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ABSTRACT

We can improve the detection of targets and anomalies in a cluttered background by more effectively estimating
that background. With a good estimate of what the target-free radiance or reflectance ought to be at a pixel,
we have a point of comparison with what the measured value of that pixel actually happens to be. It is common
to make this estimate using the mean of pixels in an annulus around the pixel of interest. But there is more
information in the annulus than this mean value, and one can derive more general estimators than just the
mean. The derivation pursued here is based on multivariate regression of the central pixel against the pixels in
the surrounding annulus. This can be done on a band-by-band basis, or with multiple bands simultaneously.

For overhead remote sensing imagery with square pixels, there is a natural eight-fold symmetry in the sur-
rounding annulus, corresponding to reflection and right angle rotation. We can use this symmetry to impose
constraints on the estimator function, and we can use these constraints to reduce the number or regressor vari-
ables in the problem. This paper investigates the utility of regression generally – and a variety of different
symmetric regression schemes particularly – for hyperspectral background estimation in the context of generic
target detection.

Keywords: Background estimation, Target Detection, Anomaly Detection, Hyperspectral imagery

1. INTRODUCTION

To detect, identify, or quantify the properties of targets and/or materials of interest in a cluttered scene, a key
step is the characterization of that background clutter. A number of standard detection algorithms – adaptive
matched filter,1–3 adaptive coherence estimator,4, 5 finite target matched filter,6 etc. – begin with the assumption
that the background is a multivariate Gaussian, whose mean µ and covariance R are estimated from the full
dataset.

A natural way to improve this estimate is to compute the mean (and, possibly, the covariance) from a moving
window centered on the pixel of interest. The venerable RX algorithm7, 8 takes this approach for anomaly
detection. The approach is less commonly employed for target detection, but recent efforts have illustrated
the utility of local estimation for this purpose.9–13 A related approach14, 15 employs an “unsharp mask” before
applying a global detector; the effect of this filter is similar to the subtraction of a local mean.

Using the mean of the pixels in the annulus as the estimate of the central pixel is simple and effective, but
possibly not optimal. In the regression framework, the central pixel is estimated from a general function of the
pixels in the surrounding annulus. In one study,16 a k-nearest-neighbor algorithm (where neighbors are defined
with respect to a “patch-space” of annulus-shaped patches) was used to obtain estimates with better SNR (i.e.,
smaller residual variance) than was obtained using the mean of the pixels in the surrounding annulus.

Hasson et al.17 also employed a regression framework, and astutely observed that optimizing SNR does not
necessarily optimize target detection performance. In particular, their variant of the patched-based nearest
neighbor regressor achieved lower overall SNR than a mean or median for two small hyperspectral datasets,
but it was the least effective of the three at the target detection tasks that were investigated. (One potentially
important difference between the algorithms in Refs. [16] and [17] is that nearest neighbors are computed band-
by-band in [16] but with all bands together in [17].)

It bears remarking that the problem of estimating a central pixel, based on the specific pixels that immediately
surround it, along with the statistical context of the rest of the image, can be interpreted as a special case of the
“inpainting” problem.18–20 Here we are inpainting only a single pixel (or possibly a small patch, if we want to
employ a “guard ring” between the candidate target location and the surrounding annulus), but we are doing it
for every pixel in the image.
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Figure 1: Left: Under the dihedral D4 symmetry group, which
permits reflections and rotations by right angles, some pix-
els (blue) have four-fold symmetry, and some (magenta) have
eight-fold symmetry. Right: Under the more restricted Klein
K4 symmetry group, which permits only reflections and rota-
tions by 180 degrees, most pixels (blue) have four-fold symme-
try but some (cyan) have only two-fold symmetry.

2. REGRESSION FRAMEWORK

If y is the value of a pixel of interest, and x = [x1, . . . , xK ]T represents the pixels in the surrounding annulus,
then we seek a function f for which ŷ = f(x) is a good approximation for y. A simple first approximation uses
the mean of the annular pixels: f(x) = (x1 + · · · + xK)/K. But why not the median? Or how about a mean
that puts extra weight on the pixels that are spatially closer to the central pixel? For that matter, one could
consider an arbitrary linear combination: f(x) = a1x1 + · · ·+ aKxK .

In general, given a functional form for f , it is straightforward to learn the coefficients, because there are so
many training examples. For every pixel (except those at the border of the image), we have a y value, and a
surrounding annulus of x values. For the linear model, for instance, we can just use least squares:

a1, . . . , aK = argmina

∑
n

(yn − [a1x1n + · · ·+ aKxKn])2 (1)

where yn is the value of the n’th pixel, and xkn is the k’th pixel in the annulus surrounding the n’th pixel.

For the experiments in this paper, only linear regression will be used. Indeed, one of the lessons of this work
is that such a simple model can be very effective for characterizing the background of real multispectral and
hyperspectral images. Some of the proposed regression algorithms (in particular, the Σ∆ scheme described in
Section 3.4) will consider fixed nonlinear functions of the pixels (which can be thought of as “features” of the
annulus), and linear regression will be applied to those features. That is,

ŷ = f(x) =
∑
k

akφk(x) (2)

where φk is a possibly nonlinear function of the pixels x1, . . . , xK .

3. SYMMETRIES

Implicit in the analysis of imagery is the assumption that we can learn about the statistics of background variation
in one part of the image by observing that variation in another part of the image. In particular, we expect the
properties of background variability to be invariant to translation, rotation, and reflection. These are not strict
symmetries: images are known to have nonstationarities, special alignments (e.g., of streets in a city, or due to
BRDF [bidirectional reflectance distribution function] effects when the sun is at a given azimuth), and (albeit
rarely) specific “handedness” (e.g., the direction of a spiral is not preserved under reflection). But even if they
are occasionally broken, these symmetries are still useful approximations.

In general, we seek estimators f(x) that are consistent with the symmetry operators. Thus, if g is a symmetry
operator (e.g., a rotation by ninety degrees), then we want f(x) = f(gx), where gx corresponds to the annulus
pixels x after operation by g. One way, we can enforce this behavior is by choosing features φk(x) that are
symmetric; i.e., φk(gx) = φk(x). It follows that the linear regression in Eq. (2) will be symmetric.

3.1. D4: the dihedral group

For an imager with square pixels∗ the natural symmetries are reflection and rotation by multiples of ninety
degrees. These symmetries can be formally expressed in terms of the dihedral group D4, which contains eight

∗If pixels were hexagonal, the symmetries would be richer.
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Figure 2: Eight pixels in a 5× 5 array. Reflections and rotations by multiples
of 90 degrees of the array will interchange the positions of these eight pixels.
For instance, if s corresponds to reflections about the vertical axis, then sa = b,
sb = a, sc = h, etc. If r corresponds to clockwise rotation by 90 degrees, then
ra = c, rb = d, rc = e, etc.

elements. Each element is an operator, and the eight elements of the group can be generated with combinations
of two generators, s and r, corresponding respectively to reflection about an axis (which we will take to be the
vertical axis just to be specific), and rotation by ninety degrees (which we will take to be clockwise, again just
to be specific). The group operation is successive application of the operators, with the usual convention that
operators are applied in order from right to left; e.g., the element rs corresponds to reflection (s) followed by
ninety-degree rotation (r). Observe that the operators do not commute: rs 6= sr (reflection followed by rotation
is not the same thing as rotation followed by reflection).

We can specify the full group: D4 = {1, r, r2, r3, s, sr, sr2, sr3}. The composition rules are: r4 = 1 (four
rotations by ninety degrees leaves the image unchanged); s2 = 1 (two reflections revert back to the original
image); and rs = sr3 (reflection followed by a 90o rotation is equivalent to rotation by 270o followed by reflection).
We can use these composition rules to multiply arbitrary group elements: e.g., r2 × sr2 = r(rs)r2 = r(sr3)r2 =
(rs)r5 = (rs)r = (sr3)r = sr4 = s.

In general, if a pixel is at position (i, j) relative to a center pixel of interest, then the reflected pixel is
at position (−i, j) and the rotated pixel is at position (j,−i). Applying all the elements of D4 we get pixels
{(±i,±j), (±j,±i)} which in general is eight positions, but will only be four if either i = 0 or j = 0 or i = j.
The singular case i = j = 0 corresponds the pixel in the center of the tile; this is seen in Fig. 1.

Consider the eight pixels – a, b, c, d, e, f, g, h – shown in Fig. 2. Group operations on these pixels will
interchange the positions of the pixels, but the idea of this symmetry is that any function of these pix-
els that predicts the center pixel should be invariant to those re-arrangements. The simple mean function,
f(a, b, c, d, e, f, g, h) = (a+ b+ c+ d+ e+ f + g + h)/8, is trivially invariant to these re-arrangements, but it is
possible to devise more complicated functions that are also invariant.

The regression idea is that the mean function can be replaced with more complicated functions, but the class
of functions that might be used is vast. The symmetry idea is that this class might be reduced somewhat by
imposing conditions associated with the symmetry. Invariance to reflection, for instance, is the statement that

f(a, b, c, d, e, f, g, h) = f(sa, sb, sc, sd, se, sf, sg, sh) = f(b, a, h, g, f, e, d, c) (3)

Invariance to clockwise rotation by ninety degrees implies

f(a, b, c, d, e, f, g, h) = f(ra, rb, rc, rd, re, rf, rg, rh) = f(c, d, e, f, g, h, a, b) (4)

If we can show these two invariances, then since s and r generate the full group, it follows that we have invariance
to all the combinations of rotation and reflection that are in D4.

3.2. K4: the Klein group

For a pushbroom imager, one can imagine that the along-track noise and blur properties might differ from the
cross-track properties, and so although we might want reflection (about both the along-track and cross-track
axes), we might not want rotation by any angle other than 180 degrees. This leads to a four-fold symmetry,
and the group {1, v, h, vh}, with vh = hv corresponding to rotation by 180 degrees. Here v2 = h2 = (vh)2 = 1,
and this group is known as the Klein four-group (denoted K4). It can also be described as Z2 × Z2: the direct
product of two copies of the order-2 cyclic group.
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(a) K4 (b) D4 (c) Rings (d) Mean

Figure 3: Coefficient patterns for various symmetries, shown for (ro, ri) = (2, 1). Pixels with a common color
in these annuli correspond to subsets that, for the linear Σ-only scheme, share a common coefficient. For the
Σ∆ scheme, they correspond to subsets whose elements combine with each other (but not with other subsets) to
produce the Σ∆ features. (a) Under the K4 symmetry group, pixels with reflection symmetry share a common
color. In this case, there are eight distinct subsets, which in the Σ-only case would correspond to eight total
features. (b) The D4 symmetry permits rotations as well as reflections, and there are fewer subsets (five in
this case). (c) Here, the pixel subsets are concentric square rings. This arrangement does not lend itself to Σ∆
features, but for the linear Σ-only features, there are two coefficients for the (ro, ri) = (2, 1) annulus. (d) With
“Mean,” (as used by RX, for instance), all the pixels contribute equally.

Where the dihedral D4 exhibits eight-fold symmetry, and generic pixels have seven counterparts (not including
themselves), though some pixels have only three partners; the Klein K4 group exhibits four-fold symmetry, and
pixels generally have three counterparts, but some have only one partner. This is illustrated in Fig. 1, and in
Fig. 3(a,b) in a different way.

3.3. Ring symmetry

One way to impose fuller rotational symmetry is to use full rings. That is, we surround a pixel with multiple
concentric annuli, and permit a single coefficient for each annulus. Ref. [21] employed this scheme for background
estimation in an astronomical context, and derived minimum-variance coefficients that would be consistent with
polynomial interpolation. (A variant is obtained when the annuli contain Poisson counts.22, 23) Here, we take a
simpler approach, and use linear regression to identify the best coefficients.

With square pixels, we do not have the luxury of circular concentric annuli, but we can still make “square
rings” of pixels for which max(|i|, |j|) is fixed.†

3.4. Sigma-Delta algebra

With the Sigma-Delta algebra, we perform a nonlinear transform on the data that enables us to maintain the
imposed symmetry without reducing the number of features. Informally, we can think of these features as
characterizing the “texture” of the pixel values in the annulus.

Let Σ(A,B) = A+B be the sum, and ∆(A,B) = |A−B| be the absolute value of the difference. Note that
Σ and ∆ are both commutative with respect to their arguments; that is, Θ(A,B) = Θ(B,A) for both Θ = Σ
and Θ = ∆. In general, we can make a feature by combining:

φZYX = ΘX(ΘY (ΘZ(a, b),ΘZ(e, f)),ΘY (ΘZ(c, d),ΘZ(g, h))). (5)

†Another alternative, not implemented here, is to make “diamond rings” of pixels for which |i| + |j| is fixed.
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In particular:

φΣΣΣ = Σ(Σ(Σ(a, b),Σ(e, f)),Σ(Σ(c, d),Σ(g, h))) = a+ b+ e+ f + c+ d+ g + h (6)

φΣΣ∆ = ∆(Σ(Σ(a, b),Σ(e, f)),Σ(Σ(c, d),Σ(g, h))) =
∣∣∣(a+ b+ e+ f)− (c+ d+ g + h)

∣∣∣ (7)

φΣ∆Σ = Σ(∆(Σ(a, b),Σ(e, f)),∆(Σ(c, d),Σ(g, h))) =
∣∣(a+ b)− (e+ f)

∣∣+
∣∣(c+ d)− (g + h)

∣∣ (8)

φΣ∆∆ = ∆(∆(Σ(a, b),Σ(e, f)),∆(Σ(c, d),Σ(g, h))) =
∣∣∣|(a+ b)− (e+ f)| − |(c+ d)− (g + h)|

∣∣∣ (9)

φ∆ΣΣ = Σ(Σ(∆(a, b),∆(e, f)),Σ(∆(c, d),∆(g, h))) = |a− b|+ |e− f |+ |c− d|+ |g − h| (10)

φ∆Σ∆ = ∆(Σ(∆(a, b),∆(e, f)),Σ(∆(c, d),∆(g, h))) =
∣∣∣(|a− b|+ |e− f |)− (|c− d|+ |g − h|)

∣∣∣ (11)

φ∆∆Σ = Σ(∆(∆(a, b),∆(e, f)),∆(∆(c, d),∆(g, h))) =
∣∣|a− b| − |e− f |∣∣+

∣∣|c− d| − |g − h|∣∣ (12)

φ∆∆∆ = ∆(∆(∆(a, b),∆(e, f)),∆(∆(c, d),∆(g, h))) =
∣∣∣∣∣|a− b| − |e− f |∣∣− ∣∣|c− d| − |g − h|∣∣∣∣∣ (13)

To see that these features are invariant to group elements, consider the effect of the two generating elements,
s and r. Applying s to an arbitrary sigma-delta feature is seen to leave the feature unaltered:

sφZYX = ΘX(ΘY (ΘZ(sa, sb), sΘZ(se, sf)),ΘY (ΘZ(sc, sd), sΘZ(sg, sh))) (14)

= ΘX(ΘY (ΘZ(b, a),ΘZ(f, e)),ΘY (ΘZ(h, g),ΘZ(d, c))) (15)

= ΘX(ΘY (ΘZ(a, b),ΘZ(e, f)),ΘY (ΘZ(g, h),ΘZ(c, d))) (16)

= ΘX(ΘY (ΘZ(a, b),ΘZ(e, f)),ΘY (ΘZ(c, d),ΘZ(g, h))) (17)

= φZYX , (18)

where the first step arose from applying s to each of {a, b, c, d, e, f, g, h}, and subsequent steps employed the
commutative property of ΘZ , followed by the commutative property of ΘY . Similarly,

rφZYX = ΘX(ΘY (ΘZ(ra, rb),ΘZ(re, rf)),ΘY (ΘZ(rc, rd),ΘZ(rg, rh))) (19)

= ΘX(ΘY (ΘZ(c, d),ΘZ(g, h)),ΘY (ΘZ(e, f),ΘZ(a, b))) (20)

= ΘX(ΘY (ΘZ(c, d),ΘZ(g, h)),ΘY (ΘZ(a, b),ΘZ(e, f))) (21)

= ΘX(ΘY (ΘZ(a, b),ΘZ(e, f)),ΘY (ΘZ(c, d),ΘZ(g, h))) (22)

= φZYX (23)

and in this case, we made use of the commutative property of ΘY and ΘX .

3.5. Sigma-only features

One property of Σ∆ features is that there are as many features as there were pixels to begin with. If we use only
the Σ operator (which is linear), and not the ∆ operator (which is nonlinear), then the eight features in Eq. (6)
to Eq. (13), will be reduced to just the one in Eq. (6): φΣΣΣ. For the (ro, ri) = (2, 1) annulus, for example, the
24 pixels in the annulus are reduced to five features under the D4 symmetry. The dimension reduction that this
entails for other symmetries and annulus sizes is listed in Table 1.

4. REGRESSION AND INTERPOLATION

If we imagine that the spatial variability of the image can be modeled as a locally smooth function (or even
locally smooth with noise), then we can interpret the estimation of the central pixel value as an interpolation.
Indeed, this is the approach that was used to derive analytical expressions for estimating the background in an
astronomical context.21

As a simple example, consider the (ro, ri) = (1, 1) case, in which the annulus consists of the eight pixels
immediately surrounding the pixel of interest. If we assume that the function z(i, j) is a cubic polynomial in i
and j, then we can derive the optimal coefficients for estimating the central pixel in terms of the annulus pixels.
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Table 1: Number of features used, based on different symmetries, as a function of outer and inner radius of
the annulus (ro and ri, respectively). The Σ∆ process does not change the number of features. The Σ-only
symmetries reduce the number of features.

Number of features (ro,ri)

Symmetry (1,1) (2,1) (3,1) (3,2) ro,ri ro � ri

None 8 24 48 40 (2ro + 1)2 − (2ri − 1)2 4r2
o

K4Σ∆ (Klein) 8 24 48 40 (2ro + 1)2 − (2ri − 1)2 4r2
o

D4Σ∆ (Dihedral) 8 24 48 40 (2ro + 1)2 − (2ri − 1)2 4r2
o

K4Σ (Klein) 3 8 15 12 r2
o − r2

i + 2ro + 1 r2
o

D4Σ (Dihedral) 2 5 9 7 (r2
o − r2

i + 3ro − ri + 2)/2 r2
o/2

Diamond Rings 2 4 6 5 2ro − ri + 1 2ro

Square Rings 1 2 3 2 ro − ri + 1 ro

Mean 1 1 1 1 1 1

This optimal solution exhibits D4 symmetry and can be expressed concisely as the weighted average of two
averages: specifically,

ẑ(0, 0) = a+z+ + a×z× (24)

where

z+ = [z(1, 0) + z(0, 1) + z(−1, 0) + z(0,−1)]/4 (25)

z× = [z(−1, 1) + z(1, 1) + z(1,−1) + z(−1,−1)]/4. (26)

Here z+ corresponds to the average of the four pixels in the “cardinal” directions from the center, and z× is the
average of the four corner pixels. Since this is a weighted average, we expect a+ + a× = 1. We furthermore
expect the cardinal pixels to have more weight than the corner pixels, since they are closer, and indeed they have
twice as much weight. But this optimal solution is not a+ = 2/3 and a× = 1/3. Instead, it is given by a+ = 2
and a× = −1. That is, the four corner pixels not only have lower weight, their weight is negative.24

This optimality result is altered if we incorporate noise. In particular, if the pixels are dominated by noise,
then the best estimator is given by the simple average: ẑ(0, 0) = 0.5z+ + 0.5z×. In practice, our images have
some smoothness and some noise. And in that case, the best coefficients are somewhere “in between” (2,−1)
and (0.5, 0.5). One can imagine making an explicit model of the image (e.g., by a polynomial of a certain order
along with noise at a certain level), followed by a derivation of the optimal coefficients to fit that model. But
one can bypass the model and employ regression to learn those coefficients directly. Performing this experiment
on a variety of images, it was empirically found that (1.5,−0.5) was often close to the optimal solution.

5. EXTENSION TO MULTIPLE SPECTRAL CHANNELS

One can employ the methods described above to a multispectral or hyperspectral image by replacing scalars
(pixel values at a given position) with vectors (pixel values over all wavelengths at a given position). This
is the all-bands-together approach, and although it is conceptually straightforward, it can be computationally
demanding, and otherwise problematic for nonlinear regression schemes.‡

To keep things simple, the experiments performed here employed a band-by-band approach. For the purposes
of estimating the value of a central pixel inside an annulus of pixels, each band is treated separately. For a given
exploitation task (e.g., for target or anomaly detection), the bands are re-combined into a single image.

And for the experiments in this paper, this was done in two ways. In the direct band-by-band approach,
the bands were just the usual bands associated with specific wavelengths. But it was often found that better

‡For example, it is hard to define an unambiguous “median” in multidimensional space.
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Table 2: Performance measures for different choices of feature sets, as applied to different hyperspectral images.
SNR is the signal-to-noise ratio, in decibels, that corresponds to the variance of the original image divided by
the variance of the residuals; it is defined in Eq. (27). LVR is the log-volume-ratio corresponds to log(Vo/V ),
where Vo is the volume of the ellipsoid corresponding to the covariance of the original data, and V is the volume
of the covariance ellipsoid of the residual data; it can be computed using the formula in Eq. (29). Higher values
are better in both cases, although higher values of SNR are not always better.17

AVIRIS – Indian Pines
PCA direct

Features # SNR LVR SNR LVR
Cardinal 1 9.0 -30.1 9.0 -30.1
Median 1 9.2 17.4 9.2 -21.0

Mean 1 8.6 20.9 8.6 20.9
Rings 2 11.8 33.3 11.8 11.9
D4Σ 5 16.3 65.7 15.9 3.8

D4Σ∆ 24 16.3 65.8 16.0 2.2
K4Σ 8 17.1 100.9 16.6 57.2

No-Sym 24 17.1 101.0 16.6 56.7

SpecTIR – Reno
PCA direct

SNR LVR SNR LVR
7.8 -7.9 7.8 -7.9
9.4 26.4 9.4 4.9
8.8 26.8 8.8 26.8

13.9 38.8 13.9 29.0
17.2 47.1 17.1 12.1
17.3 47.0 17.3 9.4
17.3 47.4 17.3 12.5
17.4 47.6 17.3 13.5

HyMap – Cooke City
PCA direct

SNR LVR SNR LVR
11.4 85.2 11.4 85.2
12.5 98.1 12.5 3.1
12.1 99.8 12.1 99.8
22.5 266.0 22.4 264.6
25.4 300.9 25.4 287.6
25.5 300.8 25.5 283.7
25.4 300.4 25.4 286.7
25.5 300.7 25.5 287.0

performance was achieved if the data were first transformed into principal components. The PCA band-by-band
approach is applied to each principal component image, and then then the image is re-transformed back to usual
wavelength bands.

It bears remaking that the baseline “mean” estimator – which estimates the central pixel as a simple arithmetic
average of the pixels in the annulus – gives the same result in all three cases: all-bands-together, direct band-
by-band, and PCA band-by-band.

6. RESULTS

This study considered three separate hyperspectral images: the classic AVIRIS25, 26 image of Indian Pines, the
HyMap blind test27 image of Cooke City, and a SpecTIR image of Reno, Nevada.28

Two sets of experiments were performed. The first involved estimating the background at each pixel and
computing generic measures of accuracy for the different regression schemes. In the second set of experiments,
more direct measures of detection performance were computed (ROC curves) by implanting anomalies into the
scene. Although more specific target detection is often a more operationally useful task, the motivation for using
non-specific anomalies was to allow us (indeed, to force us) to focus on the background estimation aspect of the
problem.

6.1. Generic measures background estimation performance

Since the aim is to estimate the background, a very simple measure of estimation accuracy is the magnitude of
the residuals. In particular, the SNR is defined by

SNR(dB) = −10 log10〈eTe〉+ 10 log10〈xTx〉 (27)

where x is the pixel in the original image, and e is the pixel in the residual image. In general, a smaller residual
indicates a larger SNR, which is usually (but not always17) better. Note that Eq. (27) can be expressed in
terms of the eigenvalues of the original covariance matrix (denoted λoi ) and eigenvalues of the residual covariance
matrix (denoted λi):

SNR(dB) =
10

log 10

[
log
∑
i

λoi − log
∑
i

λi

]
. (28)

Volume measures29–32 are inspired by a distribution based approach to anomaly detection. A full analysis
would consider the volume of a distribution contour required to cover a given fraction (often 0.99 or 0.999) of the
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residual pixel values, but we will treat the data as Gaussian, and use the determinant of the covariance matrix
as our proxy for volume. (It is equal to volume times a fixed scale factor.) Rather than report an absolute value
of the volume, however, we will take the ratio of the residual volume and the original volume. (Thus, the fixed
scale factor cancels.) In particular, we will report the log volume ratio (LVR) given by log(Vo/V ), which can be
computed using

LVR = log(Vo/V ) =
∑
i

log λoi −
∑
i

log λi. (29)

Since smaller volumes are better, larger LVR’s are preferred.

Table 2 show how well these estimators work in terms of both of these measures. A general trend is that
as the number of features increases, the higher the SNR and LVR go. The most notable exceptions to this
trend are in the direct band-by-band (i.e. i.e., without PCA) columns of the LVR statistic. This speaks to the
advantage of PCA rotation before band-by-band regression. Interestingly, the SNR statistic did not indicate
much distinction between direct and PCA-based band-by-band regression. This is further evidence that the
SNR statistic is limited in its usefulness for comparing these regression schemes. Another trend is that the non-
symmetric regression, which has the highest number of features, did not substantially outperform the regression
using many fewer symmetric features (K4Σ for Indian Pines and D4Σ for Reno and Cooke City).

6.2. Anomalous target detection performance

The ground truth problem (that it is often unreliable, and that there is never enough of it) is a perennial issue in
algorithm development for remote sensing applications. One solution is to implant targets in the image.9, 13, 33–35

While this may not be quite as realistic as having actual targets in the actual scene, it has the advantage
that the locations, spectra, and strengths of those targets are precisely known. One can further justify this
approach by noting that for anomaly detection problems, the notion of a “realistic” target is difficult to define,
anyway.36 It also recognizes that a key (if not the key) component of any target or anomaly detection scheme in
multi/hyperspectral imagery is the characterization of the cluttered background.37, 38

For the experiments here, we used uniform anomalies. For each band, we found the minimum and maximum
value of the pixel in the image, and created target spectra whose values were band-by-band independent and
uniformly distributed over minimum-to-maximum range. For each target t that was generated this way, we
mixed it into the scene at a random pixel location using a simple linear combination:

x′ = (1− α)t + αt (30)

Small values of α were used, which can be interpreted either as very small (subpixel) uniformly distributed
anomalies, or else as full- (or nearly full-)pixel anomalous targets whose spectra are only subtlely different from
the normal background.

The anomaly detector used in these experiments is in the style of RX,7, 8 but where RX uses a local mean of
the annulus to estimate the center pixel, these detectors use one of the regression estimators. It has been noted
that it is advantageous to compute covariance from a larger annulus than is used for estimating the mean.37

These experiments take an extreme version of that advice, and compute the covariance globally, based on the
residual image.

The ROC curves in Fig. 4 show how well this detector was able to identify the anomalies that were implanted
into the images. The results seen in these curves more or less mirror the results in the LVR columns of Table 2.
Specifically: PCA band-by-band is better than direct band-by-band; D4Σ is better then Mean, but only in the
PCA band-by-band case.

7. CONCLUSIONS AND FUTURE WORK

The main result of this work is that the regression framework provides a potential for much better target
detection than the traditional annulus mean. Further, in contrast to earlier attempts,16, 17 this performance
gain was obtained with computationally efficient linear regression. The use of symmetry did indeed enable
competitive performance with fewer regressor variables, but the introduction of nonlinear symmetry-preserving
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Figure 4: ROC curves illustrate performance of different algorithms for detecting anomalies that have been
artificially implanted into the scene (at a level α = 0.01 for Indian Pines and Reno, and α = 0.005 for Cooke
City). The experiment is repeated five times so that variability in the ROC curve can be observed. The top row
is direct band-by-band background estimation; the bottom row uses principal components analysis. It is evident
from this figure that PCA improves the performance of the median estimator (by a lot) and the D4Σ estimator
(by a little), but has no influence on the mean (standard RX) estimator. The figure also shows that regression
(in this case, using D4Σ) outperforms the mean and median, in some cases by a substantial factor. Finally, we
observe that the relative performance of the different anomaly detectors corresponds more directly with the LVR
(log-volume-ratio) than with the SNR (signal-noise-ratio) statistics that are reported in Table 2.

Σ∆ features did not prove very helpful. It was found that PCA rotation was important for effective band-by-band
regression, but it is not known if that is the best choice. Future work may consider other rotation schemes (such
as PCA applied to the residuals instead of the original image).

At this point, the recommended background estimation algorithm is PCA-based band-by-band regression on
the dihedrally symmetric D4Σ features. Future work may consider more overtly nonlinear regression methods,
and for these, it is even more important to have a small number of features.

It bears remarking that this estimator is essentially a convolution with a fixed annular kernel, and there
may be effective Fourier-domain interpretations and/or implementations that have not yet been pursued. More
sophisticated spatial filtering39 has shown promise in other image processing applications, and recent advances
in efficient convolutional sparse coding40, 41 make this approach an attractive direction for further research.
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(a) Mean (b) D4Σ direct (c) D4Σ PCA

744 false alarms 233 false alarms 167 false alarms

Figure 5: For a 200×200 tile from the HyMap image of Cooke City (shown
at left), ten anomalies were implanted with strength α = 0.002. Anoma-
lousness was computed using three different background estimators and is
shown in the top row. The colormaps are calibrated so that the median im-
planted anomalousness is fifty percent gray, and maps scale with the square
root of anomalousness to emphasize the smaller values. The binary images
in the lower row show the false alarms that occur at a detection rate of fifty
percent. Consistent with the LVR values in Table 2 and the ROC curves
in Fig. 4, we see that the symmetrized regression estimator outperforms
the simple mean, and that it works better when employed in the principal
components space.
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