric effect of twinning on texture [92, 93].

Figure 5 shows the results of rolling simulations (plane-strain compression) up to
a strain of two in the rolling direction (86% thickness reduction), carried out with
different SC approaches, rate sensitivity exponents and microstructure evolution
assumptions. For each case, the {111} and {100} pole figures are shown, together
with the evolution of the ideal rolling components and the average number of active
systems (AVACS) per grain. A given orientation is assigned to the {112}h111i copper
(Cu), {110}h112i brass (B), {123}h634i S, {110}h001i Goss (G), or {100}h001i cube
(C) component if it is within a misorientation smaller than 15	 from the component
(figure 6 shows the {111} and {100} poles corresponding to those ideal components).
The ‘other’ component corresponds to orientations not belonging to any of the
above. The AVACS in a grain was defined by the number of slip systems having
shear-rates higher than 5% of the shear-rate of the most active system. The first
column corresponds to a tangent SC simulation, without NCLH, and n¼ 40. This
close-to-lower-bound calculation (see figure 1 and note the low AVACS values in
figure 5) shows the development of a strong brass component, at the expense of all
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the other ideal components. This predominance of the brass component results in a
rolling texture quite different from the brass-type texture, which is characterized by
a balanced content of B and S, with minor fractions of G and Cu [96], as well as by a
non-negligible contribution of grains with {111} planes parallel to the rolling plane
(not counted as part of any of the ideal components) [92]. The second and third
columns show the results of the affine SC formulation for n¼ 20, without and with
NCLH in ‘marked’ grains, respectively. The resulting texture for the no NCLH case
is a copper-type texture, i.e. high proportion of S-component, followed by a balanced
contribution of Cu and B [96]. The incorporation of twinning-induced hardening
mechanisms via the NCLH in ’marked’ grains gives a component of orientations
having their {111} poles near the normal direction, but at the expense of reducing the
B-component, resulting in a departure from both the copper-type and the brass-type
textures.

The forth and fifth columns show the SO results. Without NCLH, the resulting
texture has a balanced S- and B-content, and minor Cu- and G-contents, but the
{111}//ND component is missing. When the selective NCLH is assumed, the right
proportions of S, B, Cu and G are also obtained, together with a component of grains
with their {111} poles near (but not exactly at) ND (note that these orientations
are responsible for the relative increase of the ‘other’ component at the expense of
S and B). Interestingly, the latter orientations overwhelmingly correspond to grains
with NCLH. The slip activity of these grains tend to concentrate on one particular
{111} plane very rapidly (see corresponding AVACS curve), leading to a local strain
state closer to simple shear, rather than the macroscopically imposed plane-strain
compression. The combined effect of morphologic evolution (the grains become flat)
and the aforementioned local simple shear state in NCLH grains, tends to align the
crystallographic shear plane (i.e. a {111}-plane) within a few degrees from the
macroscopic shear plane (i.e. the rolling plane), giving two maxima near ND, instead
of the observed {111} at ND. This deviation from the actual {111}//ND condition
may be due to the fact that, although the intragranular fluctuations are taken into
account in an SO calculation, the reorientation of the SR grains is still carried out
using the average values of plastic rotations (see equation (62) and discussion
thereafter). The use of the NCLH strategy combined with models that take into
account the intragranular heterogeneity in the determination of local rotations should
give the elusive {111}//ND component of the brass-type texture [95].

3.4. Texture evolution of ice aggregates under compression

In ice, almost all the deformation in the single crystals is carried by basal
dislocations. Since basal slip provides only two independent slip systems, the
prediction of texture development of polycrystalline ice is a challenging problem that
allows us to discriminate among the different SC approaches. Moreover, an
understanding of the deformation mechanisms and the microstructural evolution of
ice deforming in compression is relevant in glaciology, since compression
(together with shear) is one of the main deformation modes of glaciers. In what
follows, we will use the basal texture factor along the axial direction to characterize
the evolving texture of ice in compression. The basal texture factor is defined as
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the weighted average of the projections of the c-axes along the axial direction,
i.e. hcos2�(r)i (where �(r) is the angle between the basal pole of SR grain (r) and the
axial compression direction).

On the one hand, the stiff Taylor and SC secant models are not suitable to
simulate plastic deformation of polycrystalline ice because the strong constraints that
these models impose upon strain are incompatible with the shortage of independent
slip systems in ice. On the other hand, the compression textures of ice typically
exhibit a strong basal pole component aligned with the axial direction [35].
The formation of this component is related to the crystallographic plastic rotations
associated with basal slip. However, as the basal poles become aligned with the axial
direction, the basal systems become unfavourably oriented to accommodate
deformation. Therefore, at large strains, even a ‘soft’ first-order approximation
like the tangent SC fails in reproducing the observed texture with only basal slip
activity [35]. Up to now, the Sachs model (which completely disregards strain
compatibility) has been the only approach able to give a reasonable effective
behaviour with predominant basal slip at large strains, when the basal texture along
the compressive direction becomes very strong.

Figure 7 shows the compression texture evolution (in terms of the basal texture
factor), the effective stress, the relative basal activity and the average number of
active slip systems (AVACS) per grain for the case of an initially random ice
polycrystal. Results were obtained using the TG, AFF and SO approaches, under the
assumption of n¼ 3 and �pro ¼ 20� �baso and �pyr2o ¼ 200� �baso , as reported in [35],
with no strain-hardening, up to a compressive strain of 1.5.

As expected, all models predict a prevalence of basal slip, with a consequent
increase of the basal texture factor along the axial direction and a progressive
geometric hardening. While the alignment of basal poles along the compression
direction predicted by all three models is similar, they differ in other indicators. At
around 0.8 strain, the tangent predictions show a sudden drop in the basal activity,
together with a rapid increase in the effective stress and in the number of active
deformation systems, which indicates that the strain accommodation starts
requiring the activation of the 200 times harder pyramidal systems. In other
words, under the tangent SC approach, the basal slip by itself is not enough to
accommodate the compressive deformation when the basal poles become strongly
aligned with the compression direction.

The SO and AFF models, on the other hand, do a better job at accommodating
large strain mostly with basal slip. The SO results, however, are superior to the
AFF results in this respect. This superior performance of the second-order SC
approximation can be explained in terms of its intrinsic adaptability to
microstructural changes. Figure 8 shows the evolution (as predicted with the SO
formulation) of the normalized standard deviations of the equivalent stress and
strain-rate over the whole polycrystal, defined by equations (43) and (44). Note that
the above magnitudes are indicators not only of intergranular but also of
intragranular heterogeneity (as a matter of fact, these average scalar magnitudes
reflect the collective contribution of every component of the fluctuation tensors in
each SR grain). Evidently, as the basal texture concentrates along the axial direction,
the stress becomes more uniform and the strain-rate becomes more heterogeneous.
This trend towards a uniform stress state obviously indicates a trend towards the
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Sachs condition. Therefore, given that the aforementioned local fluctuation
information is contained in the SO linearization, the SO results approach the
lower-bound as deformation proceeds, allowing a substantial accommodation of
deformation by basal slip at those large strains.

4. Conclusions

This paper provides a comprehensive description and a detailed comparative
discussion of the different self-consistent formalisms for viscoplastic polycrystals. We
also present the numerical implementation of the different SC approaches in the
VPSC code, together with a critical comparison of results obtained with different
linearization strategies. Specifically, predictions of mechanical response and
texture development obtained with the different SC formulations were compared
with full-field simulations and also discussed in light of available experimental
evidence.

Comparison of the effective behaviour of model material systems predicted by
different SC approaches shows that the second-order SC predictions are in better
agreement with the ‘exact’ full-field solutions. The latter is especially true in the cases
of highly heterogeneous materials (due to a strong nonlinearity or local anisotropy),
a case in which the gap between the Taylor and the Sachs bounds is large.
In particular, we show that the scaling law, proposed in the context of an earlier
variational formulation for systems with less than five independent soft slip
systems [91], also holds for the second-order approach and, more importantly, agrees
very well with the full-field solutions.

Concerning the predictions of field heterogeneity, we distinguish between
inter-granular and intra-granular heterogeneity, and show that they are of the
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Figure 8. Evolution of the normalized overall standard deviations of the equivalent stress
and strain rate, as predicted with the SO formulation, for the case of compression of ice.
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same order and give a measure of the relative values of these two indicators. In
general, the predictions of overall field heterogeneity are less accurate for every SC
linearization scheme tested in this work, compared with the full-field results. This is
because higher-order statistics are expected to be increasingly sensitive to the specific
microstructure, especially when significant nonlinearities are involved.

With regard to the application of the second-order approximation to texture
development, we have studied two cases, characterized by a strong local anisotropy,
due either to inherent contrast of plastic properties at single crystal level (ice) or to
microstructure evolution (twins in low-SFE fcc). In both cases, some variant of the
oversimplified Sachs model had been used in the past to explain the texture evolution
of these materials. Here, we have shown the flexibility of the second-order
formulation to handle these highly anisotropic problems.

Finally, it is worth mentioning that, although the information on intragranular
field fluctuations is accounted for in the second-order procedure, in the present
implementation, the reorientation and strain-hardening of the SR grains is still
carried out using the average values of the shear-rates in the grains only. If the
average fluctuations of the shear-rates for each slip system of each SR grain could be
obtained, improved schemes for updating grain orientations and critical stresses,
which take into account the effect of intragranular heterogeneities, could be
implemented. Such an improved treatment of strain-hardening was recently
performed in the restricted context of linearly viscous 2-D polycrystals [97].
The extension to more general problems of this kind of updating schemes, containing
intragranular heterogeneity information, is currently under investigation.
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Appendix A: Green function solution of the viscoplastic inclusion problem

From equation (10), the fictitious volumetric force associated with the
heterogeneity is:

fi �xð Þ ¼ � �Lijkl"
�
kl,j �xð Þ ¼ ��ij, j �xð Þ ðA1Þ

The field ��ij �xð Þ ¼ � �Lijkl"
�
kl �xð Þ is an eigen-stress field. System (9) consists of four

differential equations with four unknowns: three are the components of velocity

4314 R. A. Lebensohn et al.
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deviation vector ~ui �xð Þ, and one is the mean stress deviation ~�m �xð Þ. Such system of N

linear differential equations with N unknown functions and an inhomogeneity term

can be solved using the Green function method, as explained in what follows. Let us

call Gkmð �xÞ and Hmð �xÞ the Green functions associated with ~uið �xÞ and ~�mð �xÞ, which
solve the auxiliary problem of a unitary volumetric force, with a single non-vanishing

m-component, and applied at �x ¼ 0:

�LijklGkm,lj �xð Þ þHm,i �xð Þ þ 	im	 �xð Þ ¼ 0

Gkm,k �xð Þ ¼ 0

����� ðA2Þ

Once the solution of (A2) is obtained, the solution for the velocity field is given by

the convolution integrals:

~uk �xð Þ ¼

Z
R3

Gki �x� �x0ð Þfi �x
0ð Þd �x0 ðA3Þ

System (A2) can be solved using the Fourier transform method. Expressing the

Green functions in terms of their inverse Fourier transforms, the differential system

(A2) transforms into an algebraic system:

�j�l �Lijklk
2Ĝkm

�k
� �

þ �iikĤm
�k
� �

¼ 	im

�kk
2Ĝkm

�k
� �

¼ 0

����� ðA4Þ

where k and �� are the modulus and the unit vector associated with a point of Fourier

space �k ¼ k ��, respectively. Calling Ad
ik ¼ �j�l �Lijkl, system (A4) can be expressed as a

matrix product A� B ¼ C, where A, B and C are matrices given by:

���������

k 2Ĝ11 k 2Ĝ12 k 2Ĝ13

k 2Ĝ21 k 2Ĝ22 k 2Ĝ23

k 2Ĝ31 k 2Ĝ32 k 2Ĝ33

ikĤ1 ikĤ2 ikĤ3

¼ B

A ¼

Ad
11 Ad

12 Ad
13 �1

Ad
21 Ad

22 Ad
23 �2

Ad
31 Ad

32 Ad
33 �3

�1 �2 �3 0

���������

1 0 0

0 1 0

0 0 1

0 0 0

¼ C

ðA5Þ

The 4� 4 matrix A is real and symmetric. As a consequence, its inverse will also be

real and symmetric. Using the explicit form of matrix C, we can write the solution of

(A5) as:

B ¼ A�1 � C ¼

A�1
11 A�1

12 A�1
13

A�1
21 A�1

22 A�1
23

A�1
31 A�1

32 A�1
33

A�1
41 A�1

42 A�1
43

2
666664

3
777775 ðA6Þ

Self-consistent formalisms for viscoplastic polycrystals 4315
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Finally, comparing (A5) and (A6):

k 2Ĝij ¼ A�1
ij ði, j ¼ 1, 3Þ ðA7Þ

Since the components of A are real functions of �i, so are the components of A–1 and

so are those of k 2Ĝij. This property leads to real integrals in the derivation

that follows.
Knowing the Green tensor expression in Fourier space, we can write the solution

of our eigen-strain-rate problem using the convolution integral. Taking partial

derivatives to equation (A3) we obtain:

~uk,l �xð Þ ¼

Z
R3

Gki,l �x� �x0ð Þfi �x
0ð Þd �x0 ðA8Þ

Replacing (A1) in (A8), recalling that @Gij �x� �x0ð Þ=@ �x ¼ �@Gij �x� �x0ð Þ=@ �x0, integrat-
ing by parts, and using the divergence theorem [78], we obtain:

~uk,l �xð Þ ¼

Z
R3

Gki,jl �x� �x0ð Þ��ij �x
0ð Þd �x0 ðA9Þ

Equation (A9) provides an exact implicit solution to the problem. Such solution

requires knowing the local dependence of the eigen-stress tensor. However, we know

from the elastic Eshelby inclusion formalism that if the eigen-strain is uniform over

an ellipsoidal domain where the stiffness tensor is uniform, then the stress and the

strain are constant over the domain of the inclusion (r). The latter suggests assuming

an eigen-stress of constant value (a priori unknown) within the volume � of an

ellipsoidal inclusion and zero outside. This allows us to average the local field (A11)

over the domain � and obtain an average strain-rate inside the inclusion of the form:

~u
ðrÞ
k,l ¼ �

1

�

Z
�

Z
�

Gki,jl �x� �x0ð Þd �x d �x0
� �

�Lijmn"
�ðrÞ
mn ðA10Þ

where ~u
ðrÞ
k,l and "�ðrÞmn have to be interpreted as average quantities inside the inclusion.

Expressing the Green tensor in terms of the inverse Fourier transform and taking

derivatives we obtain:

~u
ðrÞ
k,l ¼

1

8�3�

Z
�

Z
�

Z
R3

�j�l k 2Ĝki
�k
� �	 


exp �i �k �x� �x0ð Þ
� �

d �k d �xd �x0
� �

�Lijmn"
�ðrÞ
mn

¼ Tklij
�Lijmn"

�ðrÞ
mn ðA11Þ

Writing d �k in spherical coordinates: d �k ¼ k 2 sin � dk d� d’ and using relation (A7),

the Green interaction tensor Tklij can be expressed as:

Tklij ¼
1

8�3�

Z 2�

0

Z �

0

�j �l A
�1
ki ��ð Þ � ��ð Þ sin � d� d’ ðA12Þ

where � and ’ are the spherical coordinates of the Fourier unit vector �� and:

� ��ð Þ ¼

Z 1

0

Z
�

Z
�

exp �i �k �x� �x0ð Þ
� �

d �x d �x0
� �

k 2dk ðA13Þ

4316 R. A. Lebensohn et al.
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Integrating (A13) inside an ellipsoidal grain of radii(a, b, c) [98] and replacing in
(A12) gives:

Tklij ¼
abc

4�

Z 2�

0

Z �

0

�j�lA
�1
ki ��ð Þ

 ��ð Þ½ �
3

sin � d� d’ ðA14Þ

where ð ��Þ ¼ ða�1Þ
2
þ ðb�2Þ

2
þ ðc�3Þ

2
� �1=2

. The symmetric and skew-symmetric
Eshelby tensors are defined as:

Sijkl ¼
1

4
Tijmn þ Tjimn þ Tijnm þ Tjinm

� �
�Lmnkl ðA15Þ

�ijkl ¼
1

4
Tijmn � Tjimn þ Tijnm � Tjinm

� �
�Lmnkl ðA16Þ

Taking symmetric and skew-symmetric components to (A11) and using (A15) and

(A16), we obtain the average strain-rate and rotation-rate deviations in the
ellipsoidal domain:

~" ðrÞ ¼ S : "�ðrÞ ðA17Þ

~! ðrÞ ¼ � : "�ðrÞ ¼ � : S�1 : ~" ðrÞ ðA18Þ

Appendix B: Calculation of effective moduli derivatives

Calculation of @B ðsÞ
kj =@M

ðrÞ
uv : From equation (17), we have (in matrix notation, all

indices running from 1 to 5, except the grain indices (r) and (s)):

@B ðsÞ
kj

@M ðrÞ
uv

¼� M ðsÞ þ ~M
� ��1

ku
	rsB

ðsÞ
vj þ M ðsÞ þ ~M

� ��1


@ ~M

@M ðrÞ
uv


 I�B ðsÞ
� �

þ
@ ~M

@M ðrÞ
uv

" #
: ðB1Þ

So as not to clutter the notation, the first and second term on the right are written in

explicit and implicit index notation, respectively. In the second term the indices (uv)
(i.e. the component of the local compliance with respect to which the derivatives are
calculated) appear only to indicate such derivative, while in the first term they appear

mixed with the indices that contract. In what follows, we will use this mix of explicit
indices and implicit notation, when necessary for the sake of clarity.

Deriving expression (15) we obtain:

@ ~Mij

@M ðrÞ
uv

¼ I� Sð Þ
�1
ik

@Skl

@M ðrÞ
uv

 lj þ FS
ip

@ �Mpj

@M ðrÞ
uv

ðB2Þ

where FS
¼ (I�S)�1S and  ¼ FS 
 ~Mþ ~M. Using the chain rule to express the first

derivative on the right, we can write:

@ ~Mij

@M ðrÞ
uv

¼ I� Sð Þ
�1
ik

@Skl

@ �Mpq

@ �Mpq

@M ðrÞ
uv

 lj þ FS
ip

@ �Mpj

@M ðrÞ
uv

¼ �ijpq
@ �Mpq

@M ðrÞ
uv

ðB3Þ

Self-consistent formalisms for viscoplastic polycrystals 4317
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where

�ijpq ¼ I� Sð Þ
�1
ik

@Skl

@ �Mpq

 lj þ FS
ip	jq ðB4Þ

The algorithm for the calculation of @S=@ �M is given in Appendix C. Replacing (B3)

in (B1) and after some manipulation we obtain:

@B ðsÞ
kj

@M ðrÞ
uv

¼ �� ðsÞ
ku 	rsB

ðsÞ
vj þ � ðsÞ 
 � ðsÞ :

@ �M

@M ðrÞ
uv

ðB5Þ

where:

� ðsÞ ¼ M ðsÞ þ ~M
� ��1

ðB6Þ

� ðsÞ
ijkl ¼ �imkl I� B ðsÞ

� �
mj
þ 	ik	jl ðB7Þ

Calculation of @ �Mij=@M
ðrÞ
uv : Deriving equation (32):

@ �Mij

@M ðrÞ
uv

¼
X
s

c ðsÞ	iu	kv	rsB
ðsÞ
kj þ

X
s

c ðsÞM
ðsÞ
ik

@B ðsÞ
kj

@M ðrÞ
uv

ðB8Þ

Using (B5) and calling �(s)¼M(s)

�(s) we get:

@ �Mij

@M ðrÞ
uv

¼ c ðrÞ	iuB
ðrÞ
vj � c ðrÞ� ðrÞ

iu B
ðrÞ
vj þ

X
s

c ðsÞ� ðsÞ 
 � ðsÞ

 !
:
@ �M

@M ðrÞ
uv

ðB9Þ

From where:

�ijkl
@ �Mkl

@M ðrÞ
uv

¼ � ðr,uvÞ
ij ðB10Þ

with:

� ðr,uvÞ
ij ¼ c ðrÞ 	iu � �

ðrÞ
iu

	 

B

ðrÞ
vj ðB11Þ

�ijkl ¼ 	ik	jl �
X
s

c ðsÞ� ðsÞ 
 � ðsÞ ðB12Þ

Calculation of @Eo
j =@M

ðrÞ
uv : Deriving equation (33):

@Eo
i

@M ðrÞ
uv

¼
X
s

c ðsÞ"oðsÞk

@B ðsÞ
ki

@M ðrÞ
uv

ðB13Þ

4318 R. A. Lebensohn et al.
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Using (B5), we obtain:

@Eo
i

@M ðrÞ
uv

¼ �ikl
@ �Mkl

@M ðrÞ
uv

þ � ðr,uvÞ
i ðB14Þ

where:

�ijk ¼
X
s

c ðsÞ"oðsÞm � ðsÞ
ml �

ðsÞ
lijk ðB15Þ

� ðr,uvÞ
i ¼ �c ðrÞ"oðrÞk � ðrÞ

ku B
ðrÞ
vi ðB16Þ

Calculation of @ �G=@M ðrÞ
uv : Deriving equation (34):

@ �G

@M ðrÞ
uv

¼
X
s

c ðsÞ"oðsÞi

@b ðsÞ
i

@M ðrÞ
uv

ðB17Þ

Deriving equation (18):

@b ðsÞ
i

@M ðrÞ
uv

¼ �� ðsÞ
iu 	rs�

ðsÞ
vl Eo

l � "oðsÞl

	 

� � ðsÞ 


@ ~M

@M ðrÞ
uv


 � ðsÞ 
 Eo � "oðsÞ
� �

þ � ðsÞ 

@Eo

@M ðrÞ
uv

ðB18Þ

Replacing (B17) in (B16) and using (B3):

@ �G

@M ðrÞ
uv

¼ ’ij
@Mo

ij

@M ðrÞ
uv

þ #i
@Eo

i

@M ðrÞ
uv

þ � ðr,uvÞ ðB19Þ

where:

’ij ¼ �
X
s

c ðsÞ"oðsÞk � ðsÞ
kl �

ðsÞ
pq Eo

q � "oðsÞq

	 
" #
�lpij ðB20Þ

#i ¼
X
s

c ðsÞ"oðsÞk � ðsÞ
ki ðB21Þ

� ðr,uvÞ ¼ �c ðrÞ"oðrÞi � ðrÞ
iu �

ðrÞ
vl Eo

l � "oðrÞl

	 

ðB22Þ

Appendix C: Calculation of ›S=› �M

The derivative of Eshelby tensor with respect to the effective compliance, appearing

in (B4) can be obtained as follows. From equations (A14) and (A15) the (symmetric)

Eshelby tensor of an ellipsoidal inclusion of radii (a, b, c) embedded in an

Self-consistent formalisms for viscoplastic polycrystals 4319
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incompressible homogenous medium of stiffness �L ¼ �M�1 is given by (in tensor
notation, all indices running from 1 to 3):

Sijmn ¼ T
sym
ijkl

�Lklmn ðC1Þ

where:

T
sym
ijkl ¼

abc

16�

Z 2�

0

Z �

0

�ijkl �ð Þ

 �ð Þ½ �
3
sin � d� d’ ðC2Þ

with:

�ijkl ¼ �j�lA
�1
ik þ �i�lA

�1
jk þ �j�kA

�1
il þ �i�kA

�1
jl ðC3Þ

where the 4� 4 matrix A is given by (A5). In particular:

Aik ¼ �Lijkl�j�l i, j ¼ 1, 3ð Þ ðC4Þ

Deriving (C1):

@Sijmn

@ �M
¼
@Tsym

ijkl

@ �M
�Lklmn þ T

sym
ijkl

@ �Lklmn

@ �M
ðC5Þ

The first derivative on the right is obtained as:

@Tijkl

@ �M
¼

abc

16�

Z 2�

0

Z �

0

@�ijkl

@ �M

sin � d� d’

 �ð Þ½ �
3

ðC6Þ

Using (C3) and (C4), @�ijkl=@ �M is calculated as:

@�ijkl

@ �M
¼ �j�l

@A�1
ik

@ �M
þ �i�l

@A�1
jk

@ �M
þ �j�k

@A�1
il

@ �M
þ �i�k

@A�1
jl

@ �M
ðC7Þ

where

@A�1
ij

@ �M
¼ �A�1

ik

@ �Lklmn

@ �M
�l�n

� �
A�1

mj ðC8Þ

The expression @ �Lklmn=@ �M appearing in (C5) and (C8) is simply the derivative of a
tensor with respect to its inverse. In matrix notation (indices running from 1 to 5):

@ �Lij

@ �Mpq

¼ �
1

2
�Lip

�Lqj þ �Liq
�Lpj

� �
ðC9Þ
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[26] O. Engler, M.Y. Huh and C.N. Tomé, Metall. Mater. Trans. A 36 3127 (2005).
[27] D.A. Hughes, R.A. Lebensohn, H.-R. Wenk, et al., Proc. R. Soc. Lond. A 456 921 (2000).
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[67] P. Ponte Castañeda, J. Mech. Phys. Solids 39 45 (1991).
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328 11 (2000).

[92] T. Leffers and R.K. Ray, (2007) (To be published).
[93] T. Leffers and D. Juul Jensen, Texture Microstruct. 14/18 933 (1991).
[94] T. Leffers, Phys. Status Solidi 25 337 (1968).

[95] R.A. Lebensohn and T. Leffers, (2007) (To be published).
[96] H. Hu and S.R. Goodman, Trans. Metall. Soc. AIME 227 627 (1963).
[97] O. Castelnau, R. Brenner and R.A. Lebensohn, Acta Mater. 54 2745 (2006).

[98] M. Berveiller, O. Fassi-Fehri and A. Hihi, Int. J. Eng. Sci. 25 691 (1987).

4322 Self-consistent formalisms for viscoplastic polycrystals


