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Abstract

In polycrystalline aggregates deforming by crystal plasticity, the local shears on each slip system can be significantly affected by the
intergranular interaction. Therefore, in the framework of mean-field approaches, the intragrain strain heterogeneity must be taken into
account when dealing with microstructure evolution associated with strain hardening. For that goal, a novel treatment is proposed and
applied to a two-dimensional linearly viscous polycrystal. The results of the implementation of this new hardening treatment within the
self-consistent scheme are compared to those of a fast Fourier transform-based full-field computation, considered as a reference solution.
It is shown that the evolution with strain of the grain average reference resolved shear stress (RRSS) is well reproduced by the proposed
scheme. The overall stress response of the polycrystal is slightly underestimated, due to some intrinsic heterogeneity of the distribution of
RRSS.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the way in which work
hardening is introduced and estimated in the context of sta-
tistical homogenization methods for plastically deforming
polycrystals. This important aspect of microstructural evo-
lution results from the interactions between dislocations
and obstacles (i.e. precipitates, dislocation structures, grain
boundaries, etc.) and leads to a progressive increase of the
resistance to dislocation motion by slip.

Since the pioneering experimental investigations of
Taylor and Elam [1], numerous models have been proposed
to describe the strain-hardening kinetics and anisotropy for
different crystalline structures. A fundamental aspect of
work hardening is related to the interaction between the
different slip systems. In the theoretical formulation given
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by Mandel [2] and Hill [3], the time derivative of the local
reference resolved shear stress (RRSS) of a particular slip
system k is linked to the local shear rates on every slip sys-
tem k 0 through a local hardening matrix hkk0 . In general, the
components of hkk0 have a nonlinear dependence on the
accumulated strain. Several forms for the hardening matrix
have been proposed. Unlike Taylor’s early assumption [4]
of equality between all the components of hkk0 , subsequent
experimental analyses have shown that the hardening is in
essence anisotropic [5–8]. Several semi-empirical models
have been developed to address the question of hardening
kinetics. Besides a simple linear evolution law (constant
hkk0), saturating (or, at least, nonlinear) hardening arises
from the competition between the processes of storage
and annihilation of dislocations. This has been considered
in two ways. On the one hand, several ‘‘mechanical’’
approaches using the accumulated slip and the RRSS on
each system as internal variables have been proposed
(e.g. Refs. [9–11]). On the other hand, several other
‘‘physically-based’’ hardening theories have been developed
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[12–15] using the dislocation densities on each system as
internal variables, which are believed to be more closely
linked to real microstructure evolution. Finally, it is also
worth mentioning recent approaches based on an explicit
scale transition from the dislocation structure to the single
crystal [16,17].

The different forms of the work-hardening laws have
been widely used within finite element (FE) simulations
of the plastic response of single crystals [18,19], multicrys-
tals [13,20,21] and polycrystals [22,23]. In Ref. [24] the
overall hardening (i.e. the strain hardening due to disloca-
tion interactions, and the geometric hardening induced by
texture evolution) predicted by FE simulations was com-
pared to the corresponding predictions of the simple
upper-bound (Taylor) and lower-bound (Sachs) mean-field
approaches. Since these FE computations were based on a
discrete representation of the microstructure, they allowed
one, for the first time, to discuss the differences between
full-field and mean-field approaches in terms of the pre-
dicted strain heterogeneities, crystallographic texture, over-
all stress–strain behavior, etc.

As a matter of fact, due to the random character of the
microstructure of polycrystals, mean-field approaches are
particularly well adapted to polycrystalline aggregates. In
this context, hardening laws of the type discussed above
have been widely used to describe the microstructural evo-
lution of polycrystals in a statistical way, either with the
simple Taylor model [25,26] or with different nonlinear
extensions of the self-consistent (SC) scheme (e.g. Refs.
[27–34]). However, in concerning the latter SC formula-
tions, it seems that some basic difficulties have been ignored
up to now. The SC model has often been described as if
each grain of the polycrystal would be treated as an ellip-
soidal inclusion in a homogeneous matrix, leading to uni-
form stress and strain (rate) fields inside each grain. This
simplified description is now known to be incorrect (e.g.
Ref. [35]). From the determination of the intraphase vari-
ance of the mechanical fields, it has been shown that, at
the scale of a ‘‘mechanical phase’’ (i.e. the set of grains of
a polycrystal having the same orientation but different
environments), a vanishing average slip rate does not mean
a vanishing local slip rate [36]. Consequently, the local
hardening law must be somehow averaged before being
applied at the scale of a mechanical phase.

In connection with the above remarks, the main goal of
the present article is to propose an improved way of intro-
ducing strain hardening in the context of mean-field
approaches, accounting for the plastic slip heterogeneity
at the level of a mechanical phase. Such treatment is neces-
sary to improve the results of different practical applica-
tions of these widely used statistical methods for
polycrystals. To start with, an improved hardening model
will allow a more meaningful comparison and cross-valida-
tion between full-field and mean-field approaches (e.g.
Refs. [37–39]). Also, the fitting procedure usually carried
out in order to reproduce the stress–strain behavior of
polycrystalline samples deformed along a given strain path,
and in turn used to predict the mechanical response of the
same material along different strain paths (e.g. Ref. [40]),
should provide a more general and accurate description
of the material behavior if an improved hardening law is
utilized. Finally. it is worth mentioning that when the
behavior of two-phase polycrystals is modeled using the
adjusted mechanical response of each constituent (e.g.
Ref. [41]), the use of a hardening model sensitive to intra-
phase heterogeneity should also contribute to improve
the description of the mechanical behavior of such two-
phase aggregates.

It should be emphasized that, while only very simple
hardening models will be treated here (i.e. linear harden-
ing), the proposed procedure can be extended without
major difficulties to more general hardening laws. It is also
worth noting that the present work is limited to linearly vis-
cous polycrystals. This choice has to be made since all the
existing nonlinear SC models are approximations based on
different linearization schemes that essentially reduce the
problem to the linear SC solution. Then, given that the
results of these different nonlinear SC approximations are
strongly dependent on the linearization scheme used, their
comparison to any reference solution would become a dif-
ficult task. Therefore, the linear case has been preferred for
the present study, based on which the more general case of
nonlinear viscoplastic polycrystals will be treated and
reported in the future.

For validation of the proposed model, its predictions
will be compared with analogous results obtained by means
of a full-field method based on the fast Fourier transform
(FFT), as described in Section 2. The strain-hardening
model will be implemented in the context of the linear
self-consistent formulation, described in Section 3. The dif-
ficulties associated with the introduction of local hardening
laws are explained in Section 4, and an improved procedure
is proposed. In Section 5 an application to two-dimen-
sional polycrystals is presented.

2. Full-field computations

2.1. FFT-based formulation

The FFT-based full-field formulation for viscoplastic
polycrystals, to be used as a reference solution for compar-
ison with the results of statistical approaches, is conceived
for periodic unit cells, provides an exact solution of the
governing equations (equilibrium and compatibility), and
has better numerical performance than a FE calculation
for the same purpose and resolution. It was originally
developed [42–44] as a fast algorithm to compute the elastic
and elastoplastic effective and local response of composites
and later adapted [38,39,45,46] to deal with the viscoplastic
deformation of two- and three-dimensional linear and
power-law polycrystals.

Briefly, the viscoplastic FFT-based formulation consists
in finding a strain rate field, associated with a kinematically
admissible velocity field, which minimizes the average of
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local work rate, under the compatibility and equilibrium
constraints. The method is based on the fact that the local
mechanical response of a periodic heterogeneous medium
can be calculated as a convolution integral between the
Green function of a linear reference homogeneous medium
and the actual heterogeneity field. Since such types of inte-
grals reduce to a simple product in Fourier space, the FFT
algorithm can be used to transform the heterogeneity field
into Fourier space and, in turn, get the mechanical fields by
antitransforming that product back to real space. How-
ever, the actual heterogeneity field depends precisely on
the a priori unknown mechanical fields. Therefore an iter-
ative scheme should be implemented to obtain upon con-
vergence a compatible strain-rate field and a stress field
in equilibrium (see Refs. [38,44] for details).

It is worth noting that, since the FFT solution corre-
sponds to a particular unit cell configuration, a thorough
comparison with statistical results would require one to
perform ensemble averages over a number of random con-
figurations. However, it has been shown [38,39,46] that in
the present case of linearly viscous polycrystals, with
almost isotropic effective behavior and moderate anisot-
ropy at local level, the dispersion of results for different
configurations is rather small. Therefore, for the compari-
sons below, a single unit cell has been considered.

2.2. Local constitutive behavior

Let us consider a model polycrystal made of columnar
orthorhombic grains with symmetry axes aligned with the
macroscopic axis x3 such that, when it is loaded in the anti-
plane mode with shearing direction along x3, the only two
slip systems that can be activated in the grains are those
defined by the following Schmid tensors:

R1 ¼ ðe1 � e3 þ e3 � e1Þ=2; R2 ¼ ðe2 � e3 þ e3 � e2Þ=2

ð1Þ
where {e1, e2, e3} is an orthonormal basis of crystallo-
graphic axes such that e3 is the slip direction of both sys-
tems, and e1 and e2 are the slip plane normal of systems
1 and 2, respectively. By further considering that the mate-
rial is incompressible and that e3 lies parallel to x3, the
problem becomes two-dimensional. Macroscopic and local
stresses (�r and r(x), respectively) and strain rates (�_e and
_eðxÞ, respectively) are thus characterized by two-dimen-
sional vectors formed by the 13 and 23 components of
the corresponding tensors. The local viscous stiffness tensor
L = 2l can be reduced to a two-dimensional symmetric
second-order tensor with diagonal components 2l11 =
2l1313, 2 l22 = 2l2323 and off-diagonal components 2l12 =
2l1323. The linear constitutive relation reads

_eðxÞ ¼ L�1ðxÞ : rðxÞ ¼ _c0

X2

k¼1

RkðxÞ � RkðxÞ
s0kðxÞ

: rðxÞ ð2Þ

where s01 and s02 are the RRSS of systems 1 and 2, and _c0 is
a reference slip rate.
In this work we do not consider the effect of geometrical
hardening (lattice rotation during the plastic deformation).
Rather, we concentrate on the effects of work hardening
(interaction between dislocations) only. Therefore, the lat-
tice orientation within each grain is assumed to remain
constant throughout the deformation process. Evidently,
such an assumption does not represent the behavior of real
materials, but it is justified in the context of this model
study since the available treatment of lattice rotations
under the SC scheme suffers from the same limitations as
the work hardening: it does not depend on the intraphase
strain heterogeneity. Therefore, in order to remove any
bias from the comparison between the SC and the FFT
results, lattice orientation is disregarded in both models.
Furthermore, the crystallographic orientation is assumed
uniform within each grain (i.e. no intragranular misorien-
tation), so that Schmid tensors also become uniform. Con-
sequently, Eq. (2) now reads

_eðxÞ ¼ _c0

X
r

vðrÞðxÞ
X2

k¼1

Rr
k � Rr

k

s0kðxÞ
: rðxÞ ð3Þ

where the characteristic function v(r)(x), which is equal to 1
if the position vector x is inside a grain with the crystalline
orientation (r) and zero otherwise, has been introduced.

Hereafter, we assume that at the initial deformation
stage the RRSS of each slip system is uniform throughout
the polycrystal, with the convention s01 < s02 (system 1 is
‘‘softer’’ than system 2). Hence, the initial viscous compli-
ance is also uniform within each grain. Under these condi-
tions it can be shown [47,48] that, if the polycrystal is
macroscopically isotropic, the overall viscous stiffnesseL ¼ 2~l (such that �_e ¼ eL�1 : �r is diagonal, i.e. ~l11 ¼
~l22ð¼ ~lÞ and ~l12 ¼ 0, and obeys

detð~lÞ ¼ ~l2 ¼ s01s02 ð4Þ
However, it is emphasized that, as soon as the RRSS of
each slip system is no more uniform within the grains,
the simple analytical relation (Eq. (4)) does not hold any
more.

At the slip system level, the constitutive relation reads

_ckðxÞ ¼ _c0

skðxÞ
s0kðxÞ

ð5Þ

The resolved shear stress on slip system k is given by

skðxÞ ¼ RkðxÞ : rðxÞ ¼
XN

r¼1

vðrÞðxÞRr
kðxÞ : rðxÞ ð6Þ

In addition, if strain hardening is considered adopting the
theoretical framework of Mandel [2] and Hill [3], the time
derivative of the RRSS on slip system (k), _s0k, and the shear
rates _ck0 on each slip system are linked according to

_s0kðxÞ ¼
X

k0
hkk0 ðxÞj _ck0 ðxÞj ð7Þ

with h being the instantaneous hardening matrix. Its diag-
onal (hkk) and off-diagonal (hkk0 , k 6¼ k 0) components
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express, respectively, the self- and latent hardening. In gen-
eral, Eq. (7) is a nonlinear relation, since h depends on the
accumulated strain.

2.3. Microstructure

The microstructure considered in this work is a periodic
square two-dimensional unit cell generated by Voronoi tes-
sellation. Such a microstructure has been chosen for the
sake of its simplicity. The resulting two-dimensional poly-
crystal is made of 8500 grains. The crystallographic orien-
tation of each grain is defined by an angle, denoted h,
between the crystallographic axis e1 of the grain and the
macroscopic axis x1. In what follows, a mechanical phase
will be defined by the set of grains exhibiting the same h
value, i.e. the same initial mechanical behavior. In order
to guarantee that (i) the orientation of each grain differs
from those of its direct neighbors, (ii) the volume fractions
of each mechanical phase are equal and (iii) the microstruc-
ture exhibits, at the first loading stage, an isotropic overall
behavior, eight different values of h were chosen (h = 0�,
22.5�, 45�, 67.5�, 90�, 112.5�, 135� and 157.5�). It is then
possible to identify the softest (h = 0�) and the hardest
(h = 90�) phase (called in what follows ‘‘soft’’ and ‘‘hard’’
phase, respectively), a classification that will be useful when
discussing the local shear rate distributions. For the FFT
computations, a regular Fourier grid of 512 · 512 points
0

5

10

15

20

25

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

γ
.
 (1/s)

Pr
ob

ab
ili

ty
 d

en
si

ty

ε−13 = 0

Slip system 1

0

5

10

15

20

25

30

35

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

γ
.
 (1/s)

Pr
ob

ab
ili

ty
 d

en
si

ty

ε−13 = 0.2

Slip system 1

a

c

Fig. 1. Slip rate distributions obtained with the FFT method (solid lines) in the
(a, b) and �e13 ¼ 0:2 (c, d). The dashed lines indicate the corresponding Gaussi
has been used to discretize the unit cell, leading to an aver-
age of about 30.8 Fourier points within each grain and
32,768 points within each mechanical phase (for more
details concerning the construction and characterization
of this two-dimensional Voronoi microstructure, see Ref.
[46]).

2.4. FFT results

The local behavior of our model two-dimensional poly-
crystal is characterized by an initial contrast s02/s01 and a
linear hardening (constant matrix h) with hkk/s01 = 1 and
hkk0 ¼ 1:5hkk. The choice of such a high contrast value
between the soft and the hard slip systems is necessary, in
the present context of linear viscosity, to have one system
significantly more active than the other. The computations
of mechanical behavior were performed for a macroscopic
strain rate _�e ¼ 10�2 s�1 applied in incremental deformation
steps of 0.01, up to an overall strain of 0.2.

The probability densities corresponding to the values of
the slip rate field _cðxÞ evaluated in the Fourier points, for
the two slip systems of the ‘‘soft’’ mechanical phase (at
0�) are given in Fig. 1, for the initial ð�e13 ¼ 0Þ and final
ð�e13 ¼ 0:2) deformation steps. Simple geometrical consider-
ations show that slip system 1 in this phase is expected to
be the most active system of the whole polycrystal. The cor-
responding slip rates are thus relatively high and positive
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an approximations.
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almost everywhere, both at the initial and final deforma-
tion steps. Nevertheless, the slip rate on this ‘‘best-
oriented’’ slip system becomes null or even negative at
some particular locations. In other words, the most active
system in the whole polycrystal can, at certain locations,
slip in the ‘‘reverse’’ direction. This observation highlights
the effects of the highly heterogeneous stress distribution in
the polycrystal, which originates from the interaction
between neighboring grains. Similar conclusions can be
drawn for system 2 of the same phase. This system is the
‘‘worst-oriented’’ system of the whole polycrystal with
the highest RRSS, and, on average, does not glide since
the mean value of the resolved shear stress vanishes. How-
ever, its distribution exhibits a non-negligible width, indi-
cating that significant positive or negative slip appear
locally, due to intergranular interactions. Consequently,
this system should contribute significantly to the work hard-
ening of the polycrystal (see Eq. (7)). Similar observations,
not reported here for conciseness, have been made analyz-
ing the distributions of slip activity in the other phases.

It is interesting at this point to approximate the
observed shear rate distributions by classic probability
functions. To this end, we have computed the first and sec-
ond moments of the probability densities obtained by
means of the FFT computations, and used these two quan-
tities to determine the position and the width of the analyt-
ical probability functions that approximate the actual
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Fig. 2. RRSS distributions (in units of the initial s0) in the ‘‘soft’’ phase (h = 0�
densities for �e13 ¼ 0 are Dirac’s deltas at s0 = 1 and s0 = 25, respectively.
distributions. Given that we are not accounting for higher
order statistical moments (the reason for which is explained
in the sequel), we are limited to probability functions that
depend on only two parameters. The resulting Gaussian
distributions have been superimposed to the probability
densities of Fig. 1. It can be observed that the slip rate dis-
tribution of the most active system (system 1) is not strictly
Gaussian initially, showing a marked asymmetry with a
slowly decreasing tail at large slip rates. However, as defor-
mation proceeds, it becomes more symmetric and nar-
rower. For the harder system (system 2) the probability
densities appear to be almost symmetric throughout the
deformation process. Similar distributions have been
obtained for the other phases meaning that the Gaussian
distribution appears to be an appropriate analytical func-
tion to approximate the actual shear rate distributions. A
similar conclusion has been drawn in Ref. [49] in the case
of two-dimensional two-phase composites made of isotro-
pic linear phases, having ‘‘particulate’’ (i.e. matrix-inclu-
sion) microstructures. Hence, the Gaussian distribution is
likely to be well adapted to linearly viscous heterogeneous
materials, independently of their microstructures.

Due to the heterogeneity of the slip rates, the initially
uniform reference stresses s0k in the phases become non-
uniform as deformation proceeds (see Eq. (7)). This is illus-
trated by the distributions of s0k after 0.2 macroscopic
shear strain (Fig. 2). These distributions are evidently
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) (a, b) and the ‘‘hard’’ phase (h = 90�) (c, d), for �e13 ¼ 0:2. The probability
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non-symmetric, with a long and slowly decreasing tail at
large s0 values. In the ‘‘soft’’ phase (h = 0�) slip system 1
is by far the most active system and therefore hardens
mainly due to self-hardening, while slip system 2 is less
active and hardens mainly by latent hardening. The distri-
bution width for system 2 is larger than that for slip system
1, by a factor of about 1.5, in agreement with the ratio
between off-diagonal and diagonal elements of the harden-
ing matrix h. For the ‘‘hard’’ phase (h = 90�), none of the
slip systems glides significantly so that this phase hardens
less than the one at h = 0�. Consequently, the s0 distribu-
tions are narrower.

In light of the above results, the next section shows how
to formulate meaningful work-hardening laws using intra-
phase statistical information, when more efficient mean-
field formulations — instead of numerically demanding
full-field approaches — are used to describe the mechanical
evolution of viscoplastic polycrystals.

3. Mean-field estimates

A polycrystal can be considered as a composite mate-
rial made of N crystalline orientations. Each orientation
(r) defines a mechanical phase whose spatial repartition
is entirely described by the characteristic function v(r)(x)
previously introduced. However, considering the random
character of a polycrystalline microstructure, it is not
worth trying to determine every detail of v(r)(x). Instead,
the microstructure can he described statistically by the
correlation functions of the characteristic functions. For
instance, the knowledge of the volume fractions
cr = Æv(r)(x)æ (where Æ. . .æ denotes the volume average over
the representative volume element (RVE)) allows the der-
ivation of the classic Reuss and Voigt bounds for the
overall behavior. Furthermore, additional assumptions
on the covariances urs = Æv(r)(x)v(s)(x + h)æ (where h is a
position vector) can be used to derive the sharper
Hashin–Shtrikman bounds. Moreover, due to the ‘‘granular’’
character of a polycrystal (i.e. all phases are on the same
footing), the SC estimates [50] are well adapted for these
kinds of microstructures. According to Kröner [51], the
SC scheme provides the exact solution for so-called per-
fectly disordered random microstructures, characterized
by the fact that all — i.e. up to infinite order — correla-
tion functions are statistically homogeneous, isotropic,
and disordered.

Let us consider the class of constitutive behavior which
reads

_eðxÞ ¼MðxÞ : rðxÞ ð8Þ

where (see Eq. (2))

MðxÞ ¼ L�1ðxÞ ¼ _c0

X2

k¼1

RkðxÞ � RkðxÞ
s0kðxÞ

ð9Þ

is the local viscous compliance tensor. Let us further as-
sume that the RVE is subjected to a uniform stress field
�r. Because of the limited information available on the
microstructure, the localization problem linking the local
stress field r(x) to the macroscopic loading cannot be
solved. Nevertheless, using the statistical description of
the microstructure, the problem can be degenerated, con-
sidering only the average localization for each mechanical
phase.

In this context, the linear SC scheme has been proposed
for dealing with materials for which the mechanical prop-
erties are uniform within each mechanical phase, so that

MðxÞ ¼
XN

r¼1

MðrÞvðrÞðxÞ ð10Þ

with M(r) the compliance of phase (r). In the present case,
given that the RRSSs are assumed initially uniform, the
above condition is strictly valid at the first deformation
increment. However, as deformation proceeds, the slip rate
heterogeneities induce a non-uniformity of sðrÞ0k and thus of
M(x). Therefore, since Eq. (10) is used explicitly in the der-
ivation of the SC equations, some sort of approximation is
necessary to apply this formulation in subsequent deforma-
tion increments. The consequences of such an approxima-
tion are discussed in the next section.

Using an additional assumption of ellipsoidal shape for
the covariances urs [52], the estimation of the overall com-
pliance tensor fM can be made using Eshelby’s solution [53]
for an ellipsoidal inclusion embedded in an infinite homo-
geneous linear medium, itself subjected to a homogeneous
loading. The SC expression of fM is given by solution of the
following equation:fM ¼ hðM� þMðrÞÞ�1i�1 �M� ð11Þ
where M* is the inverse of the ‘‘constraint’’ tensor intro-
duced by Hill [54] which reflects the reaction of the homo-
geneous medium to the deformation rate of the inclusion,
and is given by

M� ¼ ðP�1 �fM�1Þ�1 ð12Þ
which makes Eq. (11) implicit. P is a microstructural tensor
that depends on the overall compliance and on the shape of
the inclusion.

The phase average localization tensor can be then
obtained as

hBir ¼ ðMðrÞ þM�Þ�1
: ðfM þM�Þ ð13Þ

where Æ. . .ær indicates the volume average over the volume
of phase (r). The phase average stress tensor is given by

hrir ¼ hBir : �r ð14Þ

The knowledge of Ærær, i.e. the first-order moment of the
stress distribution in phase (r), provides an initial insight
into the local stress statistics. Additional information can
be obtained in terms of the second-order moment of the
stress in the phase Ær � rær, which can be calculated by der-
ivation of the effective potential with respect to the local
compliance [35]:



O. Castelnau et al. / Acta Materialia 54 (2006) 2745–2756 2751
hr� rir ¼
1

cr
ð�r� �rÞ ::

ofM
oMðrÞ ð15Þ

Expressions analogous to Eqs. (14) and (15) hold for the
strain rate moments within each phase. Alternatively, the
statistical moments of _e can be obtained from the constitu-
tive relation Eq. (8):

h _eir ¼MðrÞ : hrir; h _e� _ei ¼MðrÞ : hr� rir : MðrÞ ð16Þ
It has been shown in Ref. [36] that, in the context of a gen-
eral anisotropy and for an arbitrary number of phases, the
partial derivatives appearing in Eq. (15) can be obtained as
solutions of simple linear systems. It is also worth mention-
ing that at present there are no expressions available for the
estimation of statistical moments higher than order 2.

From Eq. (6), the first and second moments of the
resolved shear stress on a slip system k read

hskir ¼ R
ðrÞ
k : hrir; hs2

kir ¼ R
ðrÞ
k : hr� rir : R

ðrÞ
k ð17Þ

from where the standard deviation ðhs2
kir � hski2r Þ

1=2 can be
computed. If RRSS fields are uniform within each phase
and for each slip system, i.e.

s0kðxÞ ¼
XM

r¼1

sðrÞ0k vðrÞðxÞ ð18Þ

the first and second moments of the shear rates can be com-
puted rigorously:

h _ckir ¼
_c0

sðrÞ0k

hskir; h _c2
kir ¼

_c0

sðrÞ0k

 !2

hs2
kir ð19Þ

If Eq. (18) holds, it has been proved — for the present RVE
configuration and linearly viscous constitutive behavior —
that the SC estimates of the first and second moments of
mechanical fields are in general in very good agreement
with those obtained by means of direct statistics performed
on the full-field FFT solution [46]. Otherwise, if s0k are
functions of the position inside each phase, the local com-
pliance is not piecewise uniform, and the definition of M(r)

is not straightforward. In particular, the estimation of the
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Fig. 3. Evolution of the phase average RRSSs during antiplane deformation on
The FFT results (symbols) are compared with the standard procedure estimat
slip rate moments requires the evaluation of Æsk/s0kær and
hs2

k=s
2
0kir, which, in general, is not a trivial task.

4. Improved treatment for work hardening

4.1. Standard procedure

As already mentioned, in most applications of the SC
scheme found in the literature, the intraphase heterogene-
ities of stress and strain rate are not considered. The typical
assumption for the slip rate field is that _ckðxÞ can be
approximated by h _ckir (denoted _cðrÞk in what follows) for
all x belonging to the phase (r). It follows that, if both
the hardening matrix h and the RRSSs s0k are uniform
within each phase and for each slip system before loading,
then these quantities will remain uniform throughout the
deformation process. Hence, in this case, the hardening
law Eq. (7) reduces to

_sðrÞ0k ¼
X

k0
hðrÞkk0 j _c

ðrÞ
k0 j ð20Þ

Consequently, a slip system that on average does not glide,
i.e. for which _cðrÞk ¼ 0, does not contribute to the overall
hardening of the polycrystal.

This approximation is obviously too simple and there-
fore not accurate. Indeed, the full-field computations dis-
cussed in Section 2.4 clearly show that local slip takes
place even if the average slip rate vanishes. An important
consequence is that those ‘‘hard’’ slip systems also contrib-
ute to the global hardening of the material. By disregarding
this physical evidence, the standard treatment leads to a
global underestimation of the real hardening rate. This is
illustrated in Fig. 3 where the SC predictions (using the
standard hardening assumption) of the phase average
RRSSs are compared with those obtained with tile FFT
method. It can be seen that the standard treatment under-
estimates particularly the hardening of the two slip systems
of the ‘‘hard’’ phase (h = 90�). This is fully consistent with
the above remarks, since for this phase the average slip rate
vanishes for slip system 1, and it is also close to zero for slip
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(a) slip system 1 and (b) slip system 2, within phases at h = 0�, 45� and 90�.
es (lines).
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system 2, due to its high RRSS. Better results are obtained
for the two other phases (h = 0� and h = 45�). In both
cases, the ratio between the hardening rate of the two slip
systems of the phase is close to 1.5, showing that the slip
rates on the soft system 1 are the ones that mostly contrib-
ute to the local hardening of both slip systems.
4.2. Using slip rate fluctuations

The above discussions lead to the conclusion that there
are at least two major difficulties to overcome for an
improved treatment of polycrystal work hardening using
mean-field approaches. Firstly, one has to deal with RRSSs
(and therefore local compliances) that are not uniform in
the phases, as discussed in Section 3. Secondly, the intra-
phase slip rate heterogeneity has to be accounted for, as
discussed in Section 4.1. Furthermore, a third complication
can arise from the fact that, unless a very simple form of
the hardening matrix is adopted (like in the present case
of constant h), this matrix can also become heterogeneous
inside a mechanical phase as deformation proceeds. For
the sake of simplicity, the latter situation will not be con-
sidered in the present work.

In order to address the first difficulty, it is necessary to
define a phase uniform compliance M(r) to allow the applica-
tion of the classic homogenization scheme of Section 3. One
possibility would be to divide each mechanical phase into
many ‘‘sub-phases’’ in which s0k can be considered uniform,
at least for a given deformation increment. In this way, the
continuously varying field of compliances would be replaced
by a piecewise constant approximation. The advantage of
such a scheme is that its accuracy can be increased by increas-
ing the number of sub-phases, but this procedure would
increase exponentially the number of sub-phases as deforma-
tion proceeds, something inconvenient for practical applica-
tions. The second possibility consists in determining the
compliance M(r) that best describes the phase behavior ‘‘on
average’’, according to the available information on s(x)
and _cðxÞ. This solution is explored in what follows.

The application of the SC scheme requires a local consti-
tutive relation of the form

h _eir ¼MðrÞ : hrir ¼ _c0

X
k

R
ðrÞ
k

sk

s0k

� �
r

ð21Þ

As already mentioned, the exact evaluation of Æsk/s0kær, and
thus of M(r), is not possible. To overcome this difficulty, at
least approximately, one may decompose the RRSS field
into

s0kðxÞ ¼ hs0kir þ ds0kðxÞ ð22Þ
If one further assumes that the fluctuation term ds0k(x) is
small compared with the mean value Æs0kær (according to
Fig. 2, this approximation may be rather coarse for the soft
slip system 1, but it is rather reasonable for the hard system
2), the first-order Taylor expansion of the above expression
leads to
sk

s0k

� �
r

� hskir
hs0kir

� hsks0kir � hskirhs0kir
hs0ki2r

ð23Þ

The second term on the right-hand side, which expresses
the correlation between sk(x) and s0k(x), cannot be evalu-
ated in the context of mean-field approaches. Taking this
correlation into account would require a specific procedure
to homogenize the behavior of each mechanical phase, i.e.
to estimate its effective behavior with respect to the distri-
bution of the mechanical heterogeneity within the phase.
Consequently, the approximation is limited here to the
zeroth-order term. Hence

h _ckir ¼ _c0hsk=s0kir � _c0hskir=hs0kir ð24Þ
Replacing the latter in Eq. (21), the approximate expres-
sion of M(r) results:

MðrÞ � _c0

X
k

R
ðrÞ
k � R

ðrÞ
k

hs0kir
ð25Þ

Hence, to obtain incremental estimations of M(r), the evo-
lution of Æs0kær with the deformation has to be evaluated
averaging the hardening law in the phases, i.e.

h _s0kir ¼
X

k0
hhkk0 j _ck0 jir ð26Þ

Even in the simplest case, where hkk0 is uniform within each
phase, the computation of hj _ckjir is required. This, in gen-
eral, is not possible, since only h _ckir and h _c2

kir are known.
Therefore, additional assumptions are necessary. Assuming
that the _ck distributions are Gaussian, one obtains

hj _ckjir ¼ lerfðbÞ þ
ffiffiffi
2

p

r
r expð�b2Þ ð27Þ

where l ¼ h _ckir is the mean value of the _ck distribution in

phase (r), r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _c2

kir � h _cki2r
q

is the corresponding standard

deviation, and b ¼ l=ð
ffiffiffi
2
p

rÞ. Note that this is the best
approximation based on analytical functions that can he
obtained since, as discussed earlier, homogenization tech-
niques only provide two statistical parameters of the intra-
phase distribution.

To assess the error introduced by the above approxima-
tion, we have compared the values of hj _ckjir as functions of
h _ckir, computed directly from the full-field results, and
obtained by approximating the _ck distributions by Gaussi-
ans with the same average and standard deviation as the
actual full-field distribution (Fig. 4). Clearly, the Gaussian
approximation provides a good representation of the
actual distributions. The matching is almost exact at
e13 = 0.2 since, as already shown in Fig. 1, the _ck distribu-
tions tend to be more symmetric as deformation increases.

Another interesting observation from Fig. 4 is that the
approximation hj _ckjir � jh _ckirj, illustrated by the dashed line
and implicitly assumed in the standard procedure, does not
deliver accurate results, especially for the harder systems.

Finally, it should be remarked that, while the second
moment of the _ck distribution in phase (r), given by
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h _c2
kir ¼ _c2

0

s2
k

s2
0k

� �
r

ð28Þ

is also needed to evaluate hj _ckjir (Eq. (27)), it cannot be cal-
culated by mean-field approaches. Instead, replacing Eq.
(23) in Eq. (28), the following approximate expression is
obtained:

h _c2
kir � _c2

0

hs2
kir

hs0ki2r
� 2
hs2

ks0kir � hs2
kirhs0kir

hs0ki3r

" #
ð29Þ

However, as explained earlier, only the first term of the
above development can be retained, i.e.

h _c2
kir � _c2

0

hs2
kir

hs0ki2r

" #
ð30Þ
5. Application to the two-dimensional polycrystal

The improved mean-field hardening treatment described
above (to be referred to in what follows as the Gaussian SC
approach) has been applied to the antiplane deformation of
the two-dimensional polycrystal under consideration. The
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Fig. 5. Evolution of the phase average RRSSs during antiplane deformation on
The FFT results (symbols) are compared with the ‘‘Gaussian’’ SC estimates (
evolution with deformation of the RRSSs of each slip sys-
tem in phases at 0�, 45� and 90� is shown in Fig. 5. Com-
pared with the results of the standard procedure (Fig. 3),
the proposed hardening scheme represents a significant
improvement. Using the Gaussian assumption for the slip
rate distribution, the RRSS evolution appears to be very
close to the full-field reference solution for all phases and
all slip systems. Note that the largest improvement was
obtained for the hard slip systems, i.e. those belonging to
the hard phase, since, for them, the standard procedure
approximation hj _ckjir � jh _ckirj has been proved to be rather
inaccurate. This overall improvement at phase level is par-
ticularly important when mean-field approaches are
intended to be used for the study of deformation-induced
microstructure evolution, such as recrystallization. In such
cases the activation mechanisms of these processes are
strongly dependent on the energy stored in the grains dur-
ing deformation, which in turn is closely related to the
RRSS distributions. The proposed procedure is thus better
adapted for quantitative estimations.

The predicted effective behavior of the two-dimensional
polycrystal is shown in Fig. 6. The new procedure leads to
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a result that lies closer to the FFT reference solution than
the standard hardening treatment. Nevertheless, although
a clear improvement can be observed, a discrepancy still
remains. Interestingly, whereas the average Æs0kær values
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Fig. 8. Relative discrepancy between the SC predictions and the FFT solut
distributions for each slip system of each phase, for an accumulated deformat
are slightly overestimated by the ‘‘Gaussian’’ SC estimate
with respect to the FFT calculation (Fig. 5), the resulting
overall behavior is markedly softer than the one predicted
by the full-field computation. This result can only he
attributed to the contribution to the overall hardening of
the intraphase fluctuations of the s0k fields, which cannot
be captured by the SC scheme, given the approximations
that were necessary for the implementation described in
Section 4.2.

Fig. 7 shows the evolution of the average equivalent
stresses in the phases. Also at phase level the results
obtained with the proposed hardening model are closer
to the FFT solution than those of the standard procedure.
The Gaussian SC estimation is very good for the soft
phase. For the harder phases, the stress is globally underes-
timated, and the difference with the full-field values
increases with strain. It can therefore be concluded that
the differences between the mean-field and the full-field esti-
mates of the macroscopic stress depicted in Fig. 6 are
mainly due to the contribution of the harder mechanical
phases.

At the level of each slip system, the first and second
moments of _ck obtained by means of the improved SC for-
mulation (Eqs. (24) and (30)) can be compared with corre-
sponding FFT reference values in terms of the following
error quantities:

D _ckr ¼
h _ckiSC

r � h _ckiFFT
r

h _ckiFFT
r

and D _c2
kr ¼
h _c2

ki
SC
r � h _c2

ki
FFT
r

h _c2
ki

FFT
r

ð31Þ
Very small values of D _ckr and D _c2

kr (of the order of 10�3) —
reflecting a very good agreement between the SC and the
FFT predictions — have been reported and extensively dis-
cussed in Ref. [46] for the case in which s0k are uniform in
the phases. In the present work the comparison is carried
out at e13 = 0.2 (Fig. 8). A rather good agreement is also
found in this case, given that the deviation is generally
smaller than 10%. This shows that the SC formulation,
when coupled with the proposed hardening procedure,
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captures relatively well the heterogeneities in the material.
However, it can be observed that the absolute values of
the average slip rate jh _ciSC

r j for the hard slip systems are sys-
tematically smaller than the ones predicted with FFT,
whereas the opposite is true for the soft slip systems. Sim-
ilar conclusions are obtained for the second moments. It is
also worth noting that the error on the phase average D _ckr

is in general larger for the hard systems. One can thus con-
clude that, globally, better results are obtained with the
present mean-field approach for the soft mechanical phases
and the soft slip systems.

6. Concluding remarks

Some customary approximations made for the descrip-
tion and the numerical implementation of the work hard-
ening of polycrystals by means of the SC model have
been revisited. By comparing the results of the SC scheme
for a two-dimensional linearly viscous polycrystal to those
obtained with a full-field computation, it has been shown
that the standard treatment of strain hardening neglects
the effect of the intraphase strain heterogeneity. Since a slip
system that does not glide on average does glide locally, its
contribution to the global hardening of the material has to
be considered. The procedure proposed in this work,
addressing the proper averaging of the local hardening
law, clearly improves the estimation of the global and the
local material response. The mean values of RRSSs in
the phases match very well with the full-field predictions.
This improved feature of the SC model has important con-
sequences for the study of deformation-induced micro-
structural evolutions, like recrystallization, which is
driven by the stored energy and thus is directly linked to
the RRSS distributions. From this point of view, the new
approach should allow the use of the SC scheme to obtain
real quantitative data.

Despite all the above encouraging results, the overall
behavior estimated with the SC approach still departs from
the reference solution. It is believed that this effect is related
to the intraphase heterogeneity of the RRSS fields, which
cannot be accounted for in the context of mean-field
approaches. It has also been observed that more accurate
results are obtained for the soft mechanical phases and
the soft slip systems.

We have used the most simple hardening law in order to
obtain simple results. However, in practice more realistic
nonlinear laws, e.g. with h evolving with strain, should be
considered. The proposed procedure can be extended to
these cases. But additional difficulties can arise, since the
intraphase fluctuation of h has to be considered in the sum-
mation appearing in Eq. (26). This term can probably be
approximated by hhkk0 irhj _ck0 jir as long as the fluctuations
of hkk0 are not too large within the considered phase.

The present work is limited to polycrystals exhibiting a
linear viscosity. Our investigation indicates that the exten-
sion to nonlinear viscoplasticity is not straightforward.
Indeed, nonlinear FFT calculations have shown (e.g. Ref.
[49]) that the _ck distributions are far from a Gaussian, with
a marked asymmetry and a very long and slowly decreasing
tail at large _ck values. The use of the proposed procedure
would require one to choose an adequate, non-symmetric
distribution function. In this connection, at present, by
using homogenization approaches it is only possible to cal-
culate first and second moments of the mechanical fields.
Therefore, only two-parameter distribution functions can
be considered. Better results could be obtained if higher
order statistical moments could be evaluated.
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