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Abstract—Because each pixel of a hyperspectral image con-
tains so much information, many (successful) algorithms treat
those pixels as independent samples, despite the evident spatial
structure in the imagery. One way to exploit this structure is to
incorporate spatial processing into pixel-wise anomalous change
detection algorithms. But if this is done in the most straightfor-
ward way, a contaminated cross-covariance is produced. A spatial
processing framework is proposed that avoids this contamination
and enhances the performance of anomalous change detection
algorithms in hyperspectral imagery.

Index Terms—hyperspectral, change detection, spatial filter,
stacked filter, cross-covariance

I. INTRODUCTION

From two images of the same scene, we want to identify
the interesting changes that occurred [1], [2], [3]. Because it is
difficult to give a mathematical definition for interesting1 the
emphasis is on anomalous change. The anomalous changes are
rare and unusual, and not like the pervasive differences which
occur throughout the scene. These pervasive differences may
be due to calibration, illumination, look angle, and even the
choice of remote sensing platform. They can be caused by
misregistration [4], [5], [6] of the images, or by diurnal and
seasonal variations [7] in the scene. Becauses these differences
are pervasive, their effects can be statistically characterized,
just from the image pair. By contrast the anomalous changes
are assumed to be relatively rare, and occur in only a small
part of the image or image archive. Because the nature of the
change is not known beforehand, algorithms for anomalous
change detection are unsupervised.

When the images are hyperspectral, then pixelwise change
detection algorithms are attractive. Because the pixels in a hy-
perspectral image can have hundreds of spectral channels (pro-
viding color information far beyond the usual red, green, and
blue components that define a typical photographic image),
it is possible to treat these pixels as independent samples and
still obtain useful results. The current study is motivated by the
conviction that adjacent pixels are not independent, and that
the obvious spatial structure in real images can be exploited
to produce better results. Indeed, it was observed in [8] that
simple spatial smoothing of the images could improve change
detection performance. The aim here is to provide a more
principled framework for pursuing that observation.

1For example, consider defining n to be the smallest uninteresting number.
Now try to tell me that this n is not very interesting!

II. PIXELWISE CHANGE DETECTION

Given two co-registered images, let x ∈ Rdx be the spec-
trum (e.g., reflectance or radiance at dx different wavelengths)
of a pixel in one image and y ∈ Rdy be that of the
corresponding pixel in the other image. Here, dx (resp. dy)
is the number of spectral channels in the x (resp. y) image.
For pixelwise ACD algorithms, anomalousness depends only
on the spectra at the individual pixels: A(x,y). One computes
anomalousness A for every (x,y) in the co-registered image
pair; the largest values are candidates for anomalous changes.

Perhaps the most straightforward change detection approach
is to consider the difference image [9] e = y−x; where there
are anomalous changes, e will be anomalously large. This
approach is particularly vulnerable to pervasive differences,
and does not even make sense when the two images are of
different modalities (it certainly requires dx = dy). A more
flexible approach, called the chronochrome [10], performs a
linear transformation one of the images in order to minimize
the least squares difference between them: that is, e = y−Lx,
where L is chosen to minimize the average

〈
eT e

〉
over the

image pair. Instead of a linear regression, one might perform
a nonlinear fit, for instance using a neural network [11]:
e = y−L(x). Instead of minimizing simple least squares, one
can minimize total least squares [12], which leads to a family
of algorithms that are mathematically similar to “multivariate
alteration detection” [13] and “covariance equalization” [14].

A distribution-based approach for ACD was suggested
in [8], and further developed in [15], [16]. Here, we write
p(x,y) as a probability density of the “non-anomalous” data
(this is something that can be inferred form the imagery),
and pa(x,y) as a probability density of the “anomalously
changed” pixel pairs. Whatever model we propose for pa, we
can write the optimal anomalous change detector using the
likelihood ratio:

A(x,y) =
pa(x,y)
p(x,y)

. (1)

As suggested in [8], since we are interested in anoma-
lous changes, not just anomalies, we can write pa(x,y) =
p(x)p(y), where the p(x) and p(y) correspond to the separate
distributions of x and y (which, again, can be inferred from
those images separately). This leads to a mutual-information
based change detector [15]:

A(x,y) = log p(x) + log p(y)− log p(x,y). (2)



A. Hyperbolic Anomalous Change Detection (HACD)

When the data are Gaussian, then we can express the distri-
butions in terms of covariance matrices.2 Write X =

〈
xxT

〉
and Y =

〈
yyT

〉
as the covariance matrices of the individual

images (assuming means have been subtracted from the x and
y images), and C =

〈
yxT

〉
as the cross-covariance between

the images. Then (2) leads to the hyperbolic anomalous change
detector (HACD):

A(x,y) =
[

xT yT
]

Q

[
x
y

]
, (3)

with

Q =
[

X CT

C Y

]−1

−
[

X 0
0 Y

]−1

. (4)

A useful way to re-interpret the components of the HACD
algorithm is

Q = R−1
o −R−1

1 , (5)

where
Ri =

[
X CT

i

Ci Y

]
, (6)

with Co =
〈
yxT

〉
and C1 = 0. Here Co is the cross-

covariance associated with normal pixels and C1 corresponds
to an anomalous pixel. For normal pixels in co-registered
images, y and x are correlated (they are, after all, measure-
ments of the same position on the ground). But if there is an
anomalous change at some location, then that correlation is
expected to vanish.

III. SPATIALLY ENHANCED ACD

The pixelwise algorithms in the previous section ignore the
evident spatial structure in hyperspectral images. There are a
number of approaches for exploiting that structure (e.g., [20]
employs a Markov Random Field); the aim here is to leverage
the pixelwise algorithms that have already been developed.

Given images a and b, consider applying a spatial filter to
each image (needn’t be the same spatial filter for both images),
resulting in new images Fa and Fb. The purely spectral (non-
spatial) way of applying change detection at pixel location
(i, j) is to set y = aij and x = bij and apply the function
A(x,y). For spatially enhanced ACD, we’d like to use y =
(Fa)ij and x = (Fb)ij and again simply apply the function
A(x,y). No muss. No fuss.

Early trials with this approach [8] showed that it could
improve change detection ability, but more extensive exper-
iments [21] found cases where even generic versions of this
approach led to problematic results.

To clarify this situation, we will first consider a restricted
class of spatial filters that depend on the spatial neighborhood
of a pixel of interest, but do not depend on the pixel itself.
If a is an image, and Sa is the filtered image, then we can

2In fact, a slightly larger class of distributions than Gaussian can be
expressed in terms of covariance matrices. These are elliptically-contoured
distributions; they have been advocated as better models of hyperspectral
data [17], [18], [19] and have been observed to exhibit better anomalous
change detection performance [16].

TABLE I
SCHEMES FOR SPATIAL PROCESSING

Scheme Assignments
Standard spectral y = a, x = b

Low-pass (smoothing) filter y = a + Sa, x = b + Sb

High-pass (sharpening) filter y = a− Sa, x = b− Sb

Stacked filter y = [a; Sa], x = [b; Sb]

Proposed scheme y = a, x = [b; Sb; Sa]

Control: single image y = a, x = Sa

TABLE II
INDUCED CROSS-COVARIANCE

Scheme C =
˙
yxT

¸
when a is anomalous

Standard spectral 0
Low-pass (smoothing) filter (Sa)(b + Sb)T

High-pass (sharpening) filter (Sa)(b− Sb)T

Stacked filter [0 0; (Sa)bT (Sa)(Sb)T ]

Proposed scheme [0; 0; 0]

Control: single image 0

express the value of Sa at the (i, j) pixel as a function of
pixels values in a:

(Sa)ij = f ({ak` | (k, `) ∈ Nij}) , (7)

with Nij an “exclusive neighborhood” of (i, j) – it includes
pixels near (i, j) but does not include (i, j) itself. Although f
can be any function, the experiments in this paper will consider
the simple case where f is the average of its arguments.
This convolution with an annulus-shaped kernel is by itself
something of an unusual filter, but we observe that many filters
of interest can be expressed in the form Fa = a + βSa, with
β > 0 a low-pass filter (a smoothing filter) and β < 0 a
high-pass or sharpening filter (which has been shown to be
effective in some target detection contexts [22]; see also [23]).
We can furthermore consider more generic combinations of
a and Sa by making a stacked filter: Fa = [a;Sa]. This
notation corresponds to an image Fa with twice as many
spectral channels as the image a; the first set corresponding to
a itself and the second set to Sa. These schemes are listed in
Table I, along with one further suggestion, which constitutes
the main innovation of this paper. The proposed scheme takes
advantage of the fact that when a pixel aij is anomalous, it is
uncorrelated with (Sa)ij as well as bij and (Sb)ij . Thus, the
partition of the data so that y = a and x = [b;Sb;Sa] means
that y and x are uncorrelated when a is anomalous.

A. Induced cross-covariance

In [21], it was observed that spatial processing can induce
cross-covariance even for anomalous pixels, leading to C1 6=
0. As an example, consider the stacked spatial scheme, with
y = [a;Sa] and x = [b;Sb]. We see that

C =
〈
yxT

〉
=

〈
[abT a(Sb)T ; (Sa)bT (Sa)(Sb)T ]

〉
. (8)

For C1, we consider the case that a is an anomlous pixel,
and in that case we expect

〈
abT

〉
= 0 and

〈
a(Sb)T

〉
= 0,

because the anomalous pixel in a is uncorrelated both with



Base image
to begin with

Pervasive Differences
applied to all pixels

Anomalous Change

Target Mask

Fig. 1. Simulation framework for spatio-spectral ACD. The top two images
correspond to pervasive differences; these are the two images from which
A(x,y) is trained, and they provide the false alarm versus threshold function.
Applying A(x,y) to the second and third images, and paying attention only
to the pixels identified in the target mask, provides the detection rate versus
threshold. Combining the two gives detection rate versus false alarm rate
curves that are shown in Fig. 2 and Fig. 3.

the corresponding pixel b and with its neighborhood Sb. But
even if a is anomalous, that doesn’t mean its neighborhood
Sa is anomalous, so we do not expect either

〈
(Sa)bT

〉
or〈

(Sa)(Sb)T
〉

to be zero. So for the stacked spatial scheme,
we have a nonzero induced cross-covariance C1 6= 0.

Because the pixel-wise A(x,y) in (3) effectively assumes
C1 = 0, it is not well matched to the nonzero C1 case. To
the extent that the the induced cross-covariance is limited, the
anomalous change detector may still be effective, but it is not
optimal. One solution is to estimate the nonzero C1 and to
modify the HACD algorithm accordingly [21], but a simpler
alternative is to employ schemes for which the induced cross-
covariance is zero.

Table II lists the induced cross-covariance for each of the
schemes in Table I, treating the a pixel as anomalous. The
one spatial scheme that induces no cross-covariance is the
proposed scheme, with y = a and x = [b;Sb;Sa].

IV. EXPERIMENTS

To compare the performance of the different schemes, some
experiments were performed using hyperspectal data from the
AVIRIS sensor [24]; the experiments use a 150×500 pixel clip
of data from flightline f960323t01p02_r04_sc01 [25]
taken near Titusville, FL.

The framework for testing ACD algorithms is illustrated in
Fig. 1. The first step is to create a second image by imposing a
“pervasive difference” everwhere in the image. This simulates
the normal and uninteresting changes that occur when two
images of the same scene are taken under different conditions.
For the experiments here, two kinds of pervasive difference
image pairs were created. In the ’Misreg’ case, the image is
smoothed with a 3× 3 kernel and misregistered by one pixel.

(a) Misreg
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spectral y=a, x=b
smooth y=a+Sa, x=b+Sb
sharpen y=a−Sa, x=b−Sb

stacked y=[a,Sa], x=[b,Sb]
proposed y=a, x=[b,Sb,Sa]
single y=a, x=Sa

(b) Split
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spectral y=a, x=b
smooth y=a+Sa, x=b+Sb
sharpen y=a−Sa, x=b−Sb

stacked y=[a,Sa], x=[b,Sb]
proposed y=a, x=[b,Sb,Sa]
single y=a, x=Sa

Fig. 2. ROC curves compare change detection performance for AVIRIS
data using simulated subpixel anomalous changes and simulated pervasive
differences. In (a), the image is smoothed and misregistered by one pixel; in
(b), the pervasive difference images are taken by splitting the channels.

For the ’Split’ case, the 224-channel hyperspectral image is
split into two images, the first contains channels 1 to 112, and
the second contains 113 to 224. In both cases, the resulting
image pairs are subsequently reduced to 10 channels each,
using canonical correlation analysis. (The utility of this last
step, and details of its implementation, are described in [15].)

The second step in the framework is to create anomalous
changes. Where the pervasive differences are applied to the
whole image, the anomalous change effectively occurs at only
one point on the image. For single pixel anomalies, we replace
a random pixel with a random draw from some distribution.
Because we want to produce anomalous changes, without
being distracted by individual anomalies, the random draw
is from the image itself. That is: a given pixel is replaced
by a pixel from somewhere else in the image. For anomalies
that are larger than a pixel, whole patches are moved. For
subpixel changes, the given pixel is replaced with a linear
combination of itself and the other randomly chosen pixel.
For the experiments performed here, very small changes (0.25
pixels) were employed so that the performance difference
between the different schemes would be more apparent. Al-
though the anomalous changes are presumed to be rare, we can



(a) Misreg, EC-HACD
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spectral y=a, x=b
smooth y=a+Sa, x=b+Sb
sharpen y=a−Sa, x=b−Sb

stacked y=[a,Sa], x=[b,Sb]
proposed y=a, x=[b,Sb,Sa]
single y=a, x=Sa

(b) Split, EC-HACD
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spectral y=a, x=b
smooth y=a+Sa, x=b+Sb
sharpen y=a−Sa, x=b−Sb

stacked y=[a,Sa], x=[b,Sb]
proposed y=a, x=[b,Sb,Sa]
single y=a, x=Sa

Fig. 3. Same as Fig. 2, but using the elliptically-contoured HACD [16],
instead of the Gaussian HACD in (3).

simulate many of them in one trial by separating the individual
anomalies so that they do not interfere with each other duing
spatial processing.

Receiver Operator Characteristic (ROC) curves are shown
in Fig. 2. For our small anomalies, we observe that sharpening
is better than smoothing; this general observation was noted
earlier [21], where it was also observed that larger anomalies
preferred smoothing to sharpening. The proposed scheme is
better or competitive with the sharpening filter, even though
there is no explicit sharpening. Like the proposed filter, the
stacked filter is also adaptive, but it does not perform as well,
presumably because of its nonzero induced cross-covariance.

The ’single’ curve provides a control experiment; it attempts
to detect the “change” using only a single image. With y = a
and x = Sa, it infers whether a pixel is an anomalous change
using only the local spatial context.

Comparing Fig. 3 to Fig. 2, we observe that the conclu-
sions associated with the HACD algorithm apply also for the
elliptically-contoured version (EC-HACD [16]), with the EC
algorithm generally outperforming the Gaussian HACD.
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