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ABSTRACT

Algorithms are derived for detecting targets in cluttered backgrounds, where the background is modeled as a
product of univariate distributions independently fit to each of the principal component projections. Thus,
fatter-than-Gaussian tails are fit to the data, with a different fatness parameter for each principal component.
Comparisons are made to elliptically-contoured distributions (which, unlike these product distributions, are
isotropic in the whitened space), including the multivariate t and the Gaussian. Numerical experiments are
performed on hyperspectral data from the SHARE 2012 exercise, with target detection performance evaluated
on both actual and simulated targets. Both direct and residual data are considered, with the residual data
obtained from local background subtraction – these residual data are found to exhibit not only lower variance,
but qualitatively different tail statistics. More direct target-agnostic measures are also employed to asses how
well these models fit the different kinds of background clutter.

Keywords: Clutter, Clairvoyant fusion, Composite hypothesis testing, Elliptically-contoured distribution,
Anisotropic distribution, Hyperspectral imagery, Target detection

1. INTRODUCTION

To detect targets in spectral imagery, one needs a model for the target, a model for the background, and a model
for how the target interacts with the background.

The traditional background model is the multivariate Gaussian, characterized by a mean and a covariance
matrix. Although subtle issues remain in optimally estimating a covariance matrix from data, the Gaussian
is straightforward and leads to simple closed-form expressions for target and anomaly detection. A somewhat
broader class of background distribution, first developed for signal detection in radar clutter,1,2 but adapted for
hyperspectral target detection by Manolakis and colleagues,3,4 and since then developed more widely,5–9 are the
elliptically-contoured (EC) distributions. These distributions are similar to the Gaussian (indeed, the Gaussian

is a special case) in that they are characterized by a mean vector and a covariance matrix. But instead of the e−r
2

scaling of the density in the radial direction, usually fatter tails are employed. The multivariate t distribution
is perhaps the most popular of the EC distributions, and it has the advantage that projecting a d1-dimensional
t distribution to d2 < d1 dimensions leads to a d2-dimensional t distribution.∗

Much more general non-parametric (and non-isotropic) distributions have also been proposed and employed
in hyperspectral image analysis,10 including manifolds,11,12 endmembers,13 kernel-based models14–16, variable-
bandwidth kernels,17,18 rotation-based iterative Gaussianization,19–21 and even a highly anisotropic “urchin”
model.22

The approach taken here is a kind of middle-ground between the isotropic EC models and generic non-
parametric models. Following an approach introduced by Adler-Golden23 (and discussed more recently by
Schaum24), we will consider distributions that are products of marginal (i.e., one-dimensional) distributions,
and in particular, are products of marginal distributions in the principal component directions.

Email: jt@lanl.gov
∗Note that the converse is not true. If the marginals are t-distributed, that does not guarantee that the higher-

dimensional distribution is t-distributed; in particular, the product of lower-dimensional EC distributions is not in general
an EC distribution.
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This approach is motivated, but not constrained, by the observation5,23 that higher-numbered (lower vari-
ance) principal components tend to be more Gauss-like in their tails, while lower-numbered (higher variance)
components tend to have fatter tails.

Unlike the fully non-parametric approaches, this approach also begins with a mean and covariance matrix,
and from that a whitening of the the data that preserves the principal component directions. This transformed
(mean subtracted and whitened) data has zero mean and unit variance in each of the principal component
directions. But, unlike EC models, this whitened data is not isotropic, and in particular the nature (i.e., the
“fatness”) of the tails will be separately modeled for each of the principal components.

2. ANISOTROPIC TAILS

In a seminal paper, published in the first WHISPERS proceedings, Adler-Golden introduced a model for heavy-
tailed background clutter, and used it to improve anomaly detection.23 His model was an explicit distribution,
given by the product

Pbkg(x) = P1(x1)P2(x2) · · ·Pd(xd) (1)

where xk corresponds to the kth principal component of x.† This is an approximation because principal com-
ponents are not, in general, truly independent ; but they are uncorrelated; and in the special case that the data
are Gaussian, they are independent. So although it is “only” an approximation, it is an approximation which
includes the Gaussian as a special case (if the background distribution were Gaussian, then it would be exact).

In Adler-Golden’s formulation,23 each principal component is modeled by a different heavy tailed distribution,
taken to be of the form

Pk(x) = ck exp(−|akx|−pk). (2)

and a different exponent pk is fit to each principal component. Here ak and ck are functions of pk (see Ap-
pendix A).

An alternative form employs the t distribution. Here,

Pk(x) = ck
[
(νk − 2) + x2

]−(1+νk)/2
(3)

where νk characterizes how fat the tail of the distribution is.

In these anisotropic models, the parameters pk (or νk) are generally different for each k. If it were to turn
out that all the pk’s (or νk’s) were equal to the same value, we would still have an anisotropic distribution. (An
exception is if pk = 2 for all k, or νk =∞ for all k; in that case, the distributions would be Gaussian.)

3. FORMULATION FOR TARGET DETECTION IN CLUTTER

Let x ∈ Rd represent the reflectance spectrum that is observed for a pixel in an image with d spectral channels.
If z is the background spectrum (i.e., what the spectrum would be for a pixel if no target were present), write
x = ξ(z) to indicate the effect of the target on the background spectrum. For the replacement target model that
will be used in the experiments here, ξ(z) = (1− a)z + at, where a is the target abundance and t is the target
spectrum. As noted in [25], we can write

L(x) =
Ptarget(x)

Pbkg(x)
=
Pbkg(ξ−1(x))

Pbkg(x)

∣∣∣∣dξdx
∣∣∣∣−1 (4)

as the likelihood ratio of target to non-target. Here |dξ/dx| is the absolute value of the determinant of the
Jacobian of ξ. For the replacement target model, this becomes∣∣∣∣dξdx

∣∣∣∣ = (1− a)d (5)

†Note on notation: Scalar xk (with x un-bolded) is the kth principal component of the vector x. But vector xn (with
x in boldface) is the nth data sample (e.g., the nth pixel in a spectral image).
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so that

L(a,x) = (1− a)−d
Pbkg

(
x− at
1− a

)
Pbkg(x)

. (6)

This expression provides an optimal detector when a is known (the so-called clairvoyant case26), or can be used
to produce a GLRT detector by maximizing over a (e.g., see [27] for Gaussian Pbkg or [8] for multivariate t), or
a Bayesian detector by integrating over a (e.g., see [28,29]). Here, the Veritas25 method is employed, which uses
Eq. (6) with a fixed at three-sigmas relative to the background.

3.1 Flow loss

Although the ultimate measure of model quality is how well it detects targets of interest, it is useful to have a
direct, and target-agnostic, measure of how well a given approximation matches the true distribution. A natural
choice is the Kullback-Liebler divergence, which naturally splits into two terms:

DKL(Ptrue, Pmodel) =

∫
Ptrue(x) log

(
Ptrue(x)

Pmodel(x)

)
dx

= −
∫
−Ptrue(x) logPtrue(x) dx︸ ︷︷ ︸

true entropy

+

∫
−Ptrue(x) logPmodel(x) dx︸ ︷︷ ︸

flow loss

. (7)

The first term is the entropy of the true distribution, and although it is not known, it does not depend on the
choice of model; it is a fixed constant. The second term we call the flow loss,‡ though it is essentially the average
negative log likelihood of the data samples with respect to the model. In particular, if we have data {x1, . . . ,xN}
that is presumed to be drawn from Ptrue(x), then:

L =

∫
−Ptrue(x) logPmodel(x) dx ≈ 1

N

N∑
n=1

− logPmodel(xn) (8)

The flow loss provides a measure of how well the model distribution fits the data.

4. EXPERIMENTS

Fig. 1 shows ROC curves for detection of painted panels (green and yellow) in imagery collected as part of the
SHARE 2012 campaign.30,31 There are only a few targets, and they are spatially clumped, so they do not give a
robust statistical characterization of algorithm performance. They do show, however, that these algorithms can
detect real targets in real backgrounds.

A less realistic, but statistically more informative, approach is to implant targets into the scene. This enables
more targets to be in the scene, and enables the targets to be observed against the full range of background
variation that is available in the image. This also avoids the target mismatch problem, which arises when the
“known” spectrum of the target (often obtained in a laboratory setting) doesn’t match the spectrum exhibited
in the image.§

We use the two-histogram/matched-pair approach,32–34 and make two copies of the image, one with targets
implanted in every pixel, and one without any implanted targets. We train on the data without implanted
targets, but apply the detector to both images: detections in the image with targets contribute to the detection
rate while detections in the image without targets contribute to the false alarm rate. ROC curves (from five
resamplings of in-sample/out-of-sample) are shown in Figures 2 and 3, with summarizing statistics (based on 15

‡The term arises from the normalizing flows literature (e.g., see [19]), we are using it here more generally. A smaller
flow loss indicates a better fit of the model to the true distribution.

§This is both a feature and a bug; the target mismatch problem is real, and by avoiding it here, we are not “fully”
testing the detection algorithm. In this case, however, our main interest is not in absolute characterization of ultimate
performance, but in the relative performance differences that arise from different background models.

Proc. SPIE 12519 (2023) 125190R 3



10 5 10 4 10 3 10 2 10 1 100

False alarm rate

0.0

0.2

0.4

0.6

0.8

1.0
De

te
ct

io
n 

ra
te

Gaussian
EC-t
Anisotropic t
Anisotropic fat exponential

10 5 10 4 10 3 10 2 10 1 100

False alarm rate

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n 
ra

te

Gaussian
EC-t
Anisotropic t
Anisotropic fat exponential

Figure 1. ROC curves for RIT SHARE 2012 imagery with yellow targets (left) and green targets (right).
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Figure 2. ROC curves for RIT SHARE 2012 imagery with simulated yellow targets (left) and green targets (right). The
targets are added with an abundance factor of a = 0.015.

resamplings) shown in Tables 1 and 2. As with the real data, we see that the yellow targets are more detectable
than the green targets at the same abundance. Unlike the real data, however, we see the fat-tailed distributions
achieving the best detections.

A more careful comparison of algorithm performance is shown in Tables 1 and 2. Three different statistics
are used for comparison: a false alarm rate (at the threshold for which detection rate is one half), area under
the ROC curve (the reported value is 1-AUC so that smaller values are better), and the flow loss described in
Section 3.1. For both the yellow and the green targets, we see the best performance given by the t-distributed
background models. The anisotropic t is slightly better than the EC-t, though the difference is smaller than
the run-to-run variation characterized by the error bars. The anisotropic fat exponential model outperformed
the Gaussian model for the yellow targets, but not for the green targets. Anecdotally, it was found that fitting
the fat exponential model parameters was sensitive to details of the fitting process. The moment-based method
described in Appendix A was used for fitting the parameter, but better performance was observed when p was
limited to a range 0.1 ≤ p ≤ 2.0.

5. CONCLUSIONS

An appealing feature of the marginal product distributions that were investigated here is that they exhibit
“adaptably fat” tails, with different fatness in different directions. For target detection applications, the tails
are particularly important, because it is only in the tails of the background that targets can be detected. Direct
fitting of the distribution at the tails is challenging because that is where the sample data is most sparse. The
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Figure 3. ROC curves for RIT SHARE 2012 imagery with simulated yellow targets (left) and green targets (right). The
targets are added with an abundance factor of a = 0.02.

Table 1. Performance measures using different model distributions, applied to the detection of yellow panels in RIT
SHARE 2012 imagery. Scores and error bars are based on 25 runs with different in-sample/out-of-sample splits; the
reported values are for out of sample performance. We observe that the Gaussian model is outperformed by all of the
alternatives. The anisotropic-t had the lowest false alarm rate (FAR@DR=0.5) and the highest area under the ROC
curve (1-AUC is lowest), but the EC-t has the lowest flow loss.

Model Distribution FAR@DR=0.5 1-AUC Flow loss
Gaussian 0.001862 ± 0.000198 0.021708 ± 0.000718 1.424240 ± 0.016900

EC-t 0.001056 ± 0.000164 0.014936 ± 0.000858 1.321160 ± 0.003094
Anisotropic-t 0.000859 ± 0.000152 0.013172 ± 0.000679 1.371280 ± 0.002676

Anisotropic fat exponential 0.001179 ± 0.000232 0.018172 ± 0.001498 1.328920 ± 0.004757

Table 2. Same as Table 1, but with the green panels as targets. Since the background is the same, the flow loss numbers
are identical with to those in Table 2. For the same strength implanted target, we see that the green panels are harder
to detect (higher false alarm rates and lower AUC scores), but we again see the anisotropic-t as the best detector. For
this target, however, the anisotropic fat exponential was even worse than the Gaussian.

Model Distribution FAR@DR=0.5 1-AUC Flow loss
Gaussian 0.004969 ± 0.000572 0.037216 ± 0.001953 1.424240 ± 0.016900

EC-t 0.004756 ± 0.000516 0.033540 ± 0.002394 1.321160 ± 0.003094
Anisotropic-t 0.004668 ± 0.000561 0.030024 ± 0.001709 1.371280 ± 0.002676

Anisotropic fat exponential 0.007864 ± 0.000917 0.041644 ± 0.002163 1.328920 ± 0.004757

Proc. SPIE 12519 (2023) 125190R 5



advantage of fitting parametric models is that the density at the tails can in part be “extrapolated” from the
density nearer to the core of the distribution. The emphasis of the models considered here (the Student-t and
the fat exponential) is to characterize those tails analytically, without putting much effort into characterizing
the details of the core of the distribution even though the core is “where all the data are”.

The use of these simple distributional models pushes back against the over-fitting that is virtually inevitable
when high-dimensional anisotropy is considered. These distributions are products of d one-dimensional dis-
tributions, and these d separate factors are independently fit, and each factor is fit based on all of the data
samples.

As good as these marginal product distributions look “on paper,” however, what this preliminary study found
is that they did not substantially outperform their isotropic counterparts. The anisotropic models (especially
those based on the Student-t distribution) were certainly competitive, and even slightly better, and this author’s
opinion is that they merit further study. What follows are some thoughts on what issues those further studies
might consider.

Since the background distribution is, above all, a characterization of the data in the hyperspectral imagery,
a natural next step would be to consider other datasets – data from other locations and/or from other sensors
could well yield different background distributions.

Another limitation of the current study is that it considers only the replacement target model. As Eq. (4) and
Eq. (19) show, any target model can be used, including Beer’s Law gas detection.35–38 Adler-Golden’s original
application was anomaly detection,23 and it may be that this kind of explicit background model is most well
adapted to anomaly, and possibly also anomalous change,39–43 detection.

The fitting of both the Student-t and the fat exponential models was achieved by computing higher moments
of the data, and then identifying the parameter associated with the higher moment value. One disadvantage
of this approach is that extremely fat-tailed distributions have unbounded higher moments. For example, the
moment-based approach for the multivariate t distribution described in [9] only works for ν ≥ 3. An alternative
approach would be a direct estimate of maximum likelihood value by literally maximizing the likelihood (or,
equivalently, minimizing the flow loss). Whether that is computationally practical, or will yield more stable
estimates, are questions that a future study could resolve.

One final item on this “to-do” list would be to employ local, instead of global, mean subtraction. Here, the
mean m at a given pixel x is estimated from a local annulus surrounding that pixel; this idea been employed
already in a variety of studies,44–55 and Appendix B shows how the likelihood function is altered for generic
target detection. One of the earliest advocates of local mean subtraction was the original RX anomaly detection
paper by Reed and Yu,44 which also remarked that the distribution of the residual x −m is often more nearly
Gaussian than the unsubtracted x values. It remains for future studies to clarify whether this remark applies as
well to the tails of the background distributions.
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APPENDIX A. FITTING FAT EXPONENTIALS TO DATA

The fat exponential is of the form P (x) = c exp(−|ax|−p). In the case p = 2, this is a Gaussian distribution, but
for p < 2, the tails of the distribution are fatter than that of a Gaussian.

A.1 Dependence on p

Although there are nominally three parameters – c, a, and p – we also have two constraints on the distribution
and that leads to c and a being expressible in terms of p. The first constraint is that the distribution integrates
to one; that is:

1 =

∫ ∞
−∞

c exp(−|ax|p) dx (9)

The condition that the mean is zero is built into the parameterization of the fat exponential; since it is symmetric
about zero, it has mean zero. Finally, since the model is to be applied to whitened data, there is a condition
that the second moment is unity. That is:

1 =

∫ ∞
−∞

x2 c exp(−|ax|p) dx (10)

To begin, we derive an expression for arbitrary moments. Write

κm =

∫ ∞
−∞
|x|m c exp(−|ax|p) dx = 2c

∫ ∞
0

xm exp(−(ax)p) dx

= 2c a−m
∫ ∞
0

(ax)m exp(−(ax)p) dx (11)

Let u = (ax)p, so that du = ap(ax)p−1dx. Since ax = u−p, we have that dx = 1
apu

(1−p)/pdu, and

κm = 2c a−m
∫ ∞
0

um/p exp(−u)× 1

ap
u(1−p)/pdu

= 2c a−m−1p−1
∫ ∞
0

u(m+1−p)/p exp(−u) du (12)

At this point, we can use the definition of the gamma function: Γ(1 + z) =
∫∞
0
uz e−u du to write

κm = 2c a−m−1p−1Γ

(
1 +

m+ 1− p
p

)
=

2c

pam+1
Γ

(
m+ 1

p

)
(13)
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Now from the condition that the integral is one, we have that 1 = κ0 = 2c
paΓ(1/p), which leads to

c =
ap

2Γ(1/p)
. (14)

We also have the condition that the variance is one, so that

1 = κ2 =
2c

pa3
Γ(3/p) = 2×

[
ap

2Γ(1/p)

]
︸ ︷︷ ︸

c

× 1

pa3
Γ(3/p) = a−2

Γ(3/p)

Γ(1/p)
(15)

which gives

a =

[
Γ(3/p)

Γ(1/p)

]1/2
(16)

Finally, we can use these expressions for c and a to write a general formula for the m’th moment:

κm =
2c

pam+1
Γ

(
m+ 1

p

)
= 2×

[
ap

2Γ(1/p)

]
× 1

pam+1
Γ

(
m+ 1

p

)
= a−m

Γ((m+ 1)/p)

Γ(1/p)

=

[
Γ(3/p)

Γ(1/p)

]−m/2
Γ((m+ 1)/p)

Γ(1/p)
(17)

is an explicit closed-from expression for κm as a function of p.

A.2 Estimating p from data

Given a set of scalar points, based on a projection to one of the principal component axes, and scaled to have
zero mean and unit variance, we can estimate p for that axis by first estimating one of the moments

κ̂m =
1

N

N∑
n=1

|xn|m (18)

and then inverting Eq. (17) to find the value of p that leads to this value of κm. Since higher moments are more
vulnerable to outliers, a smaller value of m is preferred, and in the work here, m = 1 was used.

Rather than attempt a direct closed-form inversion of Eq. (17), a numerical approximation was obtained by
taking a range of p values, computing the associated κm values, and using interpolation to obtain a function that
yields p as a function of κm.

APPENDIX B. LOCAL MEAN SUBTRACTION

In estimating the background clutter distribution Pbkg, each pixel is treated essentially independently. One
simple approach (though it can become more complicated) for exploiting the spatial structure in a typical image
is to use neighboring pixels to estimate the “local” mean of the distribution. In this case, there is a different Pbkg

function for each pixel; we can write this as Pbkg(x,m) where m is the local estimate of the mean. In practice
a global distribution, based on the “residual” background, can be estimated from the values of x −m in the
residual image. Here, Presidual(x−m) describes this distribution function, which depends only on the difference
x−m. In this formulation, the likelihood ratio in Eq. (4) becomes

L(x,m) =
Presidual(ξ

−1(x)−m)

Presidual(x−m)

∣∣∣∣dξdx
∣∣∣∣−1 . (19)

Note that this is not (except in special cases¶) the same as replacing the image with the residual image and
doing standard target detection on the residual image.55 To use this formula, one must keep track of both x and
m for every pixel.

¶The additive target model is one such special case, because x = ξ(z) = z + at implies ξ−1(x) −m = ξ−1(x −m),
which implies that L(x,m) depends only on x−m.
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