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ABSTRACT

Inspired by the comic faux-Latin aphorism “veritas duo sigma” (truth at two sigmas), an approach to target
detection is proposed based on a likelihood ratio test in which the unknown target strength is treated as known,
with strength chosen to correspond to a minimal level of detectability. For Gaussian distributions, this strength
typically corresponds to two or three sigmas. This detector is admissible, which means that there is no other
detector that is uniformly superior to it. The simplicity of the veritas detector permits closed-form solutions to
be derived for a variety of signal detection problems. In a series of numerical experiments, these simple detectors
are compared to traditional detectors, such as the locally most powerful detector and the generalized likelihood
ratio test detector.

Keywords: Adaptive matched filter, Clutter, Clairvoyant fusion, Composite hypothesis testing, Elliptically-
contoured distribution, Generalized likelihood ratio test, Hyperspectral imagery, Target detection

1. INTRODUCTION

For additive signals on Gaussian clutter, the linear matched filter2–5 is the uniformly most powerful detector
(UMP). It is the optimal detector for any strength of additive signal. For even mildly complicated scenarios,
however, for non-Gaussian clutter, or for replacement-model or Beer’s Law signals, there is no UMP detector,
and optimum detection depends on the target signal strength.

If the target strength were known, then the so-called clairvoyant detector,6 which is based on a simple
likelihood ratio test, would provide optimal detection. Our interest here, however, is in scenarios in which we
do not know the target strength. This is a composite hypothesis testing problem, and in most scenarios, it does
not admit a single unambiguously optimal solution.

The traditional approach to the general composite hypothesis testing problem is the generalized likelihood
ratio test (GLRT). Here a maximum likelihood estimate is made of the unknown strength, and that estimate is
used in the clairvoyant detector. There is no guarantee that the GLRT is optimal, however, and examples can
be constructed (e.g., see [7]) for which the GLRT is dominated by a Bayesian detector. Two generalizations of
the GLRT, penalized likelihood8,9 and clairvoyant fusion,10,11 unfortunately share the sub-optimality property.

A less common alternative to the GLRT is sometimes called the locally most powerful (LMP) detector,6

which identifies the optimal detector in the limit that the target strength goes to zero. The motivation for using
this statistic is that weak targets are hardest to find; for strong targets, which are easier to find, we can get away
with less-than-optimal detectors.

The approach suggested here follows the same line of reasoning, but instead of optimizing on the very weakest
target strengths, it optimizes on target strengths that are, in some sense, just detectable. Again, for stronger
targets, because they are easier to find, we can get away with suboptimal detectors. And for weaker targets, we
aren’t going to find them anyway. So we aim for what we hope is a sweet spot. Where that sweet spot is (and
whether it is a single spot, or maybe some kind of average over a range) will depend on the the application at
hand. But a reasonable place to start is with a desired false alarm rate that we would like to achieve. Targets
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are sought whose strength just permits them to be detected at the desired false alarm rate; and the detector is
optimized for those targets.

While this approach has wider application, the motivating example here is pixel-wise target detection in
hyperspectral imagery. For each pixel in a hyperspectral image, we ask: is there a target present?

2. GENERIC FORMULATION FOR A TARGET IN CLUTTER

Let x ∈ Rd represent the value (reflectance, usually, but possibly also radiance or even uncalibrated “digital
number”) for a pixel in an image with d spectral channels. Let ξ be a function that describes the effect of target
on background. If z is the background spectrum (i.e., the spectrum of a pixel with no target), and x is the
spectrum of that pixel when a target is present, then we write x = ξ(z).

We can write Pbkg(z) as the probability density associated with the background pixels z. Using the usual
formula for change-of-variables in probability distributions, we can say that

Ptarget(x) = Pbkg(ξ−1(x))

∣∣∣∣dξdx
∣∣∣∣−1 , (1)

and from this the likelihood ratio is given by

L(x) =
Ptarget(x)

Pbkg(x)
=
Pbkg(ξ−1(x))

Pbkg(x)

∣∣∣∣dξdx
∣∣∣∣−1 . (2)

This is in some sense the fundamental equation for target detection. If we have a model for the background
clutter (encoded in the distribution Pbkg) and a model for target-background interaction (encoded in the func-
tion ξ), then Eq. (2) provides the optimal detector for that target in that background. The issue we face in this
exposition is that ξ is not known; it depends on some measure of target strength (or abundance), which we will
hereafter denote a.

3. ADDITIVE TARGET MODEL

For an additive target, we write x = ξ(z) = z + at, where t ∈ Rd is the known target signature and a is the
unknown scalar-valued measure of target strength. The detector in Eq. (2) becomes

L(a,x) =
Pbkg(x− at)
Pbkg(x)

. (3)

3.1 Additive target in Gaussian clutter

For a Gaussian background with mean µ and covariance R, we can write

2 logL(a,x) = A(x)−A(x− at) (4)

where
A(x) = (x− µ)′R−1(x− µ) (5)

is the Mahalanobis distance to the mean, widely used as the “RX” anomaly detector.12 Then

2 logL(a,x) = 2at′R−1(x− µ)− a2t′R−1t (6)

and a further monotonic transform∗ gives the familiar matched filter

D(x) =
2 logL(a,x) + a2t′R−1t

2a
= t′R−1(x− µ), (7)

∗The transform is monotonic as long as a > 0.
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which does not depend on a. This matched filter is the optimal detector for all positive target strength values a;
thus it is the uniformly most powerful (UMP) detector.

Note that in the absence of target, this detector has mean zero and variance given by

Var[D(x)] =
〈
t′R−1(x− µ)(x− µ)R−1t

〉
= t′R−1t (8)

Meanwhile, in the presence of target with strength a, the mean value of the detector is given by Mean[D(x)] =
at′R−1t. Thus, the detector on average achieves a “one sigma” (i.e., one standard deviation) detection when

this mean value is equal to the square root of the variance, and this occurs when a = 1/
√
t′R−1t. We refer to

this as the characteristic target strength:
ao = 1/

√
t′R−1t (9)

3.2 Additive target in elliptically-contoured clutter

A slighly more complicated case arises when the background is not Gaussian. Here, we consider the multivariate
t-distribution, which shares many properties of the Gaussian (such as a mean µ and covariance R) but it has a
fatter tail, and is often considered a better model for hyperspectral data.13 This distribution is given by

Pbkg(x) = c[ν − 2 +A(x)]−(ν+d)/2 (10)

where c is a constant, and ν is a paramter that characterizes how fat the tail is. For ν → ∞, the distribution
converges to a Gaussian; as ν → 2, the distribution gets fatter and fatter tails until for ν ≤ 2, the second moment
does not exist, and so the covariance of the distribution is not formally defined.

For a known target strength a, we can compute the clairvoyant detector by taking an appropriate monotonic
transform of the likelihood ratio. Here,

L(a,x) =
[ν − 2 +A(x− at)]−(ν+d)/2

[ν − 2 +A(x)]−(ν+d)/2
(11)

so

1− L(a,x)−2/(ν+d) =
2at′R−1(x− µ)− a2t′R−1t

ν − 2 +A(x)
(12)

and one form of the clairvoyant is given by

D(a,x) = (ν − 1)[1− L(a,x)−2/(ν+d)] = F2
ν (x)

[
2at′R−1(x− µ)− a2/a2o

]
(13)

where ao is defined in Eq. (9) and

Fν(x) =

√
ν − 1

ν − 2 +A(x)
. (14)

We cannot actually use the clairvoyant formula in practice, because it requires that we know a. For the
Gaussian in the previous section, we sidestepped this issue by performing a monotonic transform that eliminated
the dependence on a. But that is not possible here.

The veritas solution is to replace a in Eq. (13) with a small multiple of the characteristic signal strength ao.
This leads to

Dveritas(n,x) =
D(nao,x)

2n
= F2

ν (x)

[
t′R−1(x− µ)√

t′R−1t
− n

2

]
(15)

where n is the “number of sigmas” you seek in your detector. If you want good performance at a very small false
alarm rate, then you have to be looking for stronger targets, and so n will be larger.

The LMP solution seeks the detector that is optimal in the a → 0 limit. This is obtained from Eq. (15)
with n = 0. This is not recommended for practical purposes, however, because such weak targets are essentially
undetectable; to say it another way, detecting such weak targets would require a very high (and typically
unacceptable) false alarm rate.
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Table 1. Additive model with multivariate t-distributed background

Detector Expression

Clairvoyant D(a,x) = F2
ν (x)

[
at′R−1(x− µ)− 1

2a
2t′R−1t

]
Veritas D(n,x) = F2

ν (x)
[
t′R−1(x− µ)− 1

2n
√
t′R−1t

]
LMP D(x) = F2

ν (x)
[
t′R−1(x− µ)

]
GLRT D(x) = Fν(x)

[
t′R−1(x− µ)

]
AMF D(x) = t′R−1(x− µ)

ACE D(x) = t′R−1(x− µ)
/√
A(x)

RX A(x) = (x− µ)′R−1(x− µ)

The large a limit is also potentially of interest. For this case, the additive target on multivariate t background,
the a → ∞ limit leads to D(x) = limn→∞ 2Dveritas(n,x)/n = −Fν(x)2 which is equivalent to A(x). Thus, the
RX anomaly detector becomes the optimal target detector for very strong targets on an EC background.

The more traditional approach to the problem of unknown target strength is the generalized likelihood ratio
test (GLRT). Since we don’t know the actual a, we estimate it by maximizing Ptarget(x) = Pbkg(x − at). This
leads to an estimator

â = t′R−1(x− µ)/t′R−1t. (16)

which we can substitute into Eq. (13)†, take the square root as a monotonic transform‡, and obtain the GLRT
solution reported in [14]:

DGLRT (x) =
√
D(â,x) = Fν(x)

[
t′R−1(x− µ)√

t′R−1t

]
(17)

4. REPLACEMENT TARGET MODEL

For solid subpixel targets, the strength of the target signal is proportional to the area of the target, and since
the background over this area is occluded by the target, its magnitude is correspondingly reduced. In particular,
if a is the area of the target relative to the area of a pixel, then

x = ξ(z) = (1− a)z + at. (18)

Here, the likelihood ratio is given by

L(a,x) =
Ptarget(x)

Pbkg(x)
= (1− a)−d

Pbkg

(
x− at
1− a

)
Pbkg(x)

(19)

4.1 Replacement model on Gaussian background

The log likelihood for a Gaussian background is given by

logL(a,x) = −d log(1− a) + logPbkg

(
x− at
1− a

)
− logPbkg(x)

= −d log(1− a)− 1
2A
(
x− at
1− a

)
+ 1

2A(x) (20)

†Note, to get the GLRT solution, it is important that we substitute â into an expression that is not only a monotonic
transform of the likelihood, it must be a monotonic transform that does not depend on a.
‡In theory, one should worry about negative values; in practice, Eq. (17) works fine even when t′R−1(x− µ) < 0.
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Using

A
(
x− at
1− a

)
=

1

(1− a)2
A(x− a(t− µ)) =

1

(1− a)2
[
A(x)− 2a(t− µ)′R−1(x− µ) + a2A(t)

]
, (21)

we can write

logL(a,x) = −d log(1− a)−
1
2

[
A(x)− 2a(t− µ)′R−1(x− µ) + a2A(t)

]
(1− a)2

+ 1
2A(x) (22)

= −d log(1− a) +
a(t− µ)′R−1(x)− 1

2a
2A(t)− (a− 1

2a
2)A(x)

(1− a)2
. (23)

So now we can obtain a detector by taking a monotonic transform:

D(a,x) =
(1− a)2 [logL(a,x) + d log(1− a)]

a
+ 1

2aA(t) (24)

= (t− µ)′R−1(x− µ)− (1− 1
2a)A(x). (25)

This clairvoyant detector has a very simple form, and can be informally interpreted as the mean-subtracted
matched filter minus some fraction of the Mahalanobis anomaly function, where the fraction depends on the
target abundance a.

As before, we can obtain the LMP detector by taking a = 0 in Eq. (25).

The a → 1 limit is also potentially of interest for this problem; that is obtained from Eq. (25) simply by
setting a = 1.

4.2 Replacement model on multivariate t background

For the multivariate t distribution given in Eq. (10), the likelihood ratio given in Eq. (19) becomes

L(a,x) = (1− a)−d

 (ν − 2) +
A(x− a(t− µ))

(1− a)2

(ν − 2) +A(x)


−(ν+d)/2

(26)

and from this, a clairvoyant can be produced:

D(a,x) =
(ν − 1)(1− a)2

2a

(
1−

[
(1− a)dL(a,x)

]−2/(ν+d))
(27)

= F2
ν (x)

(
Do(a,x)− 1

2aA(t)
)

(28)

with Do(a,x) given in Eq. (25).

To compute the GLRT, we need to find â that maximizes L(a,x); to do this, we must take the derivative
with respect to a, and then find the value of a for which that derivative is zero. This generally leads to more
complicated formulations, and although closed-form solutions are not guaranteed in general, they have been
found for the replacement model with Gaussian clutter (the finite target matched filter (FTMF) of Schaum and
Stocker15) and with multivariate t-distributed background clutter.16

4.3 Counting sigmas with the replacement model

For the additive model, the notion of a characteristic target strength (defined in Eq. (9)) was relatively straight-
forward to define. For the replacement model, the notion is a little more complicated.

In the absence of target, the detector in Eq. (25) has mean given by −(1− 1
2a)d and variance given by a more

complicated formula: A(t) + 2d(1 − 1
2a)2, which is derived using the fact that A(x) is chi-squared distributed

with d degrees of freedom. In the presence of a target of abundance a, the mean of the distribution becomes
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−(1− 1
2a)

[
(1− a)2d+ a2A(t)

]
+ aA(t). Equating square of mean difference and variance leads to characteristic

target strength ao. The expression will be complicated in general, but for small a (a� 1), we get

ao = 1/
√

2d+A(t). (29)

Since the target abundance is bounded between zero and one, the choice for our n-sigma veritas detector would
be given by Eq. (25) or Eq. (28) with a = min(1, nao).

5. ABSORPTIVE PLUME MODEL

For an absorptive plume, we have from Beer’s Law that the radiance observed at some wavelength λ is given by
xλ = zλ exp(−atλ), where zλ is the radiance that would observed in the absence of plume, tλ is the absorption
coefficient of the plume gas, and a is the plume strength (which depends on the concentration of the gas and the
thickness of the plume). For a sensor with d wavelengths, we can express this in vector form, with d-dimensional
vectors x and z, whose components are xλ and zλ, respectively:

x = ξ(z) = exp(−aT )z, (30)

where T is a diagonal matrix whose diagonal elements are the absorption coefficients tλ.

It bears remarking that a common approximation here is to take ξ̂(x) = z − aT 〈 z 〉 = z − aTµ, which
corresponds to the additive model with t = −Tµ. It is this approximation that enables the use of a standard17–19

or EC-based14 matched filter for gas detection. But one can obtain closed-form solutions without making this
approximation.20 To do this, we use |dξ/dx| = exp(−aτ) where τ = Trace(T ), and substitute into the generic
expression in Eq. (2), to obtain

L(a,x) =
Ptarget(x)

Pbkg(x)
=
Pbkg(exp(aT )x) exp(aτ)

Pbkg(x)
. (31)

5.1 Absorptive plume model on Gaussian background

For a Gaussian background, Eq. (31) leads to a clairvoyant detector of the form

D(a,x) = 2 logL(a,x)− 2aτ = 2 logPbkg(exp(aT )x)− 2 logPbkg(x)

= (exp(aT )x− µ)′R−1(exp(aT )x− µ) + (x− µ)′R−1(x− µ)

= A(x)−A(exp(aT )x) (32)

5.2 Absorptive plume model on multivariate t background

For a multivariate t-distributed background, the expression is a little more complicated. Here, Eq. (31) becomes

L(a,x) =
Ptarget(x)

Pbkg(x)
=

Pbkg(exp(aT )x) exp(aτ)

Pbkg(x)
=

[ν − 2 +A(exp(aT )x)]
−(ν+d)/2

[ν − 2 +A(x)]
−(ν+d)/2 × exp(aτ). (33)

Thus,

L(a,x)−2/(ν+d) =
(ν − 2) +A(exp(aT )x)

(ν − 2) +A(x)
× exp

(
−2aτ

ν + d

)
(34)

=

(
1 +
A(exp(aT )x)−A(x)

(ν − 2) +A(x)

)
× exp

(
−2aτ

ν + d

)
=

(
1 +
Fν(x)2 [A(exp(aT )x)−A(x)]

ν − 1

)
× exp

(
−2aτ

ν + d

)
. (35)

So then

D(a,x) = (ν − 1)

(
1− exp(

2aτ

ν + d
)L(a,x)−2/(ν+d)

)
(36)
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as the monotonic transform, and then use Eq. (35) for L(x)−2/(ν+d) to obtain

D(a,x) = (ν − 1)

(
1− exp(

2aτ

ν + d
)

{(
1 +
Fν(x)2 [A(exp(aT )x)−A(x)]

ν − 1

)
× exp(

−2aτ

ν + d
)

})
= F2

ν (x)
[
A(x)−A(exp(aT )x)

]
. (37)

with Fν defined in Eq. (14).

5.3 Counting sigmas with the absorptive plume model

For weak plumes, the additive approximation leads to a characteristic strength of ao = 1/
√

µ′T ′R−1Tµ.

6. SIMULATIONS AND EVALUATION

For additive targets on a multispectral t-distributed background, numerical experiments were performed to
compare their performance as a function of target strength. The detectors that were evaluated are listed in
Table 1. For the veritas detector we optimzed at n = a/ao = 4 sigmas.

A moderate dimension of d = 20, corresponding to twenty multispectral channels, was chosen, and a moderate
fatness of ν = 10 was chosen. A sample of N = 108 points were drawn from the t distribution with zero mean
and unit covariance matrix. For each target strength a, a corresponding set of N = 108 points were generated
using the additive model: x = z + at.

To these data, the detectors were applied, and ROC curves were computed in order to evaluate the perfor-
mance of the the different detectors. Three statistics were computed from the ROC curves: Area under the ROC
curve (AUC), Detection rate (DR) at a threshold corresponding to a false alarm rate of 0.0001, and False alarm
rate (FAR) associated with a detection rate of ninety percent.

Results are shown in Figs. 1-4. The statistics in these figures are plotted so that better performance corre-
sponds to lower values. In all cases, we observe that the clairvoyant detector provides (just as theory predicts)
a bound on the best possible performance of a detector. We also observe (again as expected) that the veritas
detector is optimal for target strengths a/ao = 4. We observe, however, that this optimality does not extend
over the entire range of target strengths.

Indeed, by using different metrics over a range of target values, we see quite an interplay among the various
detectors. Observe, for example, the behavior of the AMF detector in Fig. 2; for weaker targets, it is one of
the worst performers (only RX performs worse) but for very strong targets it is the best detector. Furthermore,
this behavior is really only observed in the DR@FAR=1e-4 (detection rate corresponding to false alarm rate of
0.0001) metric; the AUC and false alarm metric do not exhibit the same kind of variation for AMF. Indeed, one
should be careful about drawing general conclusions about comparative performance of detectors from a limited
number of empirical comparisons.

One result that is hinted at in all of the plots, but is most evident in Fig. 4, is that the veritas solution
becomes not only “less optimal” as a/ao � n (where n is the number of sigmas for which the detector has been
optimized), but it can also become objectively worse. In some sense, the veritas detector parallels the LMP
detector: both are optimal at the target strength for which they are optimized, but the informal notion that
they will still be “pretty good” for even stronger targets does not quite hold up.

Although the RX detector, pretty much as expected, performs poorly compared to the other detectors, we
do see its relative perfomance improve considerably as target strengths are increased. This is most evident in
Fig. 4, where the RX detector beats the veritas detector at around fifteen sigmas.
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7. CONCLUSIONS

In this paper, closed-form expressions were derived for the veritas detectors in six distinct scenarios: for three
different target models on two different background distributions. Because the veritas detector is based directly
on the likelihood ratio, without the need to integrate (as in Bayesian methods) or optimize (as in GLRT methods),
it is possible to obtain closed-form solutions even for relatively complicated target detection scenarios and/or
background distributions.

While modern computers make the need for closed-form solutions less important than they may be been in
the past, they are still useful. Low computation may be all that is available in an on-orbit situation.21,22 And
in terms of explainability and understanding, a “formula” is almost always better than a subroutine.

For background distributions that are entirely unknown, and target models that may be very complicated
(as long as the model is well enough specified that the effect of targets on background can be simulated), then
the veritas idea leads directly to the matched-pair machine learning approach.23–25

Although veritas detectors are optimal at the target strengths that are deemed of most interest, they are not
not optimal in the sense of uniformly most powerful (UMP). Indeed, Fig. 4 shows a case in which the veritas
detector’s non-optimal behavior for strong targets is particularly noteable.

A potential extension is to use a small number of discrete target strengths, and to build a prior from a sum of
delta functions. This Bayesian approach to target detection is guaranteed to produce admissible detectors, and
since the prior is discrete, the dreaded integration that is usually required of Bayesian detectors is replaced with
the sum of a few terms, and the result is a slightly more complicated but still closed-form solution. How best to
specify what these target strengths should be, and what weights should be given to each: that is an optimization
problem that is beyond (but only just beyond) the scope of this paper.
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(b) AUC relative to clairvoyant
Figure 1. Performance for seven detectors is plotted as a function of target strength using the area under the ROC curve
(AUC) as a performance measure. The left panel is the AUC statistic directly (actually it is 1-AUC so that AUC values
near 1 can be seen in a log plot), and the right panel is the ratio of the AUC for each detector divided by the AUC
for the clairvoyant detector. We cannot actually use the clairvoyant detector when the target strength is unknown, but
it provides a useful lower bound on the 1-AUC performance. The veritas detector is best when a/ao = 4; that is by
design. But it is also best over the range from about 2.5 ≤ a/ao ≤ 7.0. One might argue that targets with a/ao < 2.5 are
effectively un-detectable anyway, so performance in that regime is not important; similarly, the targets with a/ao > 7 are
easily detectable and all of the detectors (except RX and LMP) are effective in detecting those targets.
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(b) DR relative to clairvoyant
Figure 2. Similar to Fig. 1 but instead of AUC, we compare using the detection rate at the threhold for which false
alarm rate is 0.0001. We actually plot 1-DR, so smaller values are better. Although the veritas detector is, as theory
predicts, optimal at a/ao = 4, we see that on the whole, the GLRT detector is doing a better job. veritas outperforms
ACE essentially over the whole range of target strengths, and is better than AMF for a/ao < 6. Interestingly, the AMF
behavior changes course for larger values of a and for a/ao > 7, it is (by this metric) the best detector.

Proc. SPIE 11727 (2021) 117270B 10



0 1 2 3 4 5 6 7 8
Target strength, a/ao

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

FA
R@

DR
=0

.9

(a) FAR

0 1 2 3 4 5 6 7 8
Target strength, a/ao

0

2

4

6

8

10

FA
R@

DR
=0

.9
: r

el
at

iv
e 

to
 c

la
irv

oy
an

t

Clairvoyant
Veritas[4]
LMP
GLRT
AMF
ACE
RX

(b) FAR relative to clairvoyant
Figure 3. Similar to Fig. 1 and Fig. 2, but this time using as a performance metric the false alarm rate at the threhold
for which detection rate is 0.9. Again, veritas is optimal at a/ao = 4, but already by a/ao > 5, the GLRT is better. And
by a/ao > 8, we see that ACE and AMF have caught up to veritas.
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Figure 4. Same as Fig. 3 but over a much wider range of target strengths. We see that as a/ao > 8, the veritas performance
literally turns around. Not only is the veritas detector outperformed by ACE, AMF, and GLRT; but the slope of the false
alarm rate curve actually becomes positive. The stronger the targets, the harder they are to detect! Meanwhile, as the
targets approach 30+ sigmas, the RX can detect targets with very low false alarm rates. (Note that with only N = 108

points in the simulation, we cannot estimate false alarm rates below 10−8; thus the clairvoyant detection performance
cannot be used as a denominator for a/ao > 8.)
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