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Abstract

An anomaly is something that in some unspecified way stands out from its background, and the
goal of anomaly testing is to determine which samples in a population stand out the most. This chapter
presents a conceptual discussion of anomalousness, along with a survey of anomaly detection algorithms
and approaches, primarily in the context of hyperspectral imaging. In this context, the problem can be
roughly described as target detection with unknown targets. Because the targets, however tangible they
may be, are unknown, the main technical challenge in anomaly testing to characterize the background.
Further, because anomalies are rare, it is the characterization not of a full probability distribution but
of its periphery that most matters. One seeks not a generative but a discriminative model, an envelope
of unremarkability, the outer limits of what is normal. Beyond those outer limits, hic sunt anomalias.
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I. INTRODUCTION

Traditionally, anomalies are defined in a negative way, not by what they are but by what they
are not: they are data samples that are not like the data samples in the rest of data. “There is
not an unambiguous way to way to define an anomaly,” one review notes, and then goes on
to ambiguously define it as “an observation that deviates in some way from the background
clutter” [1]. Anomalies are defined “without reference to target signatures or target subspaces”
and “with reference to a model of the background” [2]. Indeed, as Ashton [3] remarks, “the
basis of an anomaly detection system is accurate background characterization.”

This exposition will concentrate on anomaly detection in the context of imagery, with particular
emphasis on hyperspectral imagery (in which each pixel encodes not the usual red, green, and
blue of visible images, but a spectrum of radiances over a range of wavelengths that often
includes upwards of a hundred spectral channels). Testing for anomalies is an exercise that
has application in a variety of scenarios, however. Since anomalies are deviations from what is
normal, particularly in situations where the nature of that deviation is not be predictable or well
characterized, anomaly detection has been used in a variety of fault detection contexts [4]–[8].

What we are calling anomaly testing here is essentially the same as what the machine learning
community calls “novelty detection” [9]–[11] or “one-class classification” [12], [13].

A. Anomaly testing as triage
Although we may have difficulty defining anomalies, the reason we seek them is that (being

rare and unlike most of the data) they are potentially interesting and possibly meaningful. We
have to acknowledge that “interesting” is even harder to define than “anomalous” but in this
exposition, we will make this distinction, partly because it separates the mystical “by definition
undefined” [14] aspect of the interesting-data detection problem into two components, which
correspond to the two boxes in Fig. 1.

We can indeed define “anomalous,” but will leave “interesting” and “meaningful” to be domain-
specific concepts. From this point of view, anomaly detection is a kind of triage. If anomalies
can be defined and detected in a relatively generic way, then experts in the specific area of
application can decide which anomalies are interesting or meaningful.

Here the goal of anomaly detection is to reduce the quantity of incoming data to a level that
can be handled by the more expensive downstream analysis. It is this later analysis that judges
which of the anomalous items are in fact meaningful for the application at hand. This judgment
can be very complicated and domain-specific, and can involve human acumen and intuition.
What makes anomaly detection useful as a concept is that the anomaly detection module has
more generic goals, and is consequently more amenable to formal mathematical analysis.

B. Anomalies drawn from a uniform distribution
Anomalies are rare, and where we expect to find them is in the far tails of the background

distribution pb(x). We can express “anomalousness” as varying inversely with with this density
function, and can derive this expression in two distinct ways, each providing its own insight.

In the first and most direct approach, we make an explicit generative model for anomalies,
and say that they are samples drawn from a uniform distribution. This is a simple statement, but
it is in some ways revolutionary; in contrast to conventional wisdom [1]–[3], we are defining
anomalies directly, without respect to the background distribution. To distinguish these anomalies
from the background, we treat the detection as a hypothesis testing problem. The null hypothesis
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Fig. 1. Anomaly testing as triage. In this picture, anomaly detection provides a way to reduce the raw quantity of data that
needs to be considered by further analysis. That further analysis might be expensive domain-specific automated processing, or
it may involve human inspection, with trained analysts making judgments about whether the potentially interesting anomaly is
indeed interesting or meaningful or important.

is that the measurement x is drawn from the background distribution (x = z with z ∼ pb), and
the alternative hypothesis is that x is drawn from the anomalous distribution (x = t with t ∼ u).
This leads to the likelihood ratio

L(x) = P (x = t)

P (x = z)
=

u(x)

pb(x)
=

c

pb(x)
(1)

where u(x) = c is the uniform distribution from which anomalies are drawn.1 The expression
in Eq. (1) is a candidate for “anomalousness” because a large value of L(x) indicates a higher
likelihood that x is drawn from the anomalous distribution.

In the second approach, we avoid making an explicit model of what an anomaly is, but we
assume that the effect of the anomaly on the scene is additive. In particular, we say that a pixel
with an anomaly in it is of the form x = z + t where t is the unknown target, and z is the
background. We employ the generalized likelihood ratio test to write

L(x) = P (x = z+ t)

P (x = z)
=

maxt pb(x− t)

pb(x)
=

maxz pb(z)

pb(x)
=

c′

pb(x)
(2)

where the (again, irrelevant) constant c′ is the maximum value of pb and does not depend on x.
This second approach produces the same result as the first, but the argument used to get that
result has two problems: one, the additive assumption is very restrictive and may not apply to
the scenario of interest; and two, it uses a generalized likelihood ratio test (GLRT). Although
the GLRT is a popular and often practical tool, it has ambiguous properties, and can produce
detectors that are not only sub-optimal, but in some cases inadmissible [16], [17]. This is not to
say that the detector in Eq. (2) is inadmissible; indeed, it is identical to the detector in Eq. (1).
The objection is not to the detector but to this second derivation of the detector via the GLRT. A
supposed advantage of this second derivation is that it makes “no assumptions” about the nature
of the anomaly, but this is a spurious argument. In fact, it is making implicit assumptions about
the distribution of an anomaly, but it is not providing the algorithm designer with access to alter
those implicit assumptions.

Although there are many reasons to favor the first approach, it is the second argument that is
most widely invoked in the hyperspectral anomaly detection literature.

1The constant c is irrelevant to our purposes, and in fact it is possible to make this argument in a more formal way that treats
u(x) not as a proper probability distribution, but more generally as a measure [15].
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We remark that the first approach can also accommodate additive anomalies. Here, the nu-
merator of the likelihood ratio is a Bayes factor, but it still evaluates to a constant independent
of x:

L(x) = P (x = z+ t)

P (x = z)
=

∫
pb(x− t)u(t)dt

pb(x)
=
c
∫
pb(z)dz

pb(x)
=

c′′

pb(x)
(3)

We again obtain the result that anomalousness varies inversely with pb(x), the probability density
function of the background. Contours of anomalousness will be level curves of the background
density functions. For a Gaussian distribution, these contours are ellipsoids of constant Ma-
halanobis distance [18], with larger distances corresponding to smaller densities and greater
anomalousness; we can therefore use Mahalanobis distance as a measure of anomalousness

A(x) = (x− µ)TR−1(x− µ) (4)

where µ is a vector-valued mean and R is a covariance matrix.
The Mahalanobis distance is the basis of the Reed-Xiaoli (RX) detector [19]–[21]. Although

RX, as originally introduced [19], refers specifically to multispectral imagery, and in fact is a
local anomaly detector, the term “RX” is often used as a shorthand for Mahalanobis distance
based anomaly detection.

1) Nonuniform distributions of anomalousness: Since the assumption of a uniform distribution
for anomalies is explicit in the derivation of Eq. (1) – and by extension, Eq. (4) – that allows us to
consider other, nonuniform, distributions if we are looking for other kinds of anomalies. Examples
include anomalous change (to be further discussed in Section VI), and anomalous “color” in
multispectral imagery. Here, in place of a uniform distribution of anomalies, a distribution of
anomalously colored pixels are generated from the product of marginal distributions associated
with each individual spectral band. To sample at random from this distribution, one creates a
vector-valued pixel where each component is independently sampled from the corresponding
component of the multispectral image [22].

Another example is given by the blind gas detection algorithm. In the traditional gas detection
problem, one is looking for plumes that contain a gas-phase chemical of interest. When the
absorption spectrum of that chemical of interest is known, one can derive a matched filter that
can detect impressively low concentrations of the chemical [23]. In the blind gas detection
problem, one does not have a single chemical (or even a short list of chemicals) of interest; one
wants to detect chemical plumes without knowing the chemical species in the plume. But one
does know that gas-phase chemicals usually have very sparse spectral signatures – i.e., there is
zero or nearly-zero absorption at all but a few wavelengths. A sparse RX (or “spaRX”) algorithm
was developed for detecting spectrally sparse additive anomalies t based on the RX derived in
Eq. (2), but with t constrained to a limited number of nonzero components [24].

C. Anomalies as pixels in spectral imagery
Traditional statistical analysis treats data as a set of discrete samples that are drawn from a

common distribution. Because each pixel in a hyperspectral image contains so much information
(a many-channel spectrum of reflectances or radiances), one can often quite profitably treat the
pixels as independent and identically distributed. It is as if the image were a “bag of pixels.” But
however spectrally informative individual pixels are, they comprise an image, and the spatial
structure in an image provides further leverage for characterizing the background and discovering
anomalies.
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Hyperspectral imagery provides a rich and irregular data set, with complex spatial and spectral
structure. And the more accurately we can model this cluttered background, the better our
detection performance. Simple models can be very effective, but the mismatch between simple
models and the complicated nature of real data has driven research toward the development of
more complex models [25].

1) Global and local anomaly detectors: A pixel is anomalous in the context of a background.
In global anomaly detection that background is the full image, but in local anomaly detection
that background restricted to the immediate neighborhood, often defined in terms of an annulus
that surrounds the pixel. Local anomaly detection is one of the most straightforward (and, in
practice, more effective) ways to exploit the spatial structure of imagery.

Indeed, the initial formulation of the RX algorithm [19] computed anomalousness at each
pixel in terms of a local mean and a local covariance matrix, each computed from the pixels
in an annulus surrounding that pixel. The trade-off in choosing the size of the annulus is that
a larger annulus will have better “statistics” – since it has more pixels, it will better average
out the fluctuations in the pixels values; but a smaller annulus will be less affected by spatial
nonstationarity [26]. Matteoli et al. [1] observed that one could use a smaller annulus for the
local mean and a larger annulus for the local covariance. This is very sensible, since the need for
“good statistics” is greater for the covariance matrix than for the mean vector. As the covariance
annulus approaches the size of the image, this approach can be simplified by using a local mean
and a global covariance, but with the global covariance based on subtraction of the spatially
varying local mean. A broad survey of approaches used to improve estimates of local covariance,
including regularization, segmentation, and robustification, is provided by Matteoli et al. [27].

The importance of regularization derives from the fact that RX requires the inverse of the
covariance matrix. If the covariance matrix is singular, then the inverse does not exist, and
regularization is required. But even for a well-conditioned covariance matrix, the best estimator of
the inverse is not the same as the inverse of the best estimator, and some amount of regularization
is still beneficial. The most common and straightforward regularization is by shrinkage. Here,
we estimate the covariance matrix with a linear combination of the sample covariance Rs (which
tends to overfit the data) and a very simple estimator Ro that tends to underfit the data

R̂ = (1− α)Rs + αRo (5)

where typically α � 1. In the simplest case, Ro is just a multiple of the identify matrix [28],
[29] (choosing the multiple so that Ro has trace equal to Rs ensures that α is dimensionless).
An argument can be made for shrinkage against the diagonal matrix [30], [31], an approach that
is generalized in the sparse matrix transform [32], [33]. Caefer et al. [34] recommended a quasi-
local estimator that combines local and global covariance estimators by using local eigenvalues
with global eigenvectors.

The idea of segmentation is to replace the moving window with a static segment of similar
pixels that surround the pixel of interest in a more irregular way. Here the image is partitioned
into distinct segments of (usually contiguous) pixels, and a pixel’s anomalousness is based on
the mean and covariance of the pixels in the segment to which the pixel belongs [34], [35]. This
sometimes leads to extra false alarms on the boundaries of the segments, and one way to deal
with this problem is with overlapping segments [36].

The estimation of covariance in the local annulus can be corrupted by one or a few outliers2and
2Outliers and anomalies are essentially the same thing, and we make no formal distinction between them. But informally we

think of anomalies as rare nuggets deserving of further analysis, while outliers are nuisance samples that contaminate the data
of interest.
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robust estimates of covariance [37]–[39] exclude or suppress the outliers in the computation.
Excluding outliers is advisable in global estimates of covariance as well [40], [41].

2) Regression framework: By estimating what the target-free radiance should be at a pixel,
we have a point of comparison with what the measured value of that pixel actually happens
to be. It is common to make this estimate using the mean of pixels in an annulus around the
pixel of interest. But there is more information in the annulus than this mean value [42], [43],
and that suggests using more general estimators than just the mean. The derivation in [44] uses
multivariate regression of the central pixel against the pixels in the surrounding annulus. This
can be done on a band-by-band basis, or with multiple bands simultaneously. Other variants use
median instead of mean [45], and a patch-based nearest neighbors regressor was also developed
[46].

It is worth noting that the problem of estimating a central pixel, using the specific pixels that
immediately surround it, along with the statistical context of the rest of the image, is a special
case of the “inpainting” problem. In this case, only a single pixel is being inpainted at a time,
but this inpainting is done for every pixel in the image.

II. EVALUATION

A conceptual problem with anomaly detection is the ambiguous nature of “interestingness.”
But a more technical problem is that, since anomalies are by definition rare, it is difficult to find
enough of them to do statistical comparisons of algorithms, and it is easy to be misdirected by
anecdotal results.

Section I-B described how to resolve the ambiguity issue by treating anomalies as samples from
a specific and well-defined, yet very broad and flat (e.g., uniform), distribution. This resolution
led, for instance in Eq. (1), to likelihood-based algorithms for anomaly detection.

An arguably more important advantage to treating anomalies as samples from a distribution
is that it leads to a direct quantitative way to measure the performance of an anomaly detection
algorithm, without relying on anecdotally identified anomalies in a given scene. The most
straightforward way of exploiting this model is to use it to create artificial targets that can
be “implanted” into the scene [26], [47]. This is usually performed at a judiciously chosen
subset of locations, to avoid contaminating the background estimation with an unrealistically
large number of targets. But in some cases one can more efficiently place a target at effectively
every location in the image, producing matched pairs of with-target and without-target pixels
from which to learn a target detector [48].

An advantage of explicit implanting is that it can be made as realistic as the simulation
will allow. A potential disadvantage is that this explicit simulation can be expensive, may
require ad hoc choices. Particularly for anomaly detection, where physical properties of the
target are generally not well known, or at least not well specified, more generic approaches may
be desirable.

With anomalies drawn from a uniform distribution, the volume inside a contour of anoma-
lousness corresponds to undetected anomalies. Thus, a small volume is a proxy for a low missed
detection rate; for a given false alarm rate, smaller volumes imply better anomaly detectors
(Fig. 2). In an early example of this principle, Tax and Duin [49] used a uniform distribution of
points to estimate volumes produced by different choice of kernel parameters, thereby providing
a way to choose parameters without ground truth. Steinwart et al. [15] formalize the classifica-
tion framework for anomaly detection and recommend a two-class classifier (a support vector
machine, specifically) that distinguishes measured data from artificially generated uniformly
distributed random samples. (See also Hastie et al. [50].)
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Fig. 2. Three anomaly detectors with the same false alarm rate (Pfa = 0.001). The contour marks the boundary between what
is normal (inside) and what is anomalous (outside). If anomalies are presumed to be uniformly distributed, then the anomaly
detector with smallest volume will have the fewest missed detections.

Plotting volume (or log-volume, which is often more convenient, especially in high dimen-
sions) against false alarm rate provides a ROC-like curve that characterizes the anomaly detector’s
performance [51], [52].

For a covariance matrix, the volume is proportional to the determinant of the matrix. For local
anomaly detectors described in Section I-C1, one can still use a global covariance based on
the difference between measured and estimated (e.g., by local mean) values at each pixel, and
the smaller that covariance, the better the estimator. A natural choice, from a signal processing
perspective is the total variance of that difference,∑

n

(xn − x̂n)
T (xn − x̂n) (6)

which corresponds to the trace of the covariance matrix. Smaller values of this variance imply
that x̂ is closer to x, but Hasson et al. [45] point out that, in terms of target and anomaly
detection performance, closer is not necessarily better.

When, instead of a global covariance estimator, we use a separate covariance for each pixel,
based on the local neighborhood of that pixel, then it is more complicated. It is clear that the
volumes of the individual covariances should be small, but it is not obvious how best to combine
them. In Bachega et al. [53], it is argued, more on practical than theoretical grounds, that an
average of the log volume is a good choice.

III. PERIPHERY

For anomaly detection, low false alarm rates are imperative. So the challenge is to characterize
the background density in regions where the data are sparse; that is, on the periphery (or “tail”)
of the distribution. Unfortunately, traditional density estimation methods, especially parametric
estimators (e.g., Gaussian), are dominated by the high-density core. And it bears pointing out
that “robust” estimation methods (e.g., [37], [54], [55]) achieve their robustness by paying even
less attention to the periphery.

Robustness to outliers can be achieved by essentially removing the outliers from the data set.
This direct approach is taken by the MCD (Minimum Covariance Determinant) of Rousseeuw et
al. [37], [55]. For a data set of N samples, the idea is to take a core subset H of h < N samples
and to compute the mean and covariance from just the samples in H, ignoring the rest. The
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Fig. 3. Four algorithms for estimating ellipsoidal contours. All four algorithms seek ellipsoidal contours for the data, and can
all four be expressed with an equation of the form A(x) = (x−µ)TR−1(x−µ). The top two algorithms use sample mean and
sample covariance to estimate µ and R, respectively; the bottom two seek a minimum volume ellipsoid that strictly encloses
the data. The left two algorithms use all of the data in the training set; the right two algorithms use a subset H that includes
almost all of the data. Note that the MVEE-h algorithm [41] is both robust to outliers and sensitive to data on the periphery of
the distribution.

formal aim is to choose the subset so as to minimize the volume of the ellipsoid corresponding
to the sample covariance. Specifically,

min
H

det(R) where R = (1/h)
∑
xn∈H

(xn − µ)(xn − µ)T

and µ = (1/h)
∑
xn∈H

xn

and #{H} ≥ h

(7)

As stated, this is an NP-hard problem, but an iterative approach can be employed to find an
approximate optimum. Given an initial set of core samples H, we can compute µ and R as
sample mean and covariance of the core set. With this µ and R, we can use Eq. (4) to compute
A(x) for all of the samples. Taking the h samples with smallest A(x) values yields a new core
set H′. This process can be iterated, and is guaranteed to converge, though it is not guaranteed
to converge to the global optimum defined in Eq. (7). Various tricks can be used both to speed
up the iterations and to achieve lower minima [55].

Where MCD concentrates on identifying the core, the Minimum Volume Enclosing Ellipsoid
(MVEE) algorithm concentrates on the periphery of the data. In contrast to Eq. (7), the aim is
to optimize

min
µ,R

det(R) where (xn − µ)TR−1(xn − µ) ≤ 1 for all n (8)

Unlike the optimization in Eq. (7), the optimization here is convex and can be efficiently per-
formed, using Khachiyan’s algorithm [56], possibly including some of the further improvements
that have since been suggested [57], [58].

Although robustness against outliers and sensitivity to the periphery are seemingly opposite
requirements, practical anomaly detection actually wants both. For data sets in which a very
small number of samples are truly outliers (or are truly anomalies), we do not want to include
these samples in our characterization of the background. But absent these outliers, we do want
to identify where the tail of background distribution is, and that requires attention to the samples
on the periphery [51].

Fig. 3 illustrates this tension between attention to the periphery and robustness to outliers by
showing four algorithms lined up along two axes. All four algorithms seek ellipsoidal contours
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for the data, and all four can be expressed with an equation of the form in Eq. (4); what differs is
the methodology for estimating µ and R. As Fig. 3 suggests, it is possible to combine MCD and
MVEE to create a new algorithm, called MVEE-h, that identifies a minimum volume ellipsoid
that fully encloses not all, but most (in particular, a subset H) of the data [41].

Other approaches have also been suggested for modifying the sample covariance in a way
that better respects the points on the periphery. One family of such approaches uses the sample
covariance to define eigenvectors, but modifies the eigenvalues in each of these eigenvector
directions. This is consistent with the observation, noted by several authors [59]–[61], that tails
tend to be heavier in some directions than others. The approach taken by Adler-Golden [61] was
based on the observation that the heavy-tailed distribution has different properties in different
eigenvector directions. A model is fit for each of these directions (but it’s only one-dimensional
so the fit is generally stable and robust), and this leads to a modified anomaly detector:

A(x) =
∑
i

(
ai|x(i)|

)pi , (9)

where x(i) = λ
−1/2
i uTi (x−µ) is the ith whitened coordinate of x. Here, where ui and λi are the

ith eigenvector and eigenvalue respectively, and ai and pi are obtained from the model fit for
each component. If ai = 1 and pi = 2, then this is equivalent to Eq. (4). A related approach has
also been suggested, in which A(x) =

∑
i x

2
(i)/σ

2
i and σi is based on inter-percentile difference

instead of variance [51].

IV. SUBSPACE

For many data sets, the covariance matrix usually exhibits a wide range of eigenvalues, and
the smallest values correspond to directions that can be projected out of the data with minimal
loss in accuracy. Indeed, it is often the case that data can be accurately represented by a lower-
dimensional plane (or manifold [62]–[66]), and there are often advantages to analyzing the data
in that lower-dimensional space. For anomaly detection, however, one has to be extra careful.

Qualitatively speaking, there are two kinds of anomalies: “in-plane” anomalies and “out-of-
plane” anomalies. The in-plane anomalies are unusual with respect to the distribution that is
projected onto the lower-dimensional high-variance subspace (“the plane”), and thus these tend
to be large magnitude samples. The out-of-plane anomalies are unusual in that they are far from
the plane, where “far” refers to distances larger than the smallest eigenvalues. Thus an out-of-
plane anomaly can be a lower magnitude sample, and if the data sample is projected into the
subspace, it may lose its anomalousness.

A simple measure of out-of-plane anomalousness is Euclidean distance to the subspace [67]
(or, in more sophisticated cases, to the manifold [68]). The subspace RX (SSRX) algorithm
effectively computes a Mahalanobis distance to the subspace [21]. In practice this is achieved
by projecting to a dual subspace (that is, projecting out the high-variance directions) and then
performing standard RX in that space.

The qualitative difference between the high-variance and low-variance directions has led to a
variety of Gaussian/Non-Gaussian (G/NG) models for high-dimensional distributions. In these
models, the low variance directions are modeled as Gaussian, but the high variance directions
are modeled with simplex-based [52] or histogram-based [69] distributions. This enables more
sophisticated models to be employed, but because they are only used for a few high-variance
directions, the complexity is bounded, and the curse of dimensionality is ameliorated.
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Another approach based on projection to a lower dimensional space was proposed by Kwon et
al. [70]; here the projection operator is based on eigenvalues of a matrix that is the difference
of two covariance matrices, one computed from an inner window (centered at the pixel under
test in a moving window scenario) and one from an outer window (an annulus that surrounds
the inner window and provides local context).

V. KERNELS

A. Kernel density estimation
Given that the aim of anomaly detection is to estimate the background distribution pb(x), one

of the most straightforward estimators is the kernel density estimator, or Parzen windows [71]
estimator:

pb(x) = (1/N)
N∑
n=1

κ(x,xn), (10)

where the sum is over all points in the data set, and where κ is a kernel function that is integrable
and is everywhere non-negative. A popular choice is the Gaussian radial basis kernel,

κ(x,xi) =
1√
2πσd

exp

(
‖x− xi‖2

2σ2

)
. (11)

Eq. (11) requires the user to choose a “bandwidth” σ that characterizes, in some sense, the
range of influence of each point. Since density can vary widely over a distribution, variable and
data-adaptive bandwidth schemes have been proposed [72], [73].

In the limit as bandwidth goes to zero, the anomalousness at x is dominated by the κ(x,xi)
associated with the xi that is closest to x. Indeed, the anomalousness in that case is equivalent to
that distance. An anomaly detector based on distance to the nearest point has been proposed [74],
though with an additional step that uses a graph-based approach to eliminate a small fraction
(typically 5%) of the points to be used as xi. An updated variant was later proposed [75] that
included normalization, subsampling, and a distance defined by the average of the distances to
the third, fourth, and fifth nearest points.

B. Feature space interpretation: the “kernel trick”
A particularly fruitful (if initially counter-intuitive) interpretation of kernel functions is as dot

products in a (usually higher-dimensional) feature space.
Let φ(x) be a function that maps x to some some feature space. Typically φ is nonlinear,

and the map is to a feature space that is of higher dimension than x. Scalar dot product in
this feature space can be expressed as (again, typically nonlinear) functions of the values in the
original data space. That is:

κ(r, s) = φ(r)Tφ(s). (12)

The “kernel trick” is the observation that even though the function φ and the feature space are
presumed to “exist” in some abstract mathematical sense, we do not actually need to use φ, as
long as we have the kernel function κ. A popular choice is the Gaussian kernel

κ(r, s) = exp

(
−‖r− s‖2

2σ2

)
, (13)
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but many options are available. Polynomial kernels, for example, are of the form κ(r, s) = (c+
rT s)d for some polynomial dimension d. More general radial-basis kernels are scalar functions
of the scalar value ‖r− s‖2; functions that are more heavy-tailed than the Gaussian have been
proposed for this purpose [76].

This enables us re-derive the Parzen window detector from a different point of view. Given
our data, {x1, . . . ,xN}, we first map to the feature space: {φ(x1), . . . , φ(xN)}. In this feature
space we define the centroid

µφ =
1

N

N∑
n=1

φ(xn) (14)

and we define anomalousness as distance to the centroid in this feature space.

A(x) = ‖φ(x)− µφ‖2

= (φ(x)− µφ)
T (φ(x)− µφ)

= φ(x)Tφ(x)− 2φ(x)Tµφ + µT
φµφ (15)

We observe that first term φ(x)Tφ(x) = κ(x,x) is constant for radial basis kernels, that the
third term is also constant, and that

φ(x)Tµφ =
1

N

N∑
n=1

φ(x)Tφ(xn) =
1

N

N∑
n=1

κ(x,xn). (16)

This leads to

A(x) = constant− 2

N

N∑
n=1

κ(x,xn), (17)

which is a negative monotonic transform of the density estimator (1/N)
∑N

n=1 κ(x,xn), and
therefore equivalent to anomaly detection based on Parzen windows density estimation. The
power of kernels in this case is that a seemingly trivial anomaly detector (Euclidean distance to
the centroid of the data) in feature space maps back to a more complex data-adaptive anomaly
detector in the data space.

The power of this feature-space interpretation of kernels is that it enables us to derive other
expressions for anomaly detection, starting with very simple models in feature space that are
then mapped back to more sophisticated data-adaptive anomaly detectors in the data space.

For instance, instead of Euclidean distance to the centroid µφ, consider a more periphery-
respecting model that uses an adaptive center aφ that is adjusted to minimize the radius of the
sphere that encloses all of the data (see Fig. 4). That is,3

min
r,aφ

r2 subject to: ‖φ(xn)− aφ‖2 ≤ r2 (18)

or more generally, that mostly encloses the data:

min
r,aφ,ξ

r2 + c
∑
n

ξn (19)

subject to: ‖φ(xn)− aφ‖2 ≤ r2 + ξn (20)
and: ξn ≥ 0, (21)

3Another way of expressing the centroid µφ is as the solution to the minimization of the average squared radius: µφ =
argminµ

∑
n ‖φ(xn)−µ‖2; by comparison, we can say aφ is the solution to the minimization of the maximum squared radius:

aφ = argminamaxn‖φ(xn)− a‖2. We can interpret Eq. (19) as the minimization of a “soft” maximum.
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µ
φ

aφ

Fig. 4. Adaptive center versus data centroid. Data samples in feature space are indicated by black dots. Here, µφ =

(1/N)
∑N
n=1 φ(xn) is the centroid of the data, and aφ is the adaptive center that enables the data to be enclosed by a smaller

circle.

which is equivalent to Eq. (18) in the large c limit (which forces the “slack” variables ξn to
zero). This optimization leads to the Support Vector Domain Decomposition (SVDD) anomaly
detector [77], [78], which has the form

A(x) = ‖φ(x)− aφ‖2 = constant−
∑
n

anκ(x,xn) (22)

where the scalar coefficients an are positive and sum to 1. This is very much like the kernel
density estimator for anomaly detection in Eq. (17), but it puts uneven weight on the points in
the dataset. The SVDD is very similar to the support vector machine for one-class classification
[9], and has the property that an = 0 for points deep in the interior of the distribution.

In keeping with the general strategy of mapping data to kernel space, and applying anomaly
detection in this kernel space, we can also “kernelize” the RX algorithm. Here, given the data is
mapped to kernel space {φ(x1), . . . , φ(xN)}, we need to compute a mean and covariance matrix.
The mean µφ is defined in Eq. (14); to compute the covariance, we write

Rφ =
∑
n

[φ(xn)− µφ][φ(xn)− µφ]
T (23)

A key step in the computation of RX anomalousness is the inversion of this covariance matrix.
But Rφ has bounded rank (it is at most n− 1), and depending on the dimension of the feature
space, may not be invertible.

In Cremers et al. [79], this problem was addressed by regularizing to covariance, so that
that Rφ + λI was inverted, where λ was taken to be a small but nonzero value. In Kwon and
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Nasrabadi [80], the pseudoinverse was taken. The effect of the pseudoinverse is to project data
(in the feature space) to the in-sample data plane, but this projection can be problematic for
anomaly detection [81]. Anomalies are different from the rest of the data, and this difference
will be suppressed by projection back into the in-sample data plane.

Indeed, another kernelization that can be effective is the kernel subspace anomaly detector
[82], [83]. Here, principal components analysis is performed in the feature space, and a subspace
is defined that includes the first few principal components. Anomalousness is defined in terms
of the distance to this subspace.

VI. CHANGE

For the anomalous change detection problem, the aim is to find interesting differences between
two images, taken of the same scene, but at different times and typically under different viewing
conditions [84]. There will be some differences that are pervasive – e.g., differences due to
overall calibration, contrast, illumination, look-angle, focus, spatial misregistration, atmospheric
or even seasonal changes – but there may also be changes that occur in only a few pixels.
These rare changes potentially indicate something truly changed in the scene, and the idea is
to use anomaly detection to find them. But our interest is in pixels where changes between the
pixels are unusual, not so much in unusual pixels that are “similarly unusual” in both images.
Informally speaking, we want to learn the “patterns” of these pervasive differences, and then the
changes that do not fit the patterns are identified as anomalous.

An important precursor to anomalous change detection is the co-registration of the two images.
We say that images are registered if corresponding pixels in the two images correspond to the
same position in the scene. Registering imagery is a nontrivial task, yet misregistration is one
of the main confounds in change detection [85]–[88]. In what follows, let x and y refer to
corresponding pixels in two images.

A. Subtraction-based approaches to anomalous change detection
The most straightforward way to look for changes in a pair of images is to subtract them,

e = y − x, and then to restrict analysis to the difference image e [89]. Simple subtraction,
although it has the advantage of being simple, has the disadvantage that it folds in pervasive
differences along with the anomalous changes.

Most anomalous change detection algorithms are based on subtracting images, but involve
transforming the images to make them more similar. For instance, the chronochrome [90] seeks
a linear transform of the first image to make it as similar as possible (in a least squares sense)
to the second image. That is, it seeks L so that ‖y − Lx‖2, averaged over the whole image, is
minimized. To simplify notation, we will assume means have been subtracted from x and y,
and define the covariance matrices X =

〈
xxT

〉
, Y =

〈
yyT

〉
, and C =

〈
yxT

〉
. The linear

transform that minimizes the least square fit of y to Lx is given by L = CX−1. Now the
subtraction that is performed is e = y−Lx, and this reduces the effect of pervasive differences
on e while still “letting through” the anomalous changes. Note that there is an asymmetry in the
chronochrome; by swapping the role of x and y, and seeking L′ to minimize ‖e = x−L′y‖2, one
obtains a different anomalous change detector. Clifton [91] proposed a neural network version
of chronochrome, in a nonlinear function L(x) is chosen to minimize e = y − L(x), with the
aim of even further suppressing the pervasive differences.

A more symmetrical approach, which is sometimes called covariance equalization [92], [93]
or whitening/de-whitening [94], transforms the data in both images before it subtracts them:
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(a) (b)

pa(x,y) = u(x)u(y)

(c) (d)

pa(x,y) = p(x)u(y)

(e) (f)

pa(x,y) = u(x)p(y)

(g) (h)

pa(x,y) = p(x)p(y)

Fig. 5. Four anomalous change detectors, derived from four distinct and explicit definitions of anomalous change. Here x
is represented by the horizontal axis and y is the vertical axis. The left panels show the non-anomalous data (sampled from
a correlated Gaussian distribution) and the boundaries outside of which are the points that the detectors consider anomalous
changes. The panels to the right include samples drawn from pa(x,y), the model for the distribution of anomalous changes.
(a,b) RX detector is obtained from “straight” anomaly detection; (c,d) Chronochrome detector optimized for x → y changes;
(e,f) Chronochrome optimized for y→ x changes; and (g,h) hyperbolic anomalous change detector.
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e = Y −1/2y−X−1/2x. It can be shown [95] that this is related to canonical coordinate analysis
and to Nielsen’s multivariate alteration detection (MAD) algorithm [96] and to a “total least
squares” change detection algorithm [97]. One reason there are so many variants is that there
is not a unique whitening transform: if U is an arbitrary orthogonal matrix, then UX−1/2 will
also whiten the x samples. That is: if x̂ = UX−1/2x, then we say that x̂ is whitened because〈
x̂x̂T

〉
= I .

In all of these algorithms, a vector-valued difference, e, is produced. For anomaly detection,
we need a scalar valued measure of anomalousness, and the RX formula provides the most
straightforward way to achieve that. Let E =

〈
eeT

〉
be the covariance matrix of the residuals,

and then take the anomalousness to be

A(e) = eTE−1e (24)

As a particular example, we can write Eq. (24) for the chronochrome detector. Here e =
y − CX−1x, and

A(x,y) = (y − CX−1x)T [Y − CX−1C]−1(y − CX−1x) (25)

B. Distribution-based approaches to anomalous change detection
While subtracting (suitably transformed) images is an intuitively plausible way to look for

anomalous changes, we can take more of a machine learning point of view and treat the problem
as one of two-class classification, where the two classes are pervasive differences and anomalous
changes. If we can write down expressions for the underlying distributions of these two classes,
then their ratio will be an optimal detector of anomalous changes.

The distribution for the pervasive differences is just the distribution of the data itself. We
can call this pb(x,y) to indicate that it is the “background” distribution. What we need is a
generative model for anomalous changes; that is, a distribution pa(x,y) that describes what we
mean when we speak of anomalous changes. What that in hand, our anomaly detector is given
by the likelihood ratio

L(x,y) = pa(x,y)

pb(x,y)
. (26)

The simplest choice, following our experience with straight anomaly detection, is a uniform
distribution. We can write this pa(x,y) = u(x)u(y). This is not an unreasonable choice, but
it does not put any particular emphasis on change. A pair of pixels (x,y) that are “similarly
anomalous” in both images (e.g., the pixel might be unusually bright in both images) do not
particularly indicate that something has changed at that pixel position in the scene.

But there are alternative models pa(x,y) that correspond to different notions of what an
anomalous change is. For instance, if we are thinking specifically of changes x→ y, where x is
a kind of “reference” image, and y is the new image that might contain the changes of interest,
then pa(x,y) = pb(x)u(y). This corresponds to a non-anomalous x and an anomalous y. It is
interesting to note that using this definition of anomaly in Eq. (26) leads to L(x,y) = 1/pb(y|x),
so that anomalousness of y varies inversely with the conditional probability density of y. As
with the chronochrome4, there is an asymmetry in this model of anomalous change; its mirror
image is the situation in which y is considered the reference image and it is y → x changes
that are of particular interest; here, pa(x,y) = u(x)pb(y).

4In fact, the chronochrome can be obtained from this model in the special case that pb(x,y) is Gaussian [98].
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Another choice for pa(x,y) has also been suggested [99]. Here, pa(x,y) = pb(x)pb(y), and
x → y and y → x changes are treated equally. The informal interpretation is that unusual
changes are pixel pairs (x,y) which are collectively unusual, but individually normal. That is,
the x pixel value is typical for the x-image, and the y pixel value is typical for the y-image, but
the (x,y) pair is unusual. If we use this model for anomalies in Eq. (26), and take a logarithm,
we obtain

logL(x,y) = log pb(x) + log pb(y)− log pb(x,y) (27)

an expression for anomalousness that looks like negative mutual information of x and y.
In the case of Gaussian pb(x,y), Eq. (27) reduces to a quadratic expression in x and y that has

hyperbolic contours (see Fig. 5(g,h)). Experiments with real and simulated anomalous changes
in real imagery indicated that this hyperbolic anomalous change detection (HACD) generally
outperformed the subtraction-based anomaly detectors [95].

A further advantage of the distribution-based approach is that the distribution needn’t be Gaus-
sian. Indeed, we can take a purely nonparametric view, and treat the problem of distinguishing
pervasive differences from anomalous changes as a machine learning classification. Steinwart et
al. [100] used support vector machines for just this purpose. But a simpler approach, that has also
proven effective, is to consider a parametric distribution, but one slightly more general than the
Gaussian. The class of elliptically-contoured (EC) distributions are, like the Gaussian, primarily
parameterized by a mean vector and covariance matrix, but do not share the sharp e−r

2 tail
of the Gaussian. Heavy-tailed EC distributions have been suggested for hyperspectral imagery
in general [101], and for anomalous change detection in particular [102], [103]. Although EC
distributions do not affect the “straight anomaly detector” shown in Fig. 5(a,b), they do generalize
chronochrome and hyperbolic anomalous change detectors in a way that can lead to improved
performance [103]. Kernelization of the EC-based change detector has also been shown to be
advantageous [104].

C. Further comments on anomalous change detection
The description here treats pixel pairs as independent samples from an unknown distribution.

But there is a lot of spatial structure in imagery, and further gains can be made by incorporating
spatial aspects along with the spectral [105], [106]. The description here also considers only
pairs of images; often there are more than two images, and these algorithms can be extended to
that case [107], [108], though this approach may not be optimal for sequences of images (e.g.,
anomalous activities in video) where the order of the images in the sequence matters. Another
issue that arises in remote sensing is that the anomalous targets may be subpixel in extent, which
leads to a different optimization problem [109].

Anomalous change detection is a problem that is particularly well matched to remote sensing
imagery, and in that context, a variety of practical issues have been discussed [110], [111]. One
of the biggest of these issues is misregistration, when the images don’t exactly line up (and they
never exactly line up). Although the effects of misregistration can to some extent be learned
from the pervasive differences it creates in image pairs, it is still one of the main confounds
to change detection [85], [86]. Gains can be made by explicitly adapting the change detection
algorithm to be more robust to misregistration error [87], [88].

VII. CONCLUSION

Anomaly detection is seldom a goal in its own right. It is the first step in a search for data
samples that are relevant, meaningful, or – in some sense that depends on where the data came
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from and what they are being used for – interesting.
The mystical “by definition undefined” aspect of anomaly detection mostly derives from

the ambiguity of what one means by “interesting” and this has led to a wide variety of ad
hoc anomaly detection algorithms, justified by hand-waving arguments and validated (if at
all) by anecdotal performance on imagery with a statistically inadequate number of pre-judged
anomalies.

By employing a framework in which anomalies are in fact well-defined, as samples drawn
from some broad and flat distribution, anomaly detection algorithms can be objectively tested,
and improvements can be confidently constructed.

Within this framework, many of the tools that have been developed for signal processing,
machine learning, and data analytics in general, can be brought to bear on the detection of
anomalies. These range from the venerable Gaussian distribution to kernels and subspaces (and
kernelized subspaces!), and invoke the usual issues in underfitting and overfitting data.

The technical challenge of anomaly detection is not usually the anomalies themselves, but with
characterizing what can be a complex and highly structured background. Since most anomaly
detection scenarios require a low false alarm rate, it is out on the periphery of this background
where the modeling is emphasized. This is something of a challenge, since the data density is
much lower there. The modeling, however is discriminative, not generative, which means that
the aim is not the model the distribution per se, but to find the boundary that separates the
non-anomalous data from the anomalies.
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