Acta mater. Vol. 45, No. 11, pp. 4823-4834, 1997
© 1997 Acta Metallurgica Inc.
Published by Elsevier Science Ltd. All rights reserved

Printed in Great Britain
PII: S1359-6454(97)00098-0 1359-6454/97 $17.00 + 0.00

Pergamon

MODELLING VISCOPLASTIC BEHAVIOR OF ANISOTROPIC
POLYCRYSTALLINE ICE WITH A SELF-CONSISTENT
APPROACH

O. CASTELNAU't, G. R. CANOVA?, R. A. LEBENSOHN® and P. DUVAL*

‘LPMTM-CNRS, Université Paris-Nord, Institut Galilée, av. J.B. Clément, 93430 Villetaneuse,

*GPM2-ENSPG, Domaine Universitaire, 38402 St. Martin d’Héres Cedex, France, *Instituto de Fisica

Rosario (UNR-CONICET), 27 Febrero 210 bis, 2000 Rosario, Argentina and *‘LGGE-CNRS, Domaine
Universitaire, 38402 St. Martin d’Héres Cedex, France

(Received 31 October 1996; accepted 24 December 1996)

Abstract—A ViscoPlastic Self-Consistent (VPSC) model has been applied to polycrystalline ice in order
to characterize the relation between the texture of the material and the instantaneous anisotropic
mechanical behavior. We assume that ice crystals deform by basal, prismatic, and pyramidal slip. The
resistance of these slip systems is determined by an inverse approach, based on the comparison between
model results and results of several mechanical tests. The VPSC model well reproduces all experimental
macroscopic behavior only if we introduce a small—but not negligible—amount of pyramidal slip, which
is not observed experimentally. The introduction of this probably unrealistic slip system possibly corrects
the errors linked to the assumptions of the model, that we discuss. We finally use the model to describe
the behavior of some typical polar ices in relation to the symmetries of the texture. © 1997 Acta
Metallurgica Inc.

Résumé—On applique un modeéle autocohérent viscoplastique (VPSC) a la glace polycristalline dans le
but de caractériser la relation entre la texture du matériau et son comportement mécanique anisotrope
instantané. On suppose que les grains de glace se déforment par glissement basal, prismatique, et
pyramidal. La résistance de ces systémes de glissement est déterminée par une méthode inverse basée sur
la comparaison des résultats du modele a ceux d’essais mécaniques. On montre que le modéle VPSC
permet de bien reproduire les comportements macroscopiques expérimentaux seulement si 'on introduit
une activité pyramidale faible—mais non négligeable—qui n’est pas observée expérimentalement.
L’introduction de ce systeme de glissement probablement irréaliste pourrait étre une maniére de corriger
les erreurs liées aux hypothéses du modeéle, que I'on discute. On utilise enfin le modéle pour décrire le
comportement mécanique de glaces polaires typiques en relation avec les symétries de la texture.

1. INTRODUCTION of c-axes around the in siru vertical direction is
generally found, e.g. in the Law Dome (Antarctica)
and GRIP (Greenland) ice cores [I,2]. A more
particular texture with c-axes aligned in a vertical
plane was found in the Vostok (Antarctica) core [3].
As long as the temperature is lower than — 12°C,
these textures mainly develop as a result of the plastic
deformation due to intracrystalline dislocation glide.

In this work, we deal with the strong viscoplastic
anisotropy induced by these textures, and we
concentrate on the relation between texture and
instantaneous mechanical behavior. Anisotropy of
textured ice polycrystals has been largely studied
experimentally, e.g. see [4-6]. For a given equivalent
stress, the deformation rate can differ by more than
two orders of magnitude for the same sample,
depending on the direction of the prescribed stress.
The flow of ice sheets, which must be accurately
modelled to obtain a better understanding of past
Earth climates, is significantly influenced by this

Ice from polar ice sheets (like Greenland and
Antarctica) is a viscoplastic polycrystalline material
that presents a hexagonal crystalline structure (ice
Ih). Like most hexagonal materials, ice crystals
exhibit a very large viscoplastic anisotropy. Only
basal glide significantly contributes to the defor-
mation, and less than five independent slip systems
are expected. Polar ices present interesting character-
istics compared to other classical polycrystalline
materials: (i) the content of soluble impurities is very
low, generally less than 1 um/g, (ii) grain size is large,
typically 10 mm?, and (iii) twinning is not an active
deformation mechanism.

Observations of deep ice cores have revealed the
presence of preferred lattice orientations (texture). At
the surface of the ice sheet, ice presents a randomly
oriented texture, and is thus macroscopically
isotropic. But with increasing depth, a concentration

+To whom all correspondence should be addressed.

anisotropy [7, 8]. Ice flow models must thus take into
account an anisotropic constitutive relation formu-
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lated in large deformations. However, the analytical
constitutive relations developed up to now for
anisotropic polar ices [9,10] have never been
completely tested on experiments nor on in situ
measurements.

In this work, we apply the Visco-Plastic Self
Consistent (VPSC) model to polar ice in order to
estimate numerically the behavior of polycrystals
exhibiting a given (fixed) texture, i.e. in the case of
small deformations. The VPSC approach, first
developed by Hutchinson [11], formulated in an
alternative framework by Molinari ef «/. [12], and
applied to macroscopically anisotropic materials by
Lebensohn and Tomé [13], can be used to derive,
according to the active deformation mechanisms, an
interaction equation that links microscopic states
(stress and strain rate at the grain or subgrain scales)
with the macroscopic state (at the polycrystal scale).
A first order solution (the so-called ““1-site scheme’)
of the incompressibility and stress equilibrium
equations applied over the entire polycrystal volume
is obtained when the interaction between neighboring
grains is not directly considered, but when each grain
is successively considered as an ellipsoidal inclusion
in a Homogeneous Equivalent Medium (HEM)
whose behavior represents that of the polycrystal.
This treatment allows the stress and strain rate to be
different in each grain. The first applications of this
VPSC model to calculate texture development in ice
were presented by Castelnau et al. [14, 15].

A limitation of this homogenization method is that
a constitutive relation must be assumed for the
grains. This means that once a particular form of this
relation has been chosen, it is necessary to find
physically reasonable values of all microscopic
parameters that provide acceptable results at the
microscopic and macroscopic scales. One method
consists of adjusting microscopic parameters on the
rheology measured on isolated single crystals. This
treatment presents the advantage of being very
simple, but it is a priori not satisfactory. Indeed, the
behavior of crystals should depend on the ability of
crystal boundaries to produce and to absorb mobile
dislocations [16]. However, crystal boundaries can
present different structures, e.g. a grain boundary for
a polycrystal and a free surface for an isolated single
crystal. The flow stress of an in situ grain, i.e. of a
grain ‘within a polycrystal, would therefore be
expected to be different from that of an isolated single
crystal, Other methods, such as those recently
proposed by Mercier ef al. [17] and Téth and Serghat
[18], are based on the comparison between model
results and experimental macroscopic stress—strain
curves associated with texture development or active
slip systems observed in grains having different
orientations. These methods are not suitable for ice,
as such experimental data, to our knowledge, are not
available at present. In previous applications of the
VPSC model to polar ice [14, 15], basal and non-basal
resistances of in sifu grains were adjusted to minimize
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non-basal activities and to reproduce the viscosity of
an isotropic polycrystal. The obtained values of slip
resistances were sufficiently accurate to study texture
development, but not to evaluate the rheology of
anisotropic samples. Indeed, the macroscopic behav-
ior of strongly textured polycrystals significantly
depends on not well known values of non-basal
resistances. We present here a different approach,
based on an inverse method, for finding these
microscopic parameters.

The aim of this work is to analyze how the texture
of the material influences the instantaneous macro-
scopic mechanical behavior. After a brief review of
ice rheology (Section 2) and VPSC formulation
(Section 3), we present the method we used to obtain
the microscopic parameters (Section 4). We look for
all possible sets of slip resistances that accurately
reproduce the instantaneous behavior of several
anisotropic polycrystals. For the VPSC model, we
find one set of microscopic parameters that
accurately reproduces in average experimental data.
The classical Voigt-type upper bound (Taylor model,
uniform strain rate within the polycrystal) and
Reuss-type lower bound (static model, uniform
stress) are also used here. Both bounds give very
different results when the microscopic anisotropy is
large, and the comparison between VPSC, Taylor,
and static models shows that microscopic parameters
are very sensitive to model assumptions: slip
resistances determined with the VPSC model are one
order of magnitude lower than those obtained with
the static model. In the second part of the paper
(Section 5), we use the obtained values of slip
resistances to highlight some important features of
the behavior of strongly textured ice polycrystals. We
find a very good agrement between VPSC results and
all experimental data, and we show in particular how
slight deviations in texture symmetries may influence
the macroscopic behavior. The discussion focuses on
some limitations of the VPSC formulation for
non-linear and very anisotropic materials, and on
precautions that must be taken when performing
mechanical tests on anisotropic ices.

2. BEHAVIOR OF MONOCRYSTALLINE AND
ISOTROPIC POLYCRYSTALLINE ICE

The main feature of the plasticity of ice crystals is
its outstanding anisotropy. Almost all dislocation
lines observed in ice Ih lie in the basal plane {0001},
with the three (@/3)<2110) Burgers vectors [19]. As a
result of the low stacking fault energy, basal
dislocations are generally dissociated, which impedes
their cross slip on non-basal planes [20-22].
Non-basal dislocations are observed in the form of
very short edge segments. They have a basal Burgers
vector, and their slip plane should lie between the
{1010} and {1012} planes [23, 22]. Due to their very
short length, these edge segments cannot contribute
significantly to the total deformation of grains. In
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addition, dislocations in which the Burgers vector has
a [0001] component are expected. However, there is
no evidence that these dislocations can glide, i.e. that
ice crystals can deform plastically by slip in the
direction of the c-axis [24]. Therefore, ice crystals
should present less than five independent slip systems.

According to Duval er al. [25], the deformation
rate of single crystals deformed by basal glide is at
least four orders of magnitude larger, for a given
prescribed stress, than that obtained when only
non-basal systems are activated. The steady state
behavior of ice crystals is well represented by the
classical relation proposed by Hutchinson [11]:
rﬁ—lT:

™

s
—r

V=l 1

where »* is the shear rate on the slip systems s, and
7o is a reference shear rate taken equal to unity
(70 = 1 s7'). The stress exponent #* and the Reference
Resolved Shear Stress (RRSS) 75 are the parameters
of this constitutive relation. The resolved shear stress
7y on the system s is given by:

=18, (2

where S is the deviatoric Cauchy stress tensor and *“:”
indicates the twice contracted tensorial product. The
Schmid tensor r* depends on the orientation of the
system s relative to the reference frame:

r = {n'®b + bew) (3)

where n* and b* are unit vectors normal to the slip
plane and parallel to the Burgers vector, respectively.
The strain rate tensor then reads:

D =Y r. @)

In monocrystalline ice, the generally adopted value
for the basal stress exponent is #* = 2 + 0.2 [23].
The value of non-basal exponents is not well defined,
but seems to be close to 3.

The secondary creep of isotropic polycrystalline ice
is reached for a strain of about 1%. This stage is
generally considered as corresponding to the “steady
state” behavior. It is well represented by the Norton
relation, also called “Glen flow law” in Glaciology
[25]:

D= 5 ?o_z_(ng. (5)
Here, S., is the equivalent stress defined as
S.. = (3 x 8:8/2)'2. The macroscopic stress exponent
n is equal to 3 for strain rates larger than about
10~°s~'. The macroscopic reference stress o, is
temperature dependent. Its value slightly depends on
the kind of ice and on the experimental test
conditions. It is estimated to be equal to
234 MPa + 25% at — 10°C according to the
experimental results of Budd and Jacka [6].
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3. THE VPSC FORMULATION

We will briefly review in this section the main
equations of the “l-site” VPSC model. More details
can be found in Molinari ef a/. [12] and in Lebensohn
and Tomé [13]. This model consists of replacing
successively the interaction between an in situ grain
and its surrounding by the interaction between a
grain of the same lattice orientation and an infinite
HEM. The related inclusion problem can be solved
by an extension of the classical Eshelby [26]
formalism to viscoplastic materials only if the
behavior of the HEM is linear. As a result, stress and
strain rate are found to be uniform in each grain if
grain shape is assumed to be ellipsoidal. The stress S
and strain rate D prescribed on the polyerystal
surfaces are assumed to be uniform, and are linked
by the following non-linear constitutive relation:

D = M:§. (6)

The secant compliance tensor M® is a homogeneous
function of degree n — 1 of the stress and is structure
dependent. The behavior of the HEM is ap-
proximated by a first order Taylor expansion of
equation (6) in the vicinity of §:

D = M®(8):S + D*(S), (N

where the tangent compliance M is given by:
oD,
(1g) — Y,
MH(S) = 554S). (8)

In equation (7), § and D designate the stress and
strain rate at infinity in the HEM, and S and D the
same quantities locally in the HEM. Secant and
tangent compliances are proportional:

M® = M (())

if all microscopic stress exponents »° are equal, in
which case n=r’. The extension of the Eshelby
inclusion problem to viscoplastic materials leads to
the following interaction equation, which relates
microscopic and macroscopic states:
Dt—D= — M:(S8—8§), 10
where the exponent g designates a particular grain.
The interaction tensor M depends on the macro-
scopic compliance and on the shape of the grains
(here assumed to be spherical). This allows the stress
and strain rate to be different in each grain. If a stress
localisation tensor Be is defined by the relation:

St = B::S, 1)

then B¢ reads:
BE = (M= 4+ M)~': (M + M) (12)

where the microscopic compliance M=« is defined
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Table 1. Slip family, number of independent systems
per family. and reference resolved shear stress

Nb. Syst. RRSS
Basal 0001}¢ 1130} 2 T
Prismatic 0110}<2710) 2 Tor
Pyramidal 112211123 5 Tpy

from equation (4) by the relation:

Dt = Met=): Se, (13)

The solution is found when the volume integral
(denoted “{.>»”") of the microscopic states equals the
macroscopic state [11]:

(85 =S<D) = D. a4

The inputs of the VPSC model as well as the Taylor
(Dt = D) and static (S*=1S§) bounds are the slip
systems, the initial texture, the microscopic rheologi-
cal parameters »* and 1}, and the prescribed
macroscopic deformation. On the polycrystal, it is
possible to prescribe either the complete macroscopic
strain rate D, the complete macroscopic stress S, but
also mixed boundary conditions as discussed below.
The numerical convergence of the code is achieved
when the relative difference between averaged and
barred quantities (equation (14)) is lower than 107,
This value was found to be small enough to exclude
a dependence of model results on any numerical
convergence error.

4. DERIVING MICROSCOPIC PARAMETERS
4.1. Method

Prior to applying the VPSC model to polycrys-
talline ices, the t and »* values of all slip systems must
be determined. The slip systems we used to describe
ice crystal plasticity are listed in Table 1. Prismatic

G-1328

G-2543 G-2703

G-1988

VT-1806
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{0170}<2110) slip represents glide of short non-basal
edge dislocation segments. Since both basal and
prismatic systems together provide only 4 indepen-
dent systems, we add pyramidal {1122}<1123) slip,
proposed by Hutchinson [27} and Duval et a/. [25], to
permit artificially axial deformation of grains along
the c-axis. We denote 1, 7, and 1,, as the RRSS of
basal, prismatic, and pyramidal glide, respectively.
For the sake of simplicity, we choose the same
microscopic stress exponent »* = 3 for all systems.

To determine the RRSS of in situ grains, we use
an inverse approach. From the literature, we have
selected 19 mechanical tests performed on 10
strongly anisotropic polycrystals of polar ice, all
samples exhibiting different textures. The defor-
mation of these samples was small enough to
impede texture development, but sufficiently large
to reach a ‘“steady state” for the viscosity
(secondary creep). Thus, for each sample, some
components of the viscosity tensor can be deter-
mined experimentally. Since each mechanical test
was performed on initially annealed samples, one
should find, by reproducing experimental tests
conditions numerically, at least one set of rheolog-
ical parameters that reproduces accurately all
experimental viscosities.

The textures of samples are shown in Fig. 1. C-axes
are either concentrated around the z’z direction
(GRIP and Law Dome ices) or in the xz plane
(Vostok ices). Vostok samples were deformed under
uniaxial compression in the directions x'x, y’y, and
z’z, and under biaxial compression in the planes yz,
xz, xy [28]. GRIP samples were deformed under
uniaxial compression along z'z direction [29], and the
Law Dome sample under uniaxial compressiorn along
z’z, under torsion around z’z and under torsion-com-
pression [30]. Torsion tests on tubular samples are

G-2208

VT-2039

Law Dome

Fig. 1. C-axis textures of GRIP [29], Vostok [5], and Law Dome [30] samples. The centers of Schmid
diagrams indicate the in situ vertical direction, and the numbers express the in situ depth in meters. The
axes of the reference frame are shown. Equal-area projection.
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Fig. 2. Average deviation between all 19 mechanical tests and results obtained with the static, VPSC, and
Taylor models, as a function of t,/t,. The interval between thin isovalues is 0.025. Note that scales are
different for the static model.

interpreted here as simple shear tests in the xy plane
and in the x'x direction.

Ice is assumed to be incompressible, so that stress
and strain rate tensors can be expressed as vectors in
a 5-D space, using the transformation proposed by
Lequeu et al. [31]:

T = (T — TW)i/2; /32T
\/§T23; \/ET”; \/ile). (15)

We call T irrespectively the 5-component vector and
the second order tensor. To compare all mechanical
tests together, we express experimental results for a
given value of the macroscopic work rate i = §:D.
For doing this, we multiply the macroscopic stress §
by a dimensionless factor:

3 ,}00_0 Yin+ 1)
)
and then the macroscopic strain rate D by k*" for
homogeneity reasons. We call §* and D* the

obtained deviatoric stress and strain rate tensors,
respectively. The new work rate #* reads:

|/ =S*:D*=\@

With this transformation, all equipotential surfaces
corresponding to the Norton behavior are rep-
resented in the 5-D stress space by a unique
hypersphere of radius g,. Experimental results are not
given explicitly here, but some typical behaviours will
be presented in detail in Section 5. We find that the
norm of $* vectors lie at — 10°C between 148 MPa
(torsion on the Law Dome sample) and 569 MPa
(compression on the GRIP-2543m sample), a
variation which is significantly larger than the
uncertainty on o,. Note also that even if GRIP
samples all present similar texture patterns, a clear
correlation between texture concentration and direc-
tional viscosity is found; the norm of 8§* varies
between 310 MPa (GRIP-1328m) and 569 MPa
(GRIP-2543m).

k* = (16)

n+1°

Yo0o. (17)

Calculations are performed using the textures
measured on natural samples as input for the
models. The deformation conditions prescribed
experimentally on each sample were reproduced
numerically as accurately as possible. For example,
in the case of uniaxial compression along the z'z
axis with no friction between apparatus plates and
the sample, only § is prescribed numerically. In the
case of a biaxial compression test in the x’x and
y'y directions, D.., D,,, and D,, are prescribed
(D., = 0) with the conditions S, = §,. = 0 on shear
stresses. Note that S,, is not null in general [32],
a result which is not consistent with experiments if
there is no friction between apparatus plates and
the sample. In fact, one can show that biaxial
compression tests lead to a non-uniform distri-
bution of normal stresses over the sample surfaces,
unless the texture presents particular symmetries.
Here, we replace this non-uniform distribution by
a uniform shear stress S,, and we verified a
posteriori that S, is small.

We calculate, for each of the 19 mechanical
tests and for different values of the RRSS, the
deviation between experimental and model results,
defined as:

(s*exp. _ S*mod.) . (S*CXP‘
S*CXP‘:S*EXP'

— Qmod.\\ 12
deviation——-( S )> (18)

This deviation represents the relative distance in
the stress space between the point corresponding to
§#*m4 and that corresponding to $**. To calculate
§*m¢ we adjust t, for each couple (t,./:;
Toy/Tw) such that the model reproduces the viscosity
of an isotropic polycrystal (i.e. the value of gy).
Note that the VPSC model does not exactly
predict a Norton behavior for isotropic polycrys-
tals, indicating a slight sensitivity of isotropic
behavior on the third stress invariant. However,
this feature is not found to significantly affect our
results.
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4.2. Results

We estimate that experimental uncertainties can
lead to a maximum deviation of about 0.2 for each
mechanical test individually. Figure 2 shows the
deviation averaged over all 19 mechanical tests.
Results have been obtained with the VPSC, Taylor,
and static models, and are plotted as functions of
Tor/To and T,,/T,. Since some experimental rheologies
are expected to be better reproduced than others, a
good agreement with individual experiments can be
obtained only if this average deviation is significantly
lower than 0.2. With the VPSC model, the average
deviation presents a minimum value of 0.11 for
Toe/To = Ty /T & 70. Therefore, for this model, exper-
imental viscosities can be reproduced in average in a
satisfactory way. By comparison, static and Taylor
models give worse results. The deviation obtained
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with the static model no longer varies whenzt,/t, and
T/To are both greater than 10; the minimum
deviation is about 0.21, i.e. about twice that obtained
with the VPSC model. For the Taylor model, the
minimum deviation (= 0.30), obtained for 1,/
7y = 10 and 7/, = 50, is far more than the maximal
acceptable value.

These results can be better understood by
analyzing the activity (defined as the relative
contribution of a particular system to the total
deformation) of all slip systems. Average activity,
calculated from the 19 mechanical tests, of basal,
prismatic, and pyramidal slip systems are presented in
Fig. 3. Globally, for each model, the relative activity
of a particular system decreases with increasing
RRSS. The Taylor model largely underestimates
basal activity ( < 0.45). This result, together with the

a) STATIC VPSC TAYLOR
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Fig. 3. Average activity of (a) basal, (b) prismatic, and (c) pyramidal slip systems, calculated with static,
VPSC, and Taylor models as a function of 7,/ and 1p,/7s. The interval between thin isovalues is 0.025.
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Table 2. RRSS values, expressed in

MPa, obtained with the static,

VPSC, and Taylor models, corre-
sponding to 7/t = Tpy/ts = 70

Static  VPSC Taylor
T 71.5 7.76 2.49
Tpr 5005 543 174
Toy 5005 543 174

large value of the minimum average deviation,
shows that this model cannot be realistically
applied to polycrystalline ice, whatever the set of
RRSS we choose. With the static model, the
comparison of Figs 2 and 3 shows that the best
estimation of polycrystal behaviour is obtained
when the basal activity is maximum, ie. for
To/To = 10 and 7,/7p > 10. This is in accordance
with the intuitive idea that since non-basal dislo-
cations are rarely observed, non-basal slip could be
omitted in the simulations. But interestingly, a
different feature is found for the VPSC model.
Indeed, basal activity increases with non-basal
RRSS, but the average deviation is not minimum
for maximum non-basal RRSS. Within the VPSC
model, it is thus necessary to introduce a certain
amount of non-basal activity to accurately repro-
duce experimental results. For <z, /t, = 1,,/1, = 70,
basal and prismatic activities (respectively 0.89 and
0.02) are physically acceptable. Pyramidal activity
remains small ( = 0.09), but the occurrence of such
a deformation mechanism has never been demon-
strated experimentally. This set of RRSS thus leads
to the best reproduction of experimental macro-
scopic behavior with realistic active deformation
mechanisms except for pyramidal slip. One can
also choose to reduce as much as possible the
pyramidal slip by selecting a set of RRSS that
leads to worse (but still acceptable) prediction of
macroscopic behaviors, for example 7/, = 50 and
Tos/To = 90. In that case, the pyramidal activity
( = 0.06) is still not negligeable. In fact, one should
retain that pyramidal slip cannot be completely
suppressed, even if the numerical convergence can
be achieved with basal slip only [14].

In the following, we will use the set 7,/7, = Tp/
7, =70 for all models. It provides the best
accordance with experiments for both VPSC and
static models, but not for the Taylor model; this
(unrealistic) upper bound will be applied only to
better understand the influence of model assump-
tions on results. We get the values of v, T, and
7,y by adjusting 7, in order to reproduce the value
of g, for an isotropic polycrystal, see Table 2.
Accordingly, values of RRSS largely depend on
model assumptions. We find, for example, that
7, obtained with the static model is 10 times as
large as that obtained with the VPSC model. We
can also compare these results with values of
RRSS obtained to reproduce the experimental
behaviour of isolated single crystals given by
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Duval et al. [25]:
5 <1, <22 MPa, 1, > 297 MPa, 1, > 429 MPa.

(19)
The VPSC estimation of the rheology of in situ grains
well matches that obtained experimentally on isolated
single crystals. A similar feature was found by
Lebensohn and Tomé on zirconium [13]. This tends
to indicate that the structure of grain boundaries
should not significantly affect the macroscopic
behavior of ice polycrystals.

4.3. Effects of strength of interaction

We have used a VPSC approach to calculate the
behaviour of grains within a polycrystal, by
comparing experimental instantaneous responses of
10 strongly anisotropic samples with those deter-
mined numerically for various sets of basal,
prismatic, and pyramidal resistance. We have shown
the very good agreement between experiments and
average predictions of the VPSC model for the
macroscopic flow stress. On the other hand, the
Taylor model can be completely disregarded for
polycrystalline ice. The VPSC estimation of RRSS is
in very good accordance with experiments on isolated
single crystals, but very large variations are found
between VPSC, static, and Taylor estimations of
RRSS.

At this point, it is worthwhile to look at the
sensitivity of results on the assumptions of the
“1-site” VPSC formulation. A simple test consists of
introducing, in the interaction equation (10), an
interaction coefficient « [33]:

Dt—D= —ax M:(SE—8§) 20)

which is used to constrain the interaction between
grains and the HEM. A zero value of a corresponds
to the Taylor model, a value of unity to the tangent
VPSC model used here, and an infinite value to the
static model. The evolution of the relative flow siress
0,/T, of an isotropic polycrystal with « is plotted in
Fig. 4, for 1, /1 = 1, /1, = 70. According to Téth
et al. [34] and Molinari and Toéth {33], the real
behavior of polycrystals should lie between the VPSC
secant approach (« = 1/n), corresponding to the
incremental model of Hutchinson [11], and the VPSC
tangent approach (« = 1). With the secant model, we
find a value of 0y/7; as large as 2.8 times that obtained
with the tangent model, and a basal activity of only
0.52 for isotopic polycrystals instead of 0.98 for the
tangent model. In order to have a more realistic (i.¢.
larger) basal activity with the secant model, it 1s
thus necessary to impose 1, /1, and t,, /1, significantly
larger than 70. As a result, we see that to reproduce
the experimental behavior of anisotropic polycrys-
tals, we should choose RRSS values that are
signficiantly different than those given in Table 2.
Since the secant model is closer to the Taylor
model, it can probably not reproduce macroscopic
behavior as accurately as the tangent model.
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Fig. 4. Sensitivity of (a) the macroscopic relative flow stress and (b) the basal activity on the interaction
coefficient «, for an isotropic polycrystal and taking p/ts = Toy/t6 = 70.

Microscopic parameters are thus found to be very
sensitive to model assumptions, and the VPSC
estimation of RRSS should be considered only as a
first approximation of real values.

4.4. About work rate conservation

We now concentrate on another simple test,
which consists of checking if the work rate is
conserved, i.e. if the macroscopic work rate S:D
equals the mean microscopic work rate (S&:De).
Figure 5(a) shows the relative difference between
these work rates, for an isotropic polycrystal, as
a function of /1, and for t, =r1,. If the
VPSC model could allow the calculation of a stress
field that is in equilibrium everywhere in the
polycrystal, then this difference would wvanish.
However, the VPSC model treats the case of a
population of inclusions, each of which is in
equilibrium with the HEM, but without constrain-
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ing the equilibrium between them. The difference
between work rates can be expressed in quadratic
form:

S:D — (S:DE) = (8¢ — 8)y:M:(S: - 8)) (21)

which is not null in general and which is found to
increase with the microscopic anisotropy. Such a
discrepancy between macroscopic and averaged
microscopic dissipated (and/or stored) energies
(and/or work rate) is expected for all kinds of *1-site”
self-consistent schemes relying on an interaction
equation (elastic, elastoplastic, . . .). Here, the relative
difference between work rates is maximum for the
tangent approach (Fig. 5(b)) and a value as high as
6.0 is attained for /T, = Tp/7s = 70. Such a high
value indicates that the simplifications of the “‘1-site”
VPSC formulation leads to significant inaccuracy for
strongly anisotropic materials like ice. Three major
simplifications are introduced in the “1-site”” scheme:
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Fig. 5. Relative difference between the macroscopic work rate and the mean microscopic work rate,
calculated with the VPSC model for an isotropic polycrystal. (a) 1o = Ty, @ = 1; (b) Tpe/To = Toy/T6 = 70.
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1. The stress and deformation states are assumed
to be uniform in each grain, which is only a
rough estimation of natural deformations
[35, 36).

2. Topological effects, which have a significant
influence on local states [37-39], are not taken
into account.

3. The behavior of the HEM is linearized in the
vicinity of the prescribed stress. According to
Gilormini [40], the VPSC model extended to
non-linear materials may lead in certain cases to
a macroscopic behavior that violates the more
restrictive upper bound of Ponte Castafieda.

Accordingly, the VPSC model cannot be used to
evaluate stress or deformation in a particular grain,
but only to estimate average stress or deformation of
grains having a particular orientation. The influence
of the linearization of the HEM behavior is more
difficult to analyze, but it is clear that it introduces an
error that increases with the non-linearity of the
macroscopic behavior and with the microscopic
anisotropy since this anisotropy introduces stress
concentrations.

This analysis indicates that the application of the
VPSC model to non-linear strongly anisotropic
materials requires some precautions. We have shown
that our VPSC estimates of RRSS must be taken only
as a rough approximation of real values. In
particular, the strong dependence of RRSS values on
model assumptions limits the physical interpretations
of our results. If 7, is theoretically linked to the
density and the mobility of basal dislocations, the
value of 7,, has less physical meaning since pyramidal
slip has never been clearly observed in ice. Here,
pyramidal slip provides one additional degree of
freedom and permits axial deformation along c-axes.
One possibility is that the artificial introduction of
this slip system is necessary to correct, in some way,
the errors linked to the simplifications of the ““1-site”
VPSC approach.

5. ANISOTROPIC BEHAVIOR

We will now use the VPSC model to highlight some
features of anisotropic ice behavior. We focus here on
two particular samples, VT2039 and Law Dome,
since both of these samples have been subjected to
several mechanical tests (5 and 3, respectively). The
behaviors described below nevertheless hold also for
VT1806 and GRIP samples. The VT2039 sample was
deformed experimentally under uniaxial compression
(points A and B in Fig. 6) and biaxial compression
(C, D, E). The Law Dome sample was deformed
under uniaxial compression (F), torsion (G), and
torsion—compression (H).

Micro-macro models can be used to describe
polycrystal behavior by calculating an equi-work-rate
surface in the 5-D stress space. Figure 6(a) shows a
projection on the deviatoric plane {S|, §;} of the
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surface calculated for the VT2039 sample with VPSC,
Taylor, and static models. The plane projection of the
5-D surface, as defined by Canova er al. [32], is
calculated by prescribing D; = D; = D; = 0. Note
that these conditions do not correspond to defor-
mation conditions of uniaxial and biaxial corm-
pression, as discussed in Section 4.1. However,
sections and projections of equi-work-rate surfaces
corresponding to experimental deformation con-
ditions are almost superimposed on the projection of
Fig. 6(a), and are thus not shown here. We find that
maximum values of shear stresses S;, S;, and S never
exceed 20% of the maximum axial stresses S and £.
This indicates that for the VT2039 sample, the
deviatoric plane {5}, S} is nearly closed, i.e. that axial
stresses mainly induce axial deformations, and
vice-versa [32]. This fact is in accordance with the
nearly plane symmetry, around xz, of the c-axes
texture. This remark is important. Indeed, we have
shown in Section 4.1 that biaxial compression tests on
natural samples, for which textures always present a
slight asymmetry, necessarily induce a non-uniform
distribution of axial stresses on sample surfaces. But
since the deviatoric plane is found to be nearly closed,
this non-uniformity is expected to remain small.
Therefore, biaxial tests on the VT2039 samples are
valid.

Equi-work-rate surfaces indicate the resistance of
the sample with respect to any stress direction. A
good agreement with experimental data is found for
the VPSC model. Individually, each experimental
behavior is reproduced numerically. Less accurate
results are obtained with static and Taylor models, as
previously seen in Fig. 2.

Let us now define a macroscopic stress potential ¢,
such that:

D
S

D,j =

]

(22)

()}

In the 5-D stress space, the strain rate vector D is
normal to the equipotential surface corresponding to
the prescribed stress 8. The VPSC surface of Fig. 6(a)
presents two sharp edges which, if found on an
equipotential instead of an equi-work surface, could
lead to an instable viscoplastic behavior. According
to Hutchinson [l1], the particular form of the
microscopic constitutive relation (4) leads to an
unusually simple connection between macroscopic
potential and macroscopic work rate:

(5:‘

124
n+1
if §:D = ¢S#:D#>. This is for example the case for the
static and Taylor models. Therefore, equi-work-rate
surfaces calculated with these models are also
equipotentials, and the normality rule thus holds for
equi-work-rate surfaces. However, as shown pre-
viously, the condition 8:D = (S=:D#) is not verified
for the VPSC model. As a result, the relation (23) is
not necessarily valid, i.e. W is not necessarily

(23)
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Fig. 6. Rheology of VT2039 (a, b, c) and Law Dome (d, e, f) samples, calculated with VPSC, Taylor,

and static models, compared to experimental data. (a) projection of the equi-work-rate surfaces on the

deviatoric plane and (d) section by the {Sz, SA} subspace. (b, e) relation between the orientation . of

vector D and the orientation y, of 8. (c, ) relative activity of basal, prismatic, and pyramidal systems
predicted by the VPSC model.

proportional to ¢, and the normality rule does not orientation of D varies with that of § is to plot the
necessarily hold for VPSC equi-work-rate surfaces.  angle ¥4 between vector D and the x-axis (here the
One way to describe in more detail how the Sj-axis) as a function of the angle , between vector
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§ and the x-axis, as in Fig. 6(b). Note that for the
VPSC model, we find again a very good agrement
with the experimental points C, D, E. Here, points A
and B cannot be plotted, since the direction of D was
not completely determined experimentally. The
behavior of the VT2039 sample can be decomposed
into two distinct domains. The first corresponds to 0°
<y, < 120°, for which . is only slightly sensitive to
Y. In this domain, a variation of the stress vector
direction of 120° causes a variation of the strain
rate vector direction of only 30°. The direction of
D is very “stable”. The second domain, which
exhibits the opposite behaviour, corresponds to 120°
< ¢, < 180° i.e. to the vicinity of the edges. Here, the
direction of D is very sensitive to that of §. According
to Fig. 6(c), a sharp minimum of basal activity is
found in this domain. A large amount of non-basal
slip then renders the direction of D very sensitive to
that of 8. At , = 148°, i.e. for the edges, prismatic
and pyramidal activities both reach a value of about
0.1. Especially for pyramidal slip, the realism of such
a relatively high value can be questioned, despite the
very good agreement between modelled behavior and
experiments.

The behavior of the Law Dome sample presents an
overall similar behavior, but with one important
difference. Figure 6(d) shows the sections of the
equi-work-rate surfaces by the {5, S} plane,
calculated with VPSC, static, and Taylor models.
These sections are obtained by prescribing
S;=8,=8;=0. A very good agreement with al/
experiments is obtained with the VPSC model,
whereas the static model also gives satisfactory results
here. Similarly to the VT2039 sample, two distinct
behaviors are observed. When the equi-work-rate
surface presents a small curvature, i.e. for — 15°
< ¥, < 30° a smaller contribution of basal slip is
found, and the strain rate direction is very sensitive
to the stress direction (Fig. 6(¢) and (f)). Here again,
pyramidal activity (max. = 0.25) is far larger than
expected.

The c-axes texture of the law Dome sample is
nearly axisymmetrical about the z’z axis. Intuitively,
we expect the { S}, $;} and {§;} subspaces to be nearly
closed. In fact, this is not the case at all. For example,
during a compression creep test in the z’z direction,
ie. for §=(0, S, 0,0, 0) and ¢, = 180°, the VPSC
model predicts 4 = 131°. A shear strain rate D] then
appears, and its absolute value is close to that of D;.
Thus, axial stresses also induce a significant shear
strain rate. A similar feature appears for shear
deformation. If the strain rate D = (0, 0, 0, 5;, 0) is
prescribed, i.e. ¥4 = 90°, then ¥, = 37° according to
the VPSC model. In this case, a significant tensile
stress S; appears in the sample. For the Law Dome
sample, the apparent symmetry of the texture does
not allow us to conclude directly if specific subspaces
are closed. This last point is important for the
interpretation of mechanical tests. In ice sheets, deep
ice is mainly deformed by shear parallel to the xy

ICE BEHAVIOR 4833
plane. The shear viscosity of samples with a similar
texture as our Law Dome sample is thus of great
importance for calculating and interpreting the large
scale flow of polar ices. However, the value of this
viscosity component is still subjected to discussion.
For example, Lile [41] and Russel-Head and Budd
[42] have found a relatively large viscosity by
performing shear tests with a constant distance
between apparatus plates, i.e. by prescribing D; = 0
and thus ¥4 = 90° in Fig. 6(d). Legac [30] has found
a much lower viscosity for a very similar sample, but
with an apparatus allowing free axial deformation of
the sample, i.e. under the conditions i, = 0° leading
to q # 90°. These two deformation conditions are
very different. In Lile’s and in Russel-Head and
Budd’s experiments, a large axial stress S; appears,
while in Legac’s experiments, a small axial strain rate
D; occurs. The results of these different authors
therefore cannot be directly compared. When
applying the VPSC model to Legac’s experiments, we
obtain a smaller value of S}, corresponding to a lower
shear viscosity.

6. CONCLUSION

We have applied a ViscoPlastic Self-Consistent
(VPSC) model to characterize the instantaneous
anisotropic behavior of textured polycrystalline ice.
Ice crystals were assumed to deform by dislocation
glide on basal, prismatic, and pyramidal planes.
Results were compared to those obtained with Taylor
and static bounds. We have used an inverse method
to derive the microscopic parameters of the models.
This method is based on the comparison between
model results and anisotropic macroscopic behavior
measured experimentally. It permits us to determine
all sets of microscopic parameters usable for the
simulations. We have found that the best VPSC
estimate of the behavior of grains embedded in a
polycrystal is similar to the one determined
experimentally on isolated monocrystals. However,
the calculated resistances of slip systems are found to
be very sensitive to model assumptions.

The VPSC model reproduces very well the
macroscopic behavior of strongly textured samples.
We show however that this good agreement cannot
be obtained without the introduction of a relatively
small—but not negligible—amount of pyramidal slip,
which is not observed experimentally. The introduc-
tion of this probably unrealistic slip system, which
provides one additional degree of freedom for the
microscopic deformations, cannot be interpreted
from the physical point of view. Indeed, the plastic
work is far from conserved within the “1-site”” VPSC
approach when the material presents a strong
anisotropy (like ice), indicating that the mechanical
equations are only very roughly solved in the
polycrystal. This discrepancy is to be expected for all
kinds of *“1-site” self-consistent schemes relying on an
interaction equation. As a result, the normality rule
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does not necessarily hold for VPSC equi-work-rate
surfaces.

We have finally analyzed the relation between
texture symmetries and macroscopic behavior.
Textured ice samples always tend to deform in a
direction that favours basal slip. However, for polar
ices, closed subspaces as defined by Canova et al. [32]
for ideal textures cannot be directly determined from
natural texture patterns. Since polar ices are
subjected to a complex in situ deformation history,
textures never present perfect symmetries. In certain
cases, subspaces which are closed for an ideally
symmetric texture are far from closed when the
texture is only nearly symmetric. This should be
taken into account to improve future mechanical test
conditions and to interpret in situ field measure-
ments.
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