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Abstract—We present a variant of the classic problem of
anomaly detection in hyperspectral imagery. In this variant,
the anomalous signatures are assumed to be additive and to
exhibit spectra that are sparse – that is, only a few of the many
hyperspectral channels are significantly nonzero.

When the background data are Gaussian, and there is no
structure in the anomalous signatures, then the optimal detector
is given by a Mahalanobis distance and exhibits contours that are
ellipsoids. When the desired signature is known, then the solution
is given by a matched filter that is specifically optimized for
that signature; the contours are parallel planes whose orientation
depends on both the desired signature and the covariance of
the background. We address an in-between problem, one for
which the detailed signature is not known, but a more generic
description of the structure is available.

We propose that this solution might have application to the
detection of gaseous plumes, when the chemistry of the gas is
unknown. Such plumes have approximately additive effect on
their backgrounds, and – especially in the thermal infrared
“fingerprint region” – tend to have very sparse absorption and
emission spectra.

Index Terms—hyperspectral imagery, signal processing,
anomaly detection, plume detection, sparse modeling

I. INTRODUCTION

Gaseous plumes, particularly in the infrared, exhibit very
distinctive signatures of absorption1 as a function of wave-
length. Hyperspectral imagery enables analysts to exploit this
distinctiveness, and to detect specific gaseous chemicals even
at low concentrations, using matched filters that are tailored
both the the specific structure of the chemical signature and
to the statistics of the background clutter [1]–[9].

All of these algorithms, however, assume that the gas
signature is known. If the chemical itself is not known, then
the usual approach is to attack the data with a large library
of gas spectra. The library should not only cover the range of
chemicals whose detection might be of interest, it should also
include variants of the spectra that are observed in different
atmospheric conditions.

An entirely different approach for detecting targets in clutter
is to treat the targets as completely unknown, but as unusual

1Depending on the temperature of the plume relative to its background, the
plume may be in absorption or emission; but the spectral shape is the same
in both cases.
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Fig. 1. Infrared absorption signatures for six different gases, chosen more
or less at random from the HITRAN high-resolution transmission molecular
absorption database [10], illustrate the sparse structure that is typically
inherent in gaseous chemical spectra.

compared to the rest of the background. Again, we seek
deviations from the background clutter, but in this case we do
not know the direction of that deviation. This is the anomaly
detection approach, and many algorithms for finding anomalies
are variants of the so-called RX algorithm, which is based on
Mahalanobis distance [11]–[14].

It is in the nature of anomaly detection that the anomalies
are not well-defined, and when they are modeled, then they
are generally modeled (with few exceptions [15], [16]) using



a uniform distribution.
One property exhibited by nearly all gaseous chemicals is

that the spectrum is composed of a relatively sparse forest of
narrow lines; several examples are illustrated in Fig. 1. We
propose here to exploit this property and search for anomalies
that have this spectrally sparse character.

In a hypothesis testing framework, we write

Null Ho : x = z (1)
Alternative H1 : x = z+ t (2)

Here, z is the background, which is distributed with some
distribution that is in practice learned from the data, and t is
an additive target. We consider three kinds of targets: In the
first case t is known (up to a scalar multiplier). In the second
case, t is completely unknown. In the third case, which is
our main interest for this paper, the only thing known about
t is that it is spectrally sparse; that is, the vector-valued t has
mostly zero-valued elements.

We remark that the equation x = z + t has the flavor
of a low-rank plus sparse decomposition [17], [18]. In our
work here, the “low-rank” component is treated as Gaussian.2

We further remark that the sparseness we seek is in the
components of t, not in the components of x, which is treated
in its full dimensionality. This is in contrast to the problem
addressed by Banerjee et al. [19], which is to find a sparse
set of features to describe x, and then to use a kernel-based
anomaly detector in that lower dimensional space.

II. DERIVATION OF RX FOR ANOMALY DETECTION

One way to derive the RX detector [11] is with the
Generalized Likelihood Ratio Test (GLRT), in which the
anomalous signal is treated as a nuisance parameter, and then
one maximizes the likelihood over all possible values of the
nuisance parameters. The likelihood of observing x when t is
the anomalous target signal is proportional to

(2π)−d/2|R|−1/2 exp[−(x− t)TR−1(x− t)/2] (3)

where d is the dimension of the data (number of spectral
channels in the hyperspectral image), R is the covariance, and
|R| is the determinant of R. When t is known, the likelihood
ratio

L(x) = exp[−(x− t)TR−1(x− t)/2]

exp[−xTR−1x/2]
(4)

leads to the matched filter

M(x) = (tTR−1t)/2 + logL(x) = tTR−1x (5)

which is linear in x.
When t is not known, we can use the GLRT to write

L(x) = maxt exp[−(x− t)TR−1(x− t)/2]

exp[−xTR−1x/2]
(6)

2For hyperspectral data, the Gaussian model typically includes many small
eigenvalues, so the low-rank model is not entirely out of place.
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Fig. 2. In this simple d = 2 dimensional model, we plot the most anomalous
points (top three percent) in red, the least anomalous points (below median) in
black, and the rest in yellow. A total of 104 points are drawn at random from
a Gaussian distribution. In (a,b) the distribution is Gaussian with covariance
given by the identity; in (c,d) the Gaussian has a correlation of 0.3 in the off-
diagonal component of the covariance matrix. We take k = 1 in the leftmost
panels (a,c,e), and k = 2 in (b,d,e). We note that k = d corresponds to
the standard RX algorithm and in (b,d), elliptical contours of anomalousness
are seen. For k = 1, we see diamond-shaped contours, corresponding to
matched filters with respect to the axis directions. In (e,f), we plot the case
for anomalies that are restricted to positive values.

The numerator achieves its maximum when t = x, which
leads to

L(x) = 1

exp[−xTR−1x/2]
(7)

and therefore

A(x) = 2 logL(x) = xTR−1x (8)

is the standard RX measure for anomalousness.

III. SPECTRALLY SPARSE ANOMALIES

In the derivation of A(x) in the previous section, t was
unrestricted, and we found that the likelihood was maximized
when t = x. We suggest two approaches for restricting the
target to sparse signatures:



1. Strictly constrain the target to have a fixed number of
nonzero elements. Let Tk correspond to the set of targets t
with k or fewer of the components nonzero; that is, Tk =
{t : ||t||0 ≤ k}. The likelihood ratio then becomes

L(x) = maxt∈Tk exp[−(x− t)TR−1(x− t)/2]

exp[−xTR−1x/2]
(9)

or equivalently:

A(x) = xTR−1x− min
t∈Tk

(x− t)TR−1(x− t) (10)

= max
t∈Tk

[
2xTR−1t− tTR−1t

]
(11)

is the measure for anomalousness. The case k = d, where d
is the number of spectral channels, leads to the standard RX
formulation.

The experiments described in Section IV use a matching
pursuit [20] algorithm to greedily add components to t until k
components have been added. It is straightforward to modify
this algorithm to take advantage of spectra (such as is usually
the case with gas spectra) for which the sign of the compo-
nents of t are known in advance. Fig. 2 illustrates what the
contours of anomalousness look like in the simple case of
two-dimensional Gaussian data.

2. Penalize the likelihood function to favor sparse signa-
tures. Here, we can employ an L1 instead of an L0 metric,
and consequently achieve a convex optimization. Rather than
restrict t to a fixed number of nonzero elements, we “nudge”
it toward sparsity by altering Eq. (6) with a penalty factor:

L(x) = maxt exp[−(x− t)TR−1(x− t)/2] exp[−λ||t||1]
exp[−xTR−1x/2]

(12)
This leads to

A(x) = max
t

[
2xTR−1t− tTR−1t− λ||t||1

]
(13)

as a measure of anomalousness which can be computed as
a straightforward quadratic programming problem. The limit
λ→ 0 leads to the standard RX formulation.

IV. EXPERIMENT

For the experiment shown in Fig. 3, Fig. 4, and Fig. 5, we
used the AVIRIS Indian Pines dataset [21], cropped to avoid
some of the strong single-pixel anomalies that overpowered
the rest of the image. To this background image, along a small
4×21 pixel slice of the image, a gradient of plume was added,
weaker on the left and stronger on the right. The detection of
this plume shows up in Fig. 5 as a dark horizontal stripe.3

The more sensitive detection observed in Fig. 5(a) is expected
since the matched filter in Eq. (5) makes explicit use of the
spectrum t. By contrast, the anomaly-based approaches in the
remaining panels do not use explicit knowledge about the
simulated gas spectrum shown in Fig. 4. What Fig. 5 further

3We do not know the cause of the light vertical stripe that is observed in
Fig. 5(b-h), but speculate that it is a data artifact, caused perhaps by some
kind of data interpolation that led to unusually un-anomalous pixel values.

Fig. 3. Cropped Indian Pines dataset. 111×111 pixels, and 200 channels. This
broadband image is the sum over all the channels, and although it includes
the simulated plume, that plume is too weak to be observed in this projection.
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Fig. 4. Sparse spectral structure of simulated gas used in Fig. 5.

illustrates is that the spectrally sparse anomaly detector in
Eq. (11), and shown in Fig. 5(c,e,g), provides a more sensitive
detection than the traditional RX anomaly detector shown in
Fig. 5(b). Thus, we are able to exploit the sparsity of the
signal in Fig. 4 without knowing the details of that signature.
Also, Fig. 5(d,f,h) exhibits further (albeit moderate) gains in
sensitivity by restricting consideration to gas spectra where all
the components are the same sign.

V. DISCUSSION

We have described preliminary efforts to extend standard
anomaly detection to the case of a sparse additive target, and
noted that this may have applications in plume detection.

One limitation of this work is the restriction to Gaussian
backgrounds, which are not particularly realistic. Natural ex-
tensions are to heavy-tailed backgrounds [22], [23], to more
arbitrary global representations [24], to local background esti-
mation [25], or to locally low-rank models that have previously
been developed for video data processing [18].

Another direction for future investigation is to use quadratic
programming against an L1 penalty instead of matching
pursuit to encourage sparseness; this would entail replacing
Eq. (11) with Eq. (13) as the measure of anomalousness.
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(a) AMF, z = 39.81 (b) RX, z = 1.88

(c) k=1, z = 2.97 (d) k=1+, z = 3.27

(e) k=5, z = 3.77 (f) k=5+, z = 4.38

(g) k=10, z = 3.61 (h) k=10+, z = 4.26

Fig. 5. Detecting a weak plume signature, seen here as a small dark horizontal
stripe near the center of the image. (a) The matched-filter detector achieves
the strongest detection, but it uses knowledge of the spectral signature. (b) The
standard RX anomaly detector uses no knowledge of the spectral signature,
and makes no assumptions about it. Its performance is much worse than the
matched filter. (c,e,g) The spectrally sparse anomaly detector also does not
know the spectral signature, but assumes that it is sparse with k components
(shown here with k = 1, 5, 10). (d,f,h) The signed spectrally sparse anomaly
detector uses the further information that the sign of every component of t is
positive. This is appropriate for emissive plumes (for absorptive plumes, one
can assume that every component of t is negative). For all of the detectors, the
reported z-scores are the ratio of mean signal strength to standard deviation
of the background.


